Джеймс клерк максвелл изобретения. Максвелл Джеймс - биография, факты из жизни, фотографии, справочная информация

Джеймс Клерк Максвелл (James Clerk Maxwell, 1831–1879) - выдающийся деятель шотландского Просвещения, многое сделавший для актуализации наследия кельтов, которые взаимодействовали с пространством с позиции цвета и света. Максвелл внес неоценимый вклад в понимание античных культур. Кроме того, его труды по электродинамике являются основой учения о развитии и управлении сознанием человека посредством электромагнитных волн.

Максвелл создал важнейшую систему теории света, которая опередила на тот момент и даже сегодня опережает возможности человека переживать цвет. Он научно доказал важность понимания именно восьми частотных характеристик цвета, которые определяют возможности нашего сознания. Особенно важно отметить его изучение восьмого цвета - белого, который он показал как фигуру, состоящую из частотных характеристик красного, зеленого и фиолетовых цветов. Это значит, что три цвета, определяющие самый низкий, самый высокий и средний частотные показатели, образуют белый цвет.

По сути, он создал великую теорию Геометрии цвета, которая так и не стала востребована обществом для развития человека, а ушла в научную плоскость - работу с различными частотными колебаниями. А ведь белый цвет - это, по сути, равнобедренный треугольник, обладающий центром вращения (он же точка смешения трех цветов). По аналогичной схеме работает и наше тело, если понимать его как треугольник (но это только если понимать его как треугольник). Если воссоздать в теле подобную точку смешения, то мы сможем получить наивысшую частотную характеристику, связанную с белым цветом. Это не просто электромагнитный эффект, а возможность проживания нашего духа.

Так мы изменяем поведение молекулярных связей внутри нашего тела и можем противопоставить себя магнитному полю. Но самое главное состоит в том, что Максвелл показал поступательность этого движения, то есть наращивание, где можно доказать безграничность развития нашего тела и сознания. И известное правило буравчика, которое мы изучаем, технически несет в себе совсем иное концептуальное осмысление.

Увы, великие знания Максвелла до сих пор преподаются и трактуются неверно. А ведь здесь объясняется возможность понимания, вернее, восприятия физического состояния оси как органа, который наделен электрическими показателями с особой частотой.

Наличие этой оси позволяет человеку сместить все свои энергетические характеристики, создать внутренний «волчок», что, кстати, Максвелл доказал не только посредством своей теории цветов, но и опытом с бросанием кошки вниз (ее способность приземляться на четыре лапы).

Но почему именно цвет столь важен для нас в этой связи? Потому что цветовая реакция на мозг затмила все другие реакции в нашем теле. Не научившись воспринимать цвет и правильно реагировать на него, мы все равно будем зависеть от этой реакции, и она будет мешать всем остальным восприятиям. Цвет - основа нашего зрения, а зрение - основа нашего духа, то есть дух человека питается в первую очередь цветом. Самое важное - разобраться с тремя цветами - красный, зеленый и фиолетовый (синий).

Понятно, что Максвелл не углубился в то, что он выявил, но важно то, что он это обозначил, так как именно здесь закладывается опора образования человека и развития его качества наблюдения. Что бы мы ни делали, мы зависим от цвета - и в месте, где мы живем, и в одежде, которую носим. И даже в пище, которую мы едим. Это реальная система, обладающая физическими показателями и соответствующей силой. Так что этот великий шотландец не только дал человечеству ключи к познанию природы, но и объяснил идею тартана (расцветки клеток ткани у шотландских семейств и организаций), клановости шотландцев, где скрыта комбинация развития клана. Тартан - это формула, которая имеет свои частотные показатели.

Джеймс Клерк Максвелл (1831-79) - английский физик, создатель классической электродинамики , один из основоположников статистической физики, организатор и первый директор (с 1871) Кавендишской лаборатории, предсказал существование электромагнитных волн, выдвинул идею электромагнитной природы света, установил первый статистический закон - закон распределения молекул по скоростям, названный его именем.

Развивая идеи Майкла Фарадея, создал теорию электромагнитного поля (уравнения Максвелла); ввел понятие о токе смещения, предсказал существование электромагнитных волн, выдвинул идею электромагнитной природы света. Установил статистическое распределение, названное его именем. Исследовал вязкость, диффузию и теплопроводность газов. Максвелл показал, что кольца Сатурна состоят из отдельных тел. Труды по цветному зрению и колориметрии (диск Максвелла), оптике (эффект Максвелла), теории упругости (теорема Максвелла, диаграмма Максвелла - Кремоны), термодинамике, истории физики и др.

Семья. Годы учения

Джеймс Максвелл родился 13 июня 1831, в Эдинбурге. Он был единственным сыном шотландского дворянина и адвоката Джона Клерка, который, получив в наследство поместье жены родственника, урожденной Максвелл, прибавил это имя к своей фамилии. После рождения сына семья переехала в Южную Шотландию, в собственное поместье Гленлэр («Приют в долине»), где и прошло детство мальчика.

В 1841 отец отправил Джеймса в школу, которая называлась «Эдинбургская академия». Здесь в 15 лет Максвелл написал свою первую научную статью «О черчении овалов». В 1847 он поступил в Эдинбургский университет, где проучился три года, и в 1850 перешел в Кембриджский университет, который окончил в 1854. К этому времени Джеймс Максвелл был первоклассным математиком с великолепно развитой интуицией физика.

Создание Кавендишской лаборатории. Преподавательская работа

По окончании университета Джеймс Максвелл был оставлен в Кембридже для педагогической работы. В 1856 он получил место профессора Маришал-колледжа в Абердинском университете (Шотландия). В 1860 избран членом Лондонского королевского общества. В том же году переехал в Лондон, приняв предложение занять пост руководителя кафедры физики в Кинг-колледже Лондонского университета, где работал до 1865 года.

Вернувшись в 1871 в Кембриджский университет, Максвелл организовал и возглавил первую в Великобритании специально оборудованную лабораторию для физических экспериментов, известную как Кавендишская лаборатория (по имени английского ученого Генри Кавендиша). Становлению этой лаборатории, которая на рубеже 19-20 вв. превратилась в один из крупнейших центров мировой науки, Максвелл посвятил последние годы своей жизни.

Вообще фактов из жизни Максвелла известно немного. Застенчивый, скромный, он стремился жить уединенно и не вел дневников. В 1858 Джеймс Максвелл женился, но семейная жизнь, видимо, сложилась неудачно, обострила его нелюдимость, отдалила от прежних друзей. Существует предположение, что многие важные материалы о жизни Максвелла погибли во время пожара 1929 в его гленлэрском доме, через 50 лет после его смерти. Он умер от рака в возрасте 48 лет.

Научная деятельность

Необычайно широкая сфера научных интересов Максвелла охватывала теорию электромагнитных явлений, кинетическую теорию газов, оптику, теорию упругости и многое другое. Одними из первых его работ были исследования по физиологии и физике цветного зрения и колориметрии, начатые в 1852. В 1861 Джеймс Максвелл впервые получил цветное изображение, спроецировав на экран одновременно красный, зеленый и синий диапозитивы. Этим была доказана справедливость трехкомпонентной теории зрения и намечены пути создания цветной фотографии. В работах 1857-59 Максвелл теоретически исследовал устойчивость колец Сатурна и показал, что кольца Сатурна могут быть устойчивы лишь в том случае, если состоят из не связанных между собой частиц (тел).

В 1855 Д. Максвелл приступил к циклу своих основных работ по электродинамике. Были опубликованы статьи «О фарадеевых силовых линиях» (1855-56), «О физических силовых линиях» (1861-62), «Динамическая теория электромагнитного поля» (1869). Исследования были завершены выходом в свет двухтомной монографии «Трактат об электричестве и магнетизме» (1873).

Создание теории электромагнитного поля

Когда Джеймс Максвелл в 1855 начал исследования электрических и магнитных явлений, многие из них уже были хорошо изучены: в частности, установлены законы взаимодействия неподвижных электрических зарядов (закон Кулона) и токов (закон Ампера); доказано, что магнитные взаимодействия есть взаимодействия движущихся электрических зарядов. Большинство ученых того времени считало, что взаимодействие передается мгновенно, непосредственно через пустоту (теория дальнодействия).

Решительный поворот к теории близкодействия был сделан Майклом Фарадеем в 30-е гг. 19 в. Согласно идеям Фарадея, электрический заряд создает в окружающем пространстве электрическое поле. Поле одного заряда действует на другой, и наоборот. Взаимодействие токов осуществляется посредством магнитного поля. Распределение электрических и магнитных полей в пространстве Фарадей описывал с помощью силовых линий, которые по его представлению напоминают обычные упругие линии в гипотетической среде - мировом эфире.

Максвелл полностью воспринял идеи Фарадея о существовании электромагнитного поля, то есть о реальности процессов в пространстве возле зарядов и токов. Он считал, что тело не может действовать там, где его нет.

Первое, что сделал Д.К. Максвелл - придал идеям Фарадея строгую математическую форму, столь необходимую в физике. Выяснилось, что с введением понятия поля законы Кулона и Ампера стали выражаться наиболее полно, глубоко и изящно. В явлении электромагнитной индукции Максвелл усмотрел новое свойство полей: переменное магнитное поле порождает в пустом пространстве электрическое поле с замкнутыми силовыми линиями (так называемое вихревое электрическое поле).

Следующий, и последний, шаг в открытии основных свойств электромагнитного поля был сделан Максвеллом без какой-либо опоры на эксперимент. Им была высказана гениальная догадка о том, что переменное электрическое поле порождает магнитное поле, как и обычный электрический ток (гипотеза о токе смещения). К 1869 все основные закономерности поведения электромагнитного поля были установлены и сформулированы в виде системы четырех уравнений, получивших название Максвелла уравнений.

Уравнения Максвелла - основные уравнения классической макроскопической электродинамики, описывающие электромагнитные явления в произвольных средах и в вакууме. Уравнения Максвелла получены Дж. К. Максвеллом в 60-х гг. 19 в. в результате обобщения найденных из опыта законов электрических и магнитных явлений.

Из уравнений Максвелла следовал фундаментальный вывод: конечность скорости распространения электромагнитных взаимодействий. Это главное, что отличает теорию близкодействия от теории дальнодействия. Скорость оказалась равной скорости света в вакууме: 300000 км/с. Отсюда Максвелл сделал заключение, что свет есть форма электромагнитных волн.

Работы по молекулярно-кинетической теории газов

Чрезвычайно велика роль Джеймса Максвелла в разработке и становлении молекулярно-кинетической теории (современное название - статистическая механика). Максвелл первым высказал утверждение о статистическом характере законов природы. В 1866 им был открыт первый статистический закон - закон распределения молекул по скоростям (Максвелла распределение). Кроме того, он рассчитал значения вязкости газов в зависимости от скоростей и длины свободного пробега молекул, вывел ряд соотношений термодинамики.

Распределение Максвелла - распределение по скоростям молекул системы в состоянии термодинамического равновесия (при условии, что поступательное движение молекул описывается законами классической механики). Установлено Дж. К. Максвеллом в 1859.

Максвелл был блестящим популяризатором науки. Он написал ряд статей для Британской энциклопедии и популярные книги: «Теория теплоты» (1870), «Материя и движение» (1873), «Электричество в элементарном изложении» (1881), которые были переведены на русский язык; читал лекции и доклады на физические темы для широкой аудитории. Максвелл проявлял также большой интерес к истории науки. В 1879 он опубликовал труды Г. Кавендиша по электричеству, снабдив их обширными комментариями.

Оценка работ Максвелла

Работы ученого не были по достоинству оценены его современниками. Идеи о существовании электромагнитного поля казались произвольными и неплодотворными. Только после того, как Генрих Герц в 1886-89 экспериментально доказал существование электромагнитных волн, предсказанных Максвеллом, его теория получила всеобщее признание. Произошло это спустя десять лет после смерти Максвелла.

После экспериментального подтверждения реальности электромагнитного поля было сделано фундаментальное научное открытие: существуют различные виды материи, и каждому из них присущи свои законы, не сводимые к законам механики Ньютона. Впрочем, сам Максвелл вряд ли отчетливо это сознавал и первое время пытался строить механические модели электромагнитных явлений.

О роли Максвелла в развитии науки превосходно сказал американский физик Ричард Фейнман: «В истории человечества (если посмотреть на нее, скажем, через десять тысяч лет) самым значительным событием 19 столетия, несомненно, будет открытие Максвеллом законов электродинамики. На фоне этого важного научного открытия гражданская война в Америке в том же десятилетии будет выглядеть провинциальным происшествием».

Джеймс Максвелл скончался 5 ноября 1879, Кембридж. Он похоронен не в усыпальнице великих людей Англии - Вестминстерском аббатстве, - а в скромной могиле рядом с его любимой церковью в шотландской деревушке, недалеко от родового поместья.

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

(13.06.1831 - 05.11.1879)

((1831-1879), английский физик, создатель классической электродинамики, один из основоположников статистической физики. Родился 13 июня 1831 в Эдинбурге в семье шотландского дворянина из знатного рода Клерков. Учился сначала в Эдинбургском (1847-1850), затем в Кембриджском (1850-1854) университете. В 1855 стал членом совета Тринити-колледжа, в 1856-1860 был профессором натурфилософии Маришал-колледжа Абердинского университета, с 1860 возглавлял кафедру физики и астрономии в Кингз-колледже Лондонского университета. В 1865 в связи с серьезной болезнью Максвелл отказался от кафедры и поселился в своем родовом поместье Гленлэр близ Эдинбурга. Здесь он продолжал заниматься наукой, написал несколько сочинений по физике и математике.

В 1871 в Кембриджском университете была учреждена кафедра экспериментальной физики, которую Максвелл согласился занять. Здесь он взял на себя бремя по организации при кафедре научно-исследовательской лаборатории, первой физической лаборатории в Англии. Средства на ее создание были пожертвованы герцогом Девонширским, лордом-канцлером Университета, но все организационные работы велись под наблюдением и по указаниям Максвелла (кроме того, он вложил в нее немало личных средств). Лаборатория открылась 16 июня 1874 и была названа Кавендишской - в честь замечательного английского ученого конца 18 в. Г.Кавендиша, которому герцог доводился внучатым племянником. Лаборатория была приспособлена как для научной работы, так и для лекционных демонстраций. Впоследствии она стала одной из самых знаменитых физических лабораторий мира.

Последние годы жизни Максвелл много занимался подготовкой к печати и изданием огромного рукописного наследия Кавендиша - его теоретических и экспериментальных работ по электричеству. Два больших тома вышли в октябре 1879. Умер Максвелл в Кембридже 5 ноября 1879. После отпевания в часовне Тринити-колледжа он был похоронен на фамильном кладбище в Шотландии.

Свою первую научную работу Максвелл выполнил еще в школе: в возрасте 15 лет он придумал простой способ вычерчивания овальных фигур. Эта работа была доложена на заседании Королевского общества и даже опубликована в его "Трудах". В бытность членом Тринити-колледжа он занимался экспериментами по теории цветов, выступая как продолжатель теории Юнга и теории трех основных цветов Гельмгольца. В своих экспериментах по смешиванию цветов Максвелл применил особый волчок, диск которого был разделен на секторы, окрашенные в разные цвета ("диск Максвелла"). При быстром вращении волчка цвета сливались: если диск был закрашен так, как расположены цвета спектра, он казался белым; если одну его половину закрашивали красным, а другую - желтым, он казался оранжевым; смешивание синего и желтого создавало впечатление зеленого. Разные комбинации цветов давали разные оттенки. Несколько позже Максвелл с успехом демонстрировал этот прибор на своих лекциях в Королевском обществе. В 1860 за работы по восприятию цвета и оптике он был награжден медалью Румфорда.

В 1857 Кембриджский университет объявил конкурс на лучшую работу об устойчивости колец Сатурна, в котором Максвелл решил принять участие. Эти образования были открыты Галилеем в начале 17 в. и представляли удивительную загадку природы: планета казалась окруженной тремя сплошными концентрическими кольцами, состоящими из вещества неизвестной природы. Лаплас доказал, что они не могут быть твердыми. Проведя математический анализ, Максвелл убедился, что они не могут быть и жидкими, и пришел к заключению, что подобная структура является устойчивой только в том случае, если она состоит из роя не связанных между собой метеоритов. Устойчивость колец обеспечивается их притяжением к Сатурну и взаимным движением планеты и метеоритов. За эту работу Максвелл получил премию Дж.Адамса и сразу же стал лидером математической физики.

Одной из первых работ Максвелла, внесших наиболее весомый вклад в науку, стала его кинетическая теория газов. В 1859 он выступил на заседании Британской ассоциации с докладом, в котором дал вывод распределения молекул по скоростям (максвелловское распределение). Максвелл развил представления своего предшественника в разработке кинетической теории газов Р.Клаузиуса, который ввел понятие "средней длины свободного пробега" (среднего расстояния, проходимого молекулой газа между ее столкновением с другой молекулой). Максвелл исходил из представления о газе как об ансамбле множества идеально упругих шариков, хаотически движущихся в замкнутом пространстве и претерпевающих лишь упругие столкновения. Шарики (молекулы) можно разделить на группы по скоростям, при этом в стационарном состоянии число молекул в каждой группе остается постоянным, хотя они могут выходить из групп и входить в них. Из такого рассмотрения следовало, что "частицы распределяются по скоростям по такому же закону, по какому распределяются ошибки наблюдений в теории метода наименьших квадратов, т.е. в соответствии со статистикой Гаусса". Так впервые в описание физических явлений вошла статистика. В рамках своей теории Максвелл объяснил закон Авогадро, диффузию, теплопроводность, внутреннее трение (теория переноса).

В 1867 показал статистическую природу второго начала термодинамики ("демон Максвелла"). В 1831, в год рождения Максвелла, М.Фарадей проводил классические эксперименты, которые привели его к открытию электромагнитной индукции. Максвелл приступил к исследованию электричества и магнетизма примерно 20 лет спустя, когда существовали два взгляда на природу электрических и магнитных эффектов. Такие ученые, как А.М.Ампер и Ф.Нейман, придерживались концепции дальнодействия, рассматривая электромагнитные силы как аналог гравитационного притяжения между двумя массами. Фарадей был приверженцем идеи силовых линий, которые соединяют положительный и отрицательный электрические заряды или северный и южный полюсы магнита. Они заполняют все окружающее пространство (поле, по терминологии Фарадея) и обусловливают электрические и магнитные взаимодействия. Максвелл самым тщательным образом изучил работы Фарадея и почти всю свою творческую жизнь развивал идеи поля.

Следуя Фарадею, он разработал гидродинамическую модель силовых линий и выразил известные тогда соотношения электродинамики на математическом языке, соответствующем механическим моделям Фарадея. Основные результаты этого исследования отражены в работе Фарадеевы силовые линии (Faraday"s Lines of Force), направленной Фарадею в 1857. В 1860-1865 Максвелл создал теорию электромагнитного поля, которую он сформулировал в виде системы уравнений (уравнения Максвелла), описывающих все основные закономерности электромагнитных явлений: 1-е уравнение выражало электромагнитную индукцию Фарадея; 2-е - магнитоэлектрическую индукцию, открытую Максвеллом и основанную на представлениях о токах смещения; 3-е - закон сохранения количества электричества; 4-е - вихревой характер магнитного поля. Продолжая развивать эти идеи, Максвелл пришел к выводу, что любые изменения электрического и магнитного полей должны вызывать изменения в силовых линиях, пронизывающих окружающее пространство, т.е. должны существовать импульсы (или волны), распространяющиеся в среде. Скорость распространения этих волн (электромагнитного возмущения) зависит от диэлектрической и магнитной проницаемости среды и равна отношению электромагнитной единицы электричества к электростатической. По данным Максвелла и других исследователей, это отношение составляет 3Ч1010 см/с, что очень близко к скорости света, измеренной семью годами ранее французским физиком А.Физо.

В октябре 1861 Максвелл сообщил Фарадею о своем открытии: свет - это электромагнитное возмущение, распространяющееся в непроводящей среде, т.е. разновидность электромагнитных волн. Этот завершающий этап был отражен в работе Максвелла Динамическая теория электромагнитного поля (Treatise on Electricity and Magnetism, 1864), а итог его работ по электродинамике подвел знаменитый Трактат об электричестве и магнетизме (1873). Экспериментальная и техническая задача получения и использования электромагнитных волн в широком спектральном диапазоне, в котором на долю видимого света приходится лишь малая часть, была успешно решена последующими поколениями ученых и инженеров. Применения теории Максвелла дали миру все виды радиосвязи, включая радиовещание и телевидение, радиолокацию и навигационные средства, а также средства для управления ракетами и спутниками. 1831-1879), английский физик, создатель классической электродинамики, один из основоположников статистической физики.

"Нет стремления более естественного, чем стремление к знанию." - М.Монтень

МАКСВЕЛЛ, Джеймс Клерк (1831 - 1879) - выдающийся английский физик. Его наиболее замечательные исследования относятся к кинетической теории газов и электричеству; является создателем теории электромагнитного поля и электромагнитной теории света.


Согласно опросу, проведенному среди ученых журналом "Физик уолд", физик Джеймс Клерк Максвелл вошел в первую тройку названных: Максвелл, Ньютон, Эйнштейн.

Его страсть к исследованиям и приобретению новых знаний была беспредельна. С юности Максвелл решил посвятить себя физике. Его наставник Гопкинс писал: «Это был самый экстраординарный человек, которого я когда-либо видел.

Он органически был неспособен думать о физике неверно. Я растил его как великого гения, со всей его эксцентричностью и пророчеством о том, что он в один прекрасный день будет сиять в физике – пророчеством, с которым убежденно были согласны и его коллеги-студенты».


Однажды при приеме экзамена у аспирантов профессор поставил цель отсеять как можно больше студентов и давал неразрешимые, по его мнению, задачи. Однако, Максвелл с такой задачей справился!


Так Максвелл открыл знаменитое распределение молекул по скоростям в газе, впоследствии названное его именем (распределение Максвелла), еще в годы своей учебы.


С 1871 года Максвелл становится профессором Кембриджского университета.


В 1873 году Максвелл пишет двухтомный фундаментальный «Трактат об электричестве и магнетизме», в котором сформулирована знаменитая максвелловская теория электромагнитного поля.


Максвелл сумел выразить законы электромагнитного поля в виде системы 4 дифференциальных уравнений в частных производных (уравнения Максвелла ), из которых следовало существование электромагнитных волн Теория электромагнетизма Максвелла получила опытное подтверждение и стала общепризнанной классической основой современной физики.


Многочисленные его увлечения другими отраслями физики были тоже очень плодотворны: он изобрел волчок, поверхность которого, окрашенная в разные цвета, при вращении образовывала самые неожиданные сочетания. При смещении красного и желтого получался оранжевый цвет, синего и желтого – зеленый, при смешении всех цветов спектра получался белый цвет – действие, обратное действию призмы – «диск Максвелла»; он нашел термодинамический парадокс, много лет не дававший покоя физикам – «дьявол Максвелла»; в кинетическую теорию были введены им «распределение Максвелла» и «статистика Максвелла – Больцмана»; есть «число Максвелла».

Кроме того, его перу принадлежит изящное исследование об устойчивости колец Сатурна, за которое ему была присуждена академическая медаль и после которого он становится «признанным лидером математических физиков". Максвелл создал множество небольших шедевров в самых разнообразных областях – от осуществления первой в мире цветной фотографии до разработки способа радикального выведения с одежды жировых пятен


Максвелл написал ряд статей для Британской энциклопедии, популярные книги: "Теория теплоты", "Материя и движение", "Электричество в элементарном изложении", переведённые на русский язык.


Интересно, что одна из форм записи второго начала термодинамики: dp/dt = JCM. Левая часть этой формулы часто встречалась в произведениях Максвелла, далеких от физики, в качестве подписи!


Но главная память о Максвелле, вероятно, единственном в истории науки человеке, в честь которого имеется столько названий, – это «уравнения Максвелла», «электродинамика Максвелла», «правило Максвелла», «ток Максвелла» и, наконец, –максвелл– единица магнитного потока в системе CGS.



Знаете ли вы?

О наклонной плоскости

Исследуя перекатывание шара «с горки на горку», Галилей предположил, что, говоря современным языком, приобретаемая при спуске скорость не зависит от формы пути, по которому движется тело. Галилей, естественно, не знал, что такое положение вытекает из закона сохранения энергии, однако он этот закон предчувствовал и применял в простейших случаях падения тела или движения по наклонной плоскости и в опытах с маятником.

Родился Джеймс Максвелл 13 июня 1831 в столице Шотландии, городе Эдинбурге, в семье адвоката и потомственного дворянина Джона Клерка Максвелла. Детство Джеймса прошло в фамильном имении в Южной Шотландии. Его мать рано умерла, и воспитанием мальчика занимался отец. Именно он привил Джеймсу любовь к техническим наукам. В 1841 он поступил в Эдинбургскую академию. Затем, в 1847 году в течение трех лет учился в университете Эдинбурга. Здесь Максвелл изучает и развивает теорию упругости, ставит научные опыты. В 1850 – 1854 гг. учился в Кембриджском университете, который окончил со степенью бакалавра.

После завершения учебы Джеймс остается преподавать в Кембридже. В это время он начинает работу над теорией цветов, впоследствии легшей в основу цветной фотографии. Максвелл также начинает интересоваться электричеством и магнитным эффектом.

В 1856 году Джеймс Максвелл стал профессором Маришаль-колледжа в Абердине (Шотландия), проработав там до 1860 года. В июне 1858 года Максвелл женился на дочери директора колледжа. Работая в Абердине, Джеймс трудится над трактатом «Об устойчивости движения колец Сатурна»(1859), признанной и одобренной научными кругами. Одновременно с этим, Максвелл занимается разработкой кинетической теорией газов, которая легла в основу современной статистической механики, а позже, в 1866 году, им был открыт закон распределения молекул по скоростям, названный его именем.

В 1860 – 1865 гг. Джеймс Максвелл был профессором на кафедре натуральной философии в Кингс-колледже (Лондон). в 1864 году вышла его статья «Динамическая теория электромагнитного поля», которая стала главной работой Максвелла и предопределила направление его дальнейших исследований. Проблемами электромагнетизма ученый занимался вплоть до конца своей жизни.

В 1871 году Максвелл вернулся в Кембриджский университет, где возглавил первую лабораторию для физических экспериментов, названную по имени английского ученого Генри Кавендиша – Кавендишская лаборатория. Там он преподавал физику и участвовал в оснащении лаборатории.

В 1873 году ученый наконец заканчивает работу над двухтомным трудом «Трактат об электричестве и магнетизме», ставшим поистине энциклопедическим наследием в области физики.

Скончался великий ученый 5 ноября 1879 года от рака и был похоронен близ родового имения, в шотландской деревне Партон.

Оценка по биографии

Новая функция! Средняя оценка, которую получила эта биография. Показать оценку



Последние материалы раздела:

Важность Патриотического Воспитания Через Детские Песни
Важность Патриотического Воспитания Через Детские Песни

Патриотическое воспитание детей является важной частью их общего воспитания и развития. Оно помогает формировать у детей чувство гордости за свою...

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...