Электрическое поле диполя.

Часто возникает необходимость найти характеристики электрического поля, создаваемого системой зарядов, локализованных в небольшой области пространства. Примером такой системы зарядов могут служить атомы и молекулы, состоящие из электрически заряженных ядер и электронов. Если требуется найти поле на расстояниях, которые значительно больше размеров области расположения частиц, то нет необходимости пользоваться точными, но громоздкими формулами, достаточно ограничится более простыми приближенными выражениями.
 Пусть электрическое поле создается набором точечных зарядов q k (k = 1, 2, …, N) , расположенных в пределах небольшой области пространства, характерные размеры которой обозначим l (рис. 285).

Рис. 285
 Для расчета характеристик электрического поля, в некоторой точке A , находящейся на расстоянии r , значительно превышающем l , все заряды системы можно «объединить» и рассматривать систему зарядов как точечный заряд Q , величина которого равна сумме зарядов исходной системы

 Этот заряд можно мысленно расположить в любой точке области расположения системы зарядов q k (k = 1, 2, …, N) , так как при l << r , изменение положения в пределах малой области незначительно повлияет на изменение поля в рассматриваемой точке.
 В рамках такого приближения напряженность и потенциал электрического поля определяются по известным формулам

 Если суммарный заряд системы равен нулю, то указной приближение является слишком грубым, приводящим к выводу об отсутствии электрического поля.
 Более точное приближение можно получить, если мысленно собрать отдельно положительные и отрицательные заряды рассматриваемой системы. Если их «центры» смещены друг относительно друга, то электрическое поле такой системы может быть описано как поле двух точечных зарядов, равных по величине и противоположных по знаку, смещенных друг относительно друга. Более точную характеристику системы зарядов в этом приближении мы дадим немного позднее, после изучения свойств электрического диполя.
Электрическим диполем называется система, состоящая из двух точечных зарядов одинаковых по величине и противоположных по знаку, расположенных на малом расстоянии друг от друга.
 Рассчитаем характеристики электрического поля, создаваемого диполем, состоящего из двух точечных зарядов +q и −q , расположенных на расстоянии a друг от друга (рис. 286).

рис. 286
 Сначала найдем потенциал и напряженность электрического поля диполя на его оси, то есть на прямой, проходящей через оба заряда. Пусть точка A , находится на расстоянии r от центра диполя, причем будем считать, что r >> a . В соответствии с принципом суперпозиции потенциал поля в данной точке описывается выражением

На последнем шаге мы пренебрегли вторым малой величиной (a/2) 2 по сравнению с r 2 . Величину вектора напряженности электрического поля также можно вычислить на основании принципа суперпозиции

Напряженность поля можно вычислить, используя соотношение между потенциалом и напряженностью поля E x = −Δφ/Δx . В данном случае вектор напряженности направлен вдоль оси диполя, поэтому его модуль рассчитывается следующим образом


Обратите внимание, что поле диполя ослабевает быстрее поля точечного заряда, так потенциал поля диполя убывает обратно пропорционально квадрату расстояния, а напряженность поля − обратно пропорционально кубу расстояния.
 Аналогичным, но более громоздким, способом можно найти потенциал и напряженность поля диполя в произвольной точке, положение которой определим с помощью полярных координат: расстояния до центра диполя r и угла θ (рис. 287).

рис. 287
 По принципу суперпозиции потенциал поля в точке A равен

Учитывая, что r >> a , формулу (6) можно упростить с помощью приближений

в этом случае получаем

 Вектор напряженности электрического поля E удобно разложить на две составляющие: радиальную E r , направленную вдоль прямой, соединяющей данную точку с центром диполя, и перпендикулярную ей E θ (рис. 288).

рис. 288
 При таком разложении каждая компонента направлена вдоль направления изменения каждой из координат точки наблюдения, поэтому может быть найдена из соотношения, связывающего напряженность поля и изменение потенциала.
 Для того, чтобы найти компоненты вектора напряженности поля, запишем отношение изменения потенциала, при смещении точки наблюдения в направлении соответствующих векторов (рис. 289).

рис. 289
Радиальная составляющая тогда выразится соотношением


 Для расчета перпендикулярной составляющей следует учесть, что величина малого смещения в перпендикулярном направлении выражается через изменение угла следующим образом Δl = rΔθ.
Поэтому величина этой компоненты поля равна


 При выводе последнего соотношения использована тригонометрическая формула для разности косинусов и приближенное соотношение, справедливое при малых Δθ :
sinΔθ ≈ Δθ.
 Полученные соотношения полностью определяют поле диполя в произвольной точке и позволяют построить картину силовых линий этого поля (рис. 290).

рис. 290
 Теперь обратим внимание, что во всех формулах, определяющих потенциал и напряженность поля диполя, фигурирует только произведение величины одного из зарядов диполя на расстояние между зарядами. Поэтому именно это произведение является полной характеристикой электрических свойств и называется дипольным моментом системы. Так как диполь является системой двух точечных зарядов, то он обладает осевой симметрией, осью которой является прямая, проходящая через заряды. Следовательно, для задания полной характеристики диполя следует указать и ориентацию оси диполя. Проще всего это сделать, задавая вектор дипольного момента , величина которого равна дипольному моменту, а направление совпадает с осью диполя

где a − вектор, соединяющий отрицательный и положительный заряды диполя 1 . Такая характеристика диполя весьма удобна и позволяет во многих случая упрощать формулы, придавая им векторный вид. Так, например, потенциал поля диполя в произвольной точке, описываемый формулой (6), может быть записан в векторной форме

 После введения векторной характеристики диполя, его дипольного момента, появляется возможность использовать еще одну упрощающую модель − точечный диполь: систему зарядов, геометрическими размерами которой можно пренебречь, но обладающей дипольным моментом 2 .
Рассмотрим поведение диполя в электрическом поле.

рис. 291
 Пусть два точечных заряда, находящиеся на фиксированном расстоянии друг от друга, помещены в однородное электрическое поле. Со стороны поля на заряды действуют силы F = ±qE , равные по величине и противоположные по направлению. Суммарная сила, действующая на диполь равна нулю, однако эти силы приложены к различным точкам, поэтому суммарный момент этих отличен от нуля, а равен

где α − угол меду вектором напряженности поля и вектором дипольного момента. Наличие момента силы, приводит к тому, что дипольный момент системы стремится повернуться по направлению вектора напряженности электрического поля.
 Обратите внимание, что и момент силы, действующий на диполь, полностью определяется его дипольным моментом. Как мы показали ранее, если сумма сил, действующих на систему, равна нулю, то суммарный момент сил не зависит от оси, относительно которой этот момент рассчитывается. Положению равновесия диполя соответствуют как направление по полю α = 0 , так и против него α = π , однако легко показать, что первое положение равновесия устойчиво, а второе нет.
Если электрический диполь находится в неоднородном электрическом поле, то силы, действующие на заряды диполя различны, поэтому результирующая сила отлична от нуля.
 Для упрощения, будем считать, что ось диполя совпадает с направлением вектора напряженности внешнего электрического поля. Совместим ось x системы координат с направлением вектора напряженности (рис. 292).

рис. 292
 Результирующая сила, действующая на диполь, равна векторной сумме сил, действующих на заряды диполя,

 Здесь E(x) − напряженность поля в точке расположения отрицательного заряда, E(x + a) − напряженность в точке положительного заряда. Так как расстояние между зарядами мало, разность напряженностей представлена как произведение скорости изменения напряженности на размер диполя. Таким образом, в неоднородном поле, на диполь действует сила, направлена в сторону возрастания поля, или диполь втягивается в область более сильного поля.
 В заключение вернемся к строгому определению дипольного момента произвольной системы зарядов. Вектор дипольного момента, системы, состоящей из двух зарядов (рис. 293),

рис. 293
может быть записан в виде

Если теперь пронумеровать заряды, то эта формула приобретает вид

где величины зарядов понимаются в алгебраическом смысле, с учетом их знаков. Последняя формула допускает очевидное обобщение (обоснованием которого является принцип суперпозиции) на систему произвольного числа зарядов

 Эта формула определяет дипольный момент произвольной системы зарядов, с ее помощью произвольная система зарядов может быть заменена на точечный диполь (рис. 294).

рис. 294
 Положение диполя внутри области расположения зарядов произвольно, естественно, если электрическое поле рассматривается на расстояниях значительно превышающих размеры системы.

Задания для самостоятельной работы.
1. Докажите, что для произвольной системы зарядов, алгебраическая сумма которых равна нулю, дипольный момент, определяемый по формуле (11), не зависит от выбора системы отсчета.
2. Определите «центры» положительных и отрицательных зарядов системы, по формулам аналогичным, формулам для координат центра масс системы. Если все положительный и все отрицательные заряды собрать в своих «центрах», то получим диполь, состоящий из двух зарядов. Покажите, что его дипольный момент совпадает с дипольным моментом, рассчитанным по формуле (11).
3. Получите двумя способами формулу, выражающую силу взаимодействия точечного диполя и точечного заряда, находящегося на оси диполя: во-первых, найдите силу, действующую на точечный заряд со стороны диполя; во-вторых, найдите силу, действующую на диполь со стороны точечного заряда; в-третьих, убедитесь, что эти силы равны по модулю и противоположны по направлению.

1 Направление вектора дипольного момента, в принципе можно задать и противоположным, но исторически сложилось задание направления дипольного момента от отрицательного к положительному заряду. При таком определении силовые линии как бы являются продолжением вектора дипольного момента.
  2 Очередная, абсурдная на первый взгляд, но удобная абстракция − материальная точка, имеющая два заряда, разнесенных в пространстве.

А. Б. Рыбаков ,
, Военно-космический кадетский корпус, г. Санкт-Петербург

Диполь в поле и поле диполя

Основные вопросы электростатики: Какое поле создаёт данное распределение зарядов и какая сила действует на эти заряды во внешнем поле? Относительно точечного заряда эти вопросы решаются известными всем формулами школьного курса. Следующий важный и простой объект электростатики – это, конечно, диполь. Диполь – это два разноимённых, равных по величине точечных заряда, расположенных на фиксированном расстоянии l друг от друга. Диполь характеризуется дипольным моментом p = qL (1)
где l – вектор, направленный от отрицательного заряда к положительному.
Интерес к диполю связан, в частности, с тем, что молекулы многих веществ обладают дипольным моментом, а кроме того, молекулы всех веществ приобретают дипольный момент во внешнем электрическом поле. И макроскопические тела (как проводящие, так и не проводящие ток) во внешнем поле поляризуются, т.е. приобретают дипольный момент. Важнейшие приложения представленных здесь результатов – это поля в диэлектрике.
Поставим самые напрашивающиеся вопросы в заявленной теме и попытаемся их разрешить. Никакой особой математики, выходящей за рамки школьного курса, нам не понадобится.
Производную от функции Ф(х) будем обозначать dФ/dх. Для удобства записи некоторых результатов мы будем использовать скалярное произведение векторов.
Напомним, что a · b = a · b · cos α, где α – угол между векторами. Размерную константу в законе Кулона мы обозначаем

Диполь в поле (простые задачи)
1 . Какие силы действуют на диполь в однородном электрическом поле?
Пусть диполь p находится в поле напряжённостью E , пусть вектор дипольного момента составляет угол α с вектором напряжённости поля. Легко видеть, что на диполь в этом случае действует пара сил с моментом
М = qElsin α = pEsin α , которая стремится ориентировать диполь вдоль силовых линий поля. Так что если диполь может вращаться, то он сориентируется указанным образом. Заметим, что у диполя есть и другое положение равновесия, когда он сориентирован противоположным образом, но это положение неустойчиво.
2 . Какова энергия диполя в однородном поле?
Как всегда, в задачах, где речь идёт о потенциальной энергии, надо сначала условиться, откуда мы будем эту энергию отсчитывать. Пусть мы отсчитываем её от указанного выше равновесного положения. Тогда энергия – это работа, которую совершат силы поля при вращении диполя вокруг своего центра от исходного положения, характеризуемого углом α (см. рис. к п. 1), до равновесного. Напомним, что работа связана только с перемещением заряда вдоль направления E . Заряды диполя при таком вращении сместятся вдоль линий поля (в разные стороны) на l (1– cos α)/2. Поэтому искомая энергия W = qEl (1 – cos α) = pE (1 – cos α).
Но чаще в учебниках по электричеству предпочитают в этой задаче полагать, что W = 0 в том положении диполя, когда вектор p перпендикулярен E . В этом случае
W = –qEl  cos α = –pE .
Высказанное в конце п. 1 утверждение можно теперь сформулировать и иначе: диполь стремится занять теперь положение с минимальной энергией. Так, дипольные молекулы диэлектрика во внешнем поле стремятся все сориентироваться указанным образом (а тепловое движение мешает им в этом).
3 . Теперь пусть диполь, сориентированный вдоль линий поля, находится в неоднородном поле. Тогда, как легко видеть, на него вдоль линий поля действует сила, направленная в сторону увеличения величины поля:
(индексы «+» и «–» помечают тот заряд диполя, к которому относится соответствующая физическая величина). Именно эта сила объясняет самый простой опыт, в котором заряженное тело (независимо от знака заряда) притягивает мелкие кусочки бумаги.

Поле диполя
4 . Прежде чем заняться расчётом поля диполя, остановимся на общих моментах. Пусть, например, нас интересует гравитационное поле какого-то астероида неправильной формы. Поле в непосредственной близости от астероида можно получить только путём компьютерного расчёта. Но, чем дальше мы отходим от астероида, тем с большей точностью мы можем рассматривать его как материальную точку (поле которой мы знаем). При стремлении к большей математической строгости надо было сказать, что мы знаем асимптотическое поведение поля при
С похожей ситуацией мы сталкиваемся и в электростатическом поле. Электростатическое поле по своим свойствам очень похоже на гравитационное (потому что аналогичны фундаментальные законы: закон Кулона и закон всемирного тяготения), но, если так можно сказать, «богаче» его. Ведь электрические заряды могут быть двух типов, между ними возможно и притяжение, и отталкивание, а между «гравитационными зарядами» (т.е. массами) возможно только притяжение.
Будем считать, что в какой-то ограниченной области распределены положительные и отрицательные точечные заряды q 1 , q 2 , … , q n . Полный заряд системы
(2)
Мы уже понимаем, что при Q ≠ 0 поле при больших r переходит в поле точечного заряда Q. Но возникает очень важный для нас вопрос: каким будет поле на больших расстояниях, если полный заряд
Q = 0? Самое простое распределение точечных зарядов с Q = 0 – это и есть диполь. Вот почему изучение поля диполя несёт в себе важные принципиальные моменты.
Итак, нас будут в основном интересовать такие ситуации, когда все характерные размеры r весьма велики по сравнению с расстоянием l между зарядами диполя. Эту ситуацию можно описать двояко. Во-первых, мы можем всегда иметь в виду, что заряды расположены на конечном расстоянии l друг от друга, и интересоваться поведением полученных решений при Но можно и п росто говорить о точечном диполе с определённым дипольным моментом p , тогда все наши результаты справедливы при любом r > 0 (две эти точки зрения, конечно, эквивалентны).
Мы будем использовать известные всем формулы для полей точечных зарядов и в полученных выражениях учитывать, что l мало. Поэтому напомним формулы приближённых вычислений: если , то
Везде в выкладках знак «≈» будет указывать на то, что мы воспользовались этими формулами в случае малого параметра (малый параметр в рассматриваемых задачах – это l/r).
5 . Качественная картинка силовых линий поля диполя хорошо известна, приводится во многих учебниках, и мы не будем её здесь приводить. Хотя и расчёт поля в произвольной точке несложен, мы всё же ограничимся расчётом потенциала и напряжённости вдоль двух выделенных направлений. Совместим начало системы координат с центром диполя, ось х направим вдоль вектора p , а ось Y – перпендикулярно (при этом заряды диполя отстоят от начала координат на расстояние ). Будем считать, что в бесконечно удалённой точке
6. Рассчитаем напряжённость поля диполя на оси Y.
По принципу суперпозиции, E = E + + E – , где E + и E – – векторы напряжённости полей отдельных зарядов. Из подобия треугольников:
что можно записать как
Теперь скажем о ходе потенциала вдоль оси Y. По­скольку в любой точке оси Y вектор E перпендикулярен оси, то при перемещении какого-то заряда вдоль этой оси поле диполя никакой работы не совершает, и следовательно, в любой точке этой оси
7 . Вычислим потенциал j поля в произвольной точке оси х. По принципу суперпозиции, он равен сумме потенциалов и созданных положительным и отрицательным зарядами.
Пусть х > 0, тогда:
(3)
(выражение для (х) для х < 0 будет c другим знаком).
Из симметрии задачи ясно, что на оси х вектор напряжённости поля E имеет только составляющую Е х. Её можно вычислить, исходя из известной формулы, связывающей напряжённость поля и потенциал:
(4)
но в школьном курсе формулу (4) обычно обходят стороной, поэтому вычислим Ех непосредственно: или

Итак, при удалении от диполя по оси х или по оси y поле спадает как r –3 . Можно доказать, что так же ведёт себя поле по любому направлению.
Выражение для потенциала в произвольной точке приведём без вывода: (т.е. при удалении

По любому направлению, кроме оси Y, потенциал спадает как r –2 ). Убедитесь, что в частных случаях эта формула приводит к уже известным нам результатам.
8. Отступление. Вспомним, что у бесконечной равномерно заряженной плоскости напряжённость поля не зависит от расстояния от плоскости (или, если угодно, спадает как r 0 ). У точечного заряда – убывает как r –2 . У диполя, как мы выяснили, убывает на бесконечности как r –3 . Попробуйте догадаться, у какого распределения зарядов напряжённость поля убывает как r –1 ; r –4 .

Взаимодействие диполя с другими зарядами
9. Теперь рассмотрим взаимодействие диполя и точечного заряда q′ (пусть q′ > 0). Рисунок в значительной степени повторяет рисунок в п. 5. Там мы рассчитали напряжённость поля диполя и, следовательно, уже знаем, какая сила действует на точечный заряд. Заметим, что это взаимодействие являет нам простейший пример нецентральных сил (вспомните, где в школьном курсе встречаются нецентральные силы между частицами).
Но ещё остались вопросы: какая сила действует на диполь? где она приложена? Можно ответить на эти вопросы сразу, без раздумий. Искомая сила F , по третьему закону Ньютона, должна быть равна – F ′ и должна быть приложена на одной прямой с F ′ . Быть может, кого-то удивит, что равнодействующая двух сил, действующих на заряды +q и –q диполя, оказалась приложена где-то в стороне от диполя. Что это значит? Ничего не значит. А что значит, что равнодействующая сил тяжести, действующих на бублик, приложена в центре дырки? Равнодействующая двух сил никакого особого смысла не имеет, она просто во всех отношениях заменяет несколько (или даже бесчисленное множество) сил в фундаментальных уравнениях механики. (Объективности ради отметим, что есть весьма известные авторы, для которых такая точка зрения неприемлема. Они предпочитают говорить, что на диполь со стороны точечного заряда действует сила, приложенная к самому диполю, и ещё момент сил).
10 . Найдите силу и энергию взаимодействия двух диполей, у которых векторы р 1 и р 2 лежат на одной прямой. Расстояние между диполями x.
Сосчитаем суммарную энергию зарядов второго диполя в поле первого (см. п. 7):

Ясно, что диполи, обращённые друг к другу разноимёнными полюсами (как на рисунке), притягиваются (этому соответствует знак «–» в выражении для W), при перевороте одного из диполей энергия сменит знак.
Не будем больше воспроизводить довольно однообразные выкладки и сразу выпишем выражение для величины силы взаимодействия этих диполей (проверьте!):
11. Найдите энергию взаимодействия двух диполей, у которых р 1 лежит на прямой, соединяющей диполи, а р 2 перпендикулярен к ней. Расстояние между диполями x. (Проверьте себя – ответ очевиден.)
12 . Найдите энергию взаимодействия двух диполей, у которых векторы р 1 и р 2 параллельны друг другу и оба перпендикулярны оси х, на которой расположены диполи.

Дополнительные замечания
13. Итак, диполь являет нам простейший пример системы зарядов с полным зарядом Q = 0. Как мы видели, потенциал поля диполя на больших расстояниях от него убывает как r –2 . Нельзя ли обобщить этот результат на более общий случай?
Можно обобщить понятие дипольного момента так, чтобы оно характеризовало любое распределение зарядов. В частности, для системы n точечных зарядов дипольный момент определяют так:
. (5)

Легко видеть, что эта величина аддитивна. Можно доказать, что Р при Q = 0 не зависит от выбора начала отсчёта. Убедитесь, что в частном случае эта формула переходит в (1).
Сосчитайте дипольный момент Р ряда простых распределений зарядов (во всех случаях расстояние между ближайшими зарядами l ).
Можно было бы вести речь и о непрерывных распределениях зарядов, но тогда вместо сумм в (2) и (5) пришлось бы писать интегралы по объёму.
Полученные выше результаты подсказывают нам, в чём значение дипольного момента. И действительно, можно в общем случае доказать, что чем дальше мы отойдём от произвольной системы зарядов с полным зарядом Q = 0 и дипольным моментом Р ≠ 0, тем её поле будет ближе к рассмотренному нами полю элементарного диполя с дипольным моментом Р .
Можно было бы пойти по этому пути дальше и рассмотреть поле системы зарядов с Q = 0 и P = 0. Один из самых простых примеров такой системы представлен на рис. а – это так называемый квадруполь. Потенциал поля квадруполя убывает на бесконечности как r –3 .
Ряд «точечный заряд – диполь – квадруполь...» можно продолжать и далее. Общее название таких объектов мультиполь. Но мы на этом остановимся.

14. При помещении атома в электрическое поле силы, приложенные к ядру и к электронной оболочке, направлены в разные стороны. Под действием этих сил атом приобретает дипольный момент Р , совпадающий по направлению с направлением напряжённости внешнего поля Е 0 .
Конечно, молекулы тоже приобретают во внешнем поле дипольный момент (но для них, вообще говоря, несправедливо предыдущее утверждение о направлении вектора Р ).
Но многие молекулы имеют дипольные моменты и в отсутствие внешнего поля. Причём эти собственные дипольные моменты обычно намного превышают наведённые моменты (если говорить об обычных, достижимых в лаборатории полях). Для множества процессов в природе (в частности, для существования жизни) чрезвычайно важно, что у молекулы воды есть дипольный момент.
«Трудно вообразить, на что был бы похож мир, если бы атомы в молекуле Н 2 О были расположены по прямой линии, как в молекуле СО 2 ; вероятно, наблюдать это было бы некому» (Э.Парселл . Электричество и магнетизм. – М., 1975).

Ответы
К п. 8 . Система зарядов, у которой напряжённость поля убывает на бесконечности как r –1 , – это бесконечная равномерно заряженная нить.
К п. 11 . При перемещении первого диполя вдоль оси х на его заряды действуют со стороны второго диполя силы, перпендикулярные этой оси, т.е. никакая работа при этом не совершается, значит, W = 0.
К п. 12 . Для упрощения расчёта надо удачно выбрать способ перевода одного из диполей из бесконечности в интересующее нас состояние. Удобно сначала перемещать его вдоль оси х, ориентировав его вектор дипольного момента вдоль оси (при этом работа сил взаимодействия диполей равна нулю), а потом повернуть его на 90°. При повороте второго диполя внешние силы должны совершить работу (см. п. 2) . Это и есть энергия взаимодействия диполей.
К п. 13 . Дипольные моменты равны: а) 0 ; б) 2qlj ;
в) 0; г) –3qli (здесь i и j – единичные векторы в направлениях осей X и Y соответственно).

Пример 3. В произвольной точке С (рис. 2.1.7).

Рис. 2.1.7. Нахождение Е диполя в произвольной точке

при .

Из приведенных примеров видно, что напряженность электрического поля системы зарядов равна геометрической сумме напряженностей полей каждого из зарядов в отдельности (принцип суперпозиции ).

2.1.6. Взаимодействие двух диполей

Рассмотрим взаимодействие диполей, расположенных вдоль одной оси. Расстояние между центрами диполей обозначим r ; пусть это расстояние много больше плеча диполя:

(рис. 2.1.8).

Рис. 2.1.8. Взаимодействие диполей, расположенных вдоль одной оси

Сила взаимодействия складывается из четырех компонентов – двух сил отталкивания между одноименными зарядами и двух сил притяжения – между разноименными зарядами:

Нетрудно обобщить это выражение для случая взаимодействия диполей с разными электрическими моментами и:

Итак, если дипольные моменты двух диполей расположены вдоль одной прямой и одинаково направлены, то они притягиваются, причем сила притяжения пропорциональна произведению электрических моментов диполей и обратно пропорциональна четвертой степени расстояния между ними.Следовательно, дипольное взаимодействие убывает с расстоянием значительно быстрее, чем взаимодействие между точечными зарядами.

Самостоятельно покажите, что будет – притяжение или отталкивание, между диполями, моменты которых расположены на одной прямой и направлены в противоположные стороны.

Вычислим силу взаимодействия между диполями, расположенными так, как показано на рисунке 2.1.9.

Рис. 2.1.9. Вычисление силы взаимодействия между диполями

Равнодействующая сила

Полагая, как и выше, что , следовательно, имеем

Самостоятельно подсчитайте, чему будет равна сила при антипараллельной ориентации дипольных моментов.

Сравнивая выражения (2.1.18) и (2.1.19), убеждаемся, что, в отличие от центральных сил (гравитационных и кулоновских), сила взаимодействия между диполями зависит не только от расстояния между ними, но и от их взаимной ориентации. Аналогичными свойствами обладают ядерные силы.

Чтобы понять механизм поведения диэлектриков в поле на микроскопическом уровне, нам надо сначала объяснить, как может электрически нейтральная система реагировать на внешнее электрическое поле. Простейший случай - полное отсутствие зарядов - нас не интересует. Мы знаем наверняка, что в диэлектрике имеются электрические заряды - в составе атомов, молекул, ионов кристаллической решетки и т. д. Поэтому мы рассмотрим следующую по простоте конструкции электронейтральную систему - два равных по величине и противоположных по знаку точечных заряда +q и –q , находящихся на расстоянии l друг от друга. Такая система называется электрическим диполем .

Рис. 3.6. Электрический диполь

Линии напряженности электрического поля и эквипотенциальные поверхности электрического диполя выглядят следующим образом (рис. 3.7, 3.8, 3.9)

Рис. 3.7. Линии напряженности электрического поля электрического диполя

Рис. 3.8. Эквипотенциальные поверхности электрического диполя

Рис. 3.9. Линии напряженности электрического поля и эквипотенциальные поверхности

Основной характеристикой диполя является . Введем вектор l , направленный от отрицательного заряда (–q ) к положительному (+q ), тогда вектор р , называемый электрическим моментом диполя или просто дипольным моментом , определяется как

Рассмотрим поведение «жесткого» диполя - то есть расстояние которого не меняется - во внешнем поле Е (рис. 3.10).

Рис. 3.10. Силы, действующие на электрический диполь, помещенный во внешнее поле

Пусть направление дипольного момента составляет с вектором Е угол . На положительный заряд диполя действует сила, совпадающая по направлению с Е и равная F 1 = +qE , а на отрицательный - противоположно направленная и равная F 2 = –qE . Вращающий момент этой пары сил равен

Так как ql = р , то М = рЕ sin или в векторных обозначениях

(Напомним, что символ

означает векторное произведение векторов а и b .) Таким образом, при неизменном дипольном моменте молекулы () механический момент, действующий на нее, пропорционален напряженности Е внешнего электрического поля и зависит от угла между векторами р и E .

Под действием момента сил М диполь поворачивается, при этом совершается работа

которая идет на увеличение его потенциальной энергии. Отсюда получаем потенциальную энергию диполя в электрическом поле

если положить const = 0.

Из рисунка видно, что внешнее электрическое поле стремится повернуть диполь таким образом, чтобы вектор его электрического момента р совпал по направлению с вектором Е . В этом случае , а, следовательно, и М = 0. С другой стороны, при потенциальная энергия диполя во внешнем поле принимает минимальное значение , что соответствует положению устойчивого равновесия. При отклонении диполя от этого положения снова возникает механический момент, который возвращает диполь в первоначальное положение. Другое положение равновесия, когда дипольный момент направлен против поля является неустойчивым . Потенциальная энергия в этом случае принимает максимальное значение и при небольших отклонениях от такого положения возникающие силы не возвращают диполь назад, а еще больше отклоняют его.

На рис. 3.11 показан опыт, иллюстрирующий возникновение момента электрических сил, действующих на диэлектрик в электрическом поле. На удлиненный диэлектрический образец, расположенный под некоторым углом к силовым линиям электростатического поля, действует момент сил, стремящийся развернуть этот образец вдоль поля. Диэлектрическая палочка, подвешенная за середину внутри плоского конденсатора, разворачивается перпендикулярно его пластинам после подачи на них высокого напряжения от электростатической машины. Появление вращающего момента обусловлено взаимодействием поляризовавшейся палочки с электрическим полем конденсатора.

Рис. 3.11. Момент электрических сил, действующих на диэлектрик в электрическом поле

В случае неоднородного поля на рассматриваемый диполь будет действовать еще и равнодействующая сила F paвн, стремящаяся его сдвинуть. Мы рассмотрим здесь частный случай. Направим ось х вдоль поля Е . Пусть диполь под действием поля уже повернулся вдоль силовой линии, так что отрицательный заряд находится в точке с координатой x , а положительный заряд расположен в точке с координатой х + l . Представим себе, что величина напряженности поля зависит от координаты х . Тогда равнодействующая сила F paвн равна

Такой же результат может быть получен из общего соотношения

где энергия П определена в (3.8). Если Е увеличивается с ростом x , то

и проекция равнодействующей силы положительна. Это значит, что она стремиться втянуть диполь в область, где напряженность поля больше. Этим объясняется известный эффект, когда нейтральные кусочки бумаги притягиваются к наэлектризованной расческе. В плоском конденсаторе с однородным полем они остались бы неподвижными.

Рассмотрим несколько опытов, иллюстрирующих возникновение силы, действующей на диэлектрик, помещенный в неоднородное электрическое поле.

На рис. 3.12 показано втягивание диэлектрика в пространство между обкладками плоского конденсатора. В неоднородном электростатическом поле на диэлектрик действуют силы, втягивающие его в область более сильного поля.

Рис. 3.12. Втягивание жидкого диэлектрика в плоский конденсатор

Это демонстрируется при помощи прозрачного сосуда, в который помещен плоский конденсатор, и налито некоторое количество жидкого диэлектрика - керосина (рис.3.13). Конденсатор присоединен к высоковольтному источнику питания - электростатической машине. При ее работе на нижнем краю конденсатора, в области неоднородного поля, на керосин действует сила, втягивающая его в пространство между пластинами. Поэтому уровень керосина внутри конденсатора устанавливается выше, чем снаружи. После выключения поля уровень керосина между пластинами падает до его уровня в сосуде.

Рис. 3.13. Втягивание керосина в пространство между обкладками плоского конденсатора

В реальных веществах нечасто встречаются диполи, образованные только двумя зарядами. Обычно мы имеем дело с более сложными системами. Но понятие электрического дипольного момента применимо и к системам со многими зарядами. В этом случае дипольный момент определяется как

где , - величина заряда с номером i и радиус-вектор, определяющий его местоположение, соответственно. В случае двух зарядов мы приходим к прежнему выражению

Пусть наша система зарядов электрически нейтральна. В ней есть положительные заряды, величины которых и местоположения мы обозначим индексом «+». Индексом «–» мы снабдим абсолютные величины отрицательных зарядов и их радиус-векторы. Тогда выражение (3.10) может быть записано в виде

В (3.11) в первом слагаемом суммирование ведется по всем положительным зарядам, а во втором - по всем отрицательным зарядам системы.

Выражения (3.13) аналогичны формулам для центра масс в механике, и потому мы назвали их центрами положительных и отрицательных зарядов, соответственно. С этими обозначениями и с учетом соотношения (3.12) мы записываем электрический дипольный момент (3.11) системы зарядов в виде

где l -вектор, проведенный из центра отрицательных зарядов в центр положительных зарядов. Смысл нашего упражнения заключается в демонстрации, что любую электрически нейтральную систему зарядов можно представить как некий эквивалентный диполь.



Последние материалы раздела:

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...