Формула ньютона лейбница основная интегрального исчисления. Определённый интеграл и методы его вычисления

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Интеграл. Формула Ньютона – Лейбница. составитель: преподаватель математики ГОУНПО ПУ № 27 п. Щельяюр Семяшкина Ирина Васильевна

Цель урока: Ввести понятие интеграла и его вычисление по формуле Ньютона – Лейбница, используя знания о первообразной и правила её вычисления; Проиллюстрировать практическое применение интеграла на примерах нахождения площади криволинейной трапеции; Закрепить изученное в ходе выполнения упражнений.

Определение: Пусть дана положительная функция f(x) , определенная на конечном отрезке [ a;b ] . Интегралом от функции f(x) на [ a;b ] называется площадь её криволинейной трапеции. y=f(x) b a 0 x y

Обозначение:  «интеграл от a до b эф от икс дэ икс »

Историческая справка: Обозначение интеграла Лейбниц произвёл от первой буквы слова «Сумма» (Summa). Ньютон в своих работах не предложил альтернативной символики интеграла, хотя пробовал различные варианты. Сам термин интеграл придумал Якоб Бернулли. S umma Исаак Ньютон Готфрид Вильгельм фон Лейбниц Якоб Бернулли

Обозначение неопределённого интеграла ввёл Эйлер. Жан Батист Жозеф Фурье Леонард Эйлер Оформление определённого интеграла в привычном нам виде придумал Фурье.

Формула Ньютона - Лейбница

Пример 1. Вычислить определённый интеграл: = Решение:

Пример 2. Вычислите определённые интегралы: 5 9 1

Пример 3 . S y x Вычислить площадь фигуры, ограниченной линиями и осью абсцисс. Для начала найдем точки пересечения оси абсцисс с графиком функции. Для этого решим уравнение. = Решение: S =

y x S A B D C Пример 4 . Вычислить площадь фигуры, ограниченной линиями и Найдём точки пересечения (абсциссы) этих линий, решив уравнение S=S BADC - S BAC S BADC = = S BAC = S = 9 – 4,5 = 4,5 смотри пример 1 Решение:

ПРАВИЛА СИНКВЕЙНА 1строка – тема синквейна 1 слово 2строка – 2 прилагательных, описывающих признаки и свойства темы 3строка – 3 глагола описывающие характер действия 4строка – короткое предложение из 4 слов, показывающее Ваше личное отношение к теме 5строка – 1 слово, синоним или Ваша ассоциация тема предмета.

Интеграл 2. Определённый, положительный Считают, прибавляют, умножают 4. Вычисляют формулой Ньютона - Лейбница 5. Площадь

Список используемой литературы: учебник Колмагорова А.Н. и др. Алгебра и начала анализа 10 - 11 кл.

Спасибо за внимание! « ТАЛАНТ – это 99% труда и 1% способности» народная мудрость

Пример 1. Вычислить определённый интеграл: = Решение: пример 4

Предварительный просмотр:

Предмет: математика (алгебра и начала анализа), класс: 11 класс.

Тема урока: «Интеграл. Формула Ньютона-Лейбница».

Тип урока: Изучение нового материала.

Продолжительность занятия: 45 минут.

Цели урока: ввести понятие интеграла и его вычисление по формуле Ньютона-Лейбница, используя знания о первообразной и правила ее вычисления; проиллюстрировать практическое применение интеграла на примерах нахождения площади криволинейной трапеции; закрепить изученное в ходе выполнения упражнений.

Задачи урока:

Образовательные:

  1. сформировать понятие интеграла;
  2. формирование навыков вычисления определенного интеграла;
  3. формирование умений практического применения интеграла для нахождения площади криволинейной трапеции.

Развивающие:

  1. развитие познавательного интереса учащихся, развивать математическую речь, умения наблюдать, сравнивать, делать выводы;
  2. развивать интерес к предмету с помощью ИКТ.

Воспитательные:

  1. активизировать интерес к получению новых знаний, формирование точности и аккуратности при вычислении интеграла и выполнении чертежей.

Оснащение: ПК, операционная система Microsoft Windows 2000/XP, программа MS Office 2007: Power Point, Microsoft Word; мультимедийный проектор, экран.

Литература: учебник Колмагорова А.Н. и др. Алгебра и начала анализа 10-11 кл.

Технологии: ИКТ , индивидуального обучения.

ХОД УРОКА

Этап урока

Деятельность учителя

Деятельность учащихся

Время

Вводная часть

Организационный момент

Приветствует, проверяет готовность учащихся к уроку, организует внимание.

Раздает опорный конспект.

Слушают, записывают дату.

3 мин

Сообщение темы и целей урока

Актуализация опорных знаний и субъектного опыта с выходом на цели урока.

Слушают, записывают тему урока в тетради. Активно включаются в мыслительную деятельность.

Анализируют, сравнивают, делают выводы с выходом на цели занятия.

Презентация

ИКТ

3 мин

Основная часть урока

Изложение нового материала с попутной проверкой знаний прошлых тем.

Определение интеграла (слайд 3)

Даёт определение.

ИКТ

Что такое криволинейная трапеция?

Фигуру, ограниченная графиком функции, отрезком и прямыми x=a и x=b.

10 мин

Обозначение интеграла (слайд 4)

Вводит обозначение интеграла и то, как он читается.

Слушают, записывают.

История интеграла (слайды 5 и 6)

Рассказывает историю термина «интеграл».

Слушают, коротко записывают.

Формула Ньютона – Лейбница (слайд 7)

Дает формулу Ньютона – Лейбница.

Что в формуле обозначает F?

Слушают, записывают, отвечают на вопросы преподавателя.

Первообразная.

Заключительная часть урока.

Закрепление материала. Решение примеров с применением изученного материала

Пример 1 (слайд 8)

Разбирает решение примера, задавая вопросы по нахождению первообразных для подынтегральных функций.

Слушают, записывают, показывают знание таблицы первообразных.

20 мин

Пример 2 (слайд 9). Примеры для самостоятельного решения обучающимися.

Контролирует решение примеров.

Выполняют задание по очереди, комментируя (технология индивидуального обучения ), слушают друг друга, записывают, показывают знание прошлых тем.

Пример 3 (слайд 10)

Разбирает решение примера.

Как найти точки пересечения оси абсцисс с графиком функции?

Слушают, отвечают на вопросы, показывают знание прошлых тем, записывают.

Подынтегральную функцию приравнять к 0 и решить уравнение.

Пример 4 (слайд 11)

Разбирает решение примера.

Как найти точки пересечения (абсциссы) графиков функций?

Определите вид треугольника ABC.

Как находиться площадь прямоугольного треугольника?

Слушают, отвечают на вопросы.

Приравнять функции друг к другу и решить получившееся уравнение.

Прямоугольный.

где a и b- катеты прямоугольного треугольника.

Подведение итогов урока (слайды 12 и 13)

Организует работу по составлению синквейна.

Участвуют в составлении синквейна. Анализируют, сравнивают, делают выводы по теме.

5 мин.

Задание на дом по уровню сложности.

Дает задание на дом, объясняет.

Слушают, записывают.

1 мин.

Оценивание работы обучающихся на уроке.

Оценивает работу обучающихся на уроке, анализирует.

Слушают.

1 мин

Предварительный просмотр:

Опорный конспект по теме «Интеграл. Формула Ньютона-Лейбница».

Определение: Пусть дана положительная функция f(x) , определенная на конечном отрезке . Интегралом от функции f(x) на называется площадь её криволинейной трапеции.

Обозначение:

Читается: «интеграл от a до b эф от икс дэ икс»

Формула Ньютона - Лейбница

Пример 1. Вычислить определённый интеграл:

Решение:

Пример 3. и осью абсцисс.

Решение:

Пример 3. Вычислить площадь фигуры, ограниченной линиями и .

Пусть на некотором отрезке оси Ох задана некоторая непрерывная функция f. Положим, что эта функция не меняет своего знака на всем отрезке.

Если f есть непрерывная и неотрицательная на некотором отрезке функция, а F есть её некоторая первообразная на этом отрезке, тогда площадь криволинейной трапеции S равна приращению первообразной на данном отрезке .

Эту теорему можно записать следующей формулой:

S = F(b) - F(a)

Интеграл функции f(x) от а до b будет равен S. Здесь и далее, для обозначения определенного интеграла от некоторой функции f(x), с пределами интегрирования от a до b, будем использовать следующую запись (a;b)∫f(x). Ниже представлен пример как это будет выглядеть.

Формула Ньютона-Лейбница

Значит, мы можем приравнять между собой эти два результата. Получим: (a;b)∫f(x)dx = F(b) - F(a), при условии, что F есть первообразная для функции f на . Эта формула имеет название формулы Ньютона - Лейбница . Она будет верна для любой непрерывной на отрезке функции f.

Формула Ньютона-Лейбница применяется для вычисления интегралов. Рассмотрим несколько примеров:

Пример 1 : вычислить интеграл. Находим первообразную для подынтегральной функции x 2 . Одной из первообразных будет являться функция (x 3)/3.

Теперь используем формулу Ньютона - Лейбница:

(-1;2)∫x 2 dx = (2 3)/3 - ((-1) 3)/3 = 3

Ответ: (-1;2)∫x 2 dx = 3.

Пример 2 : вычислить интеграл (0;pi)∫sin(x)dx.

Находим первообразную для подынтегральной функции sin(x). Одной из первообразных будет являться функция -cos(x). Воспользуемся формулой Ньютона-Лейбница:

(0;pi)∫cos(x)dx = -cos(pi) + cos(0) = 2.

Ответ: (0;pi)∫sin(x)dx=2

Иногда для простоты и удобства записи приращение функции F на отрезке (F(b)-F(a)) записывают следующим образом:

Используя такое обозначение для приращения, формулу Ньютона-Лейбница можно переписать в следующем виде:

Как уже отмечалось выше, это лишь сокращение для простоты записи, больше ни на что эта запись не влияет. Эта запись и формула (a;b)∫f(x)dx = F(b) - F(a) будут эквивалентны.

Ньютон Лейбниц – это немецкий философ, который родился 1 июля 1646года. Помимо философии, его увлекли точные науки. Он отметился в логике, математике, механике, физике, истории, дипломатии, механике. Так же Ньютона принято считать и изобретателем, а так же языковедом. Он был основателем и первый смог возглавить Академию наук в Берлине. Лейбниц занял почетное место во Французской Академии наук, как иностранный член.
Самыми основными научными достижениями Лейбница считают:
Создание математического анализа. Исчисление дифференциальное и интегральное, которое он основал на бесконечных малых.
С его помощью была заложена основа математической логики.
Наука комбинаторика.
Двоичная система счисления с цифрами 0 и 1. Теперь на них основана вся современная техника.
Для психологии был очень важный вклад, как понятие бессознательных малых перцепций. Помимо этого, появилось учение о бессознательной психической жизни.
Выявил закон сохранения энергии и ввел понятие живой силы.

Ньютона считают завершителем философии 17века. Он стал родоначальником новой системы и дал ей название – монадология. Помимо достижений в философии, ему удалось выявить учения об синтезе и анализе. Лейбниц дал ему формулировку в виде закона достаточного основания. Как он отмечал, все это не отталкивалось только от мышления и логики, а еще и от бытия и онтологии. Философу можно присвоить авторство современной формулировки закона тождества. Именно он вывел в мир понимание термина «модель».
В своих работах, Лейбниц писал о разнообразии возможностей машинного моделирования в человеческом мозгу. Как оказалось, у него есть большое количество функций. Именно данный ученый впервые выставил миру идею о том, что одни виды энергии могут переходить в другие. Эти исследования внесли большой вклад в физику. Конечно, самым важным и известным трудом его жизни была формула. Ее так и назвали формула Ньютона Лейбница.
Формула Ньютона Лейбница

Пусть на некотором отрезке оси Ох задана некоторая непрерывная функция f. Положим, что эта функция не меняет своего знака на всем отрезке.
Если f есть непрерывная и неотрицательная на некотором отрезке функция, а F есть её некоторая первообразная на этом отрезке, тогда площадь криволинейной трапеции S равна приращению первообразной на данном отрезке .
Эту теорему можно записать следующей формулой:
S = F(b) – F(a)
Интеграл функции f(x) от а до b будет равен S. Здесь и далее, для обозначения определенного интеграла от некоторой функции f(x), с пределами интегрирования от a до b, будем использовать следующую запись (a;b)∫f(x). Ниже представлен пример как это будет выглядеть.

Значит, мы можем приравнять между собой эти два результата. Получим: (a;b)∫f(x)dx = F(b) - F(a), при условии, что F есть первообразная для функции f на . Эта формула имеет название формулы Ньютона – Лейбница. Она будет верна для любой непрерывной на отрезке функции f.
Формула Ньютона-Лейбница применяется для вычисления интегралов. Рассмотрим несколько примеров:
Пример 1: вычислить интеграл. Находим первообразную для подынтегральной функции x2. Одной из первообразных будет являться функция (x3)/3.
Теперь используем формулу Ньютона – Лейбница:
(-1;2)∫x2dx = (23)/3 – ((-1)3)/3 = 3
Ответ: (-1;2)∫x2dx = 3.
Пример 2: вычислить интеграл (0;pi)∫sin(x)dx.
Находим первообразную для подынтегральной функции sin(x). Одной из первообразных будет являться функция –cos(x). Воспользуемся формулой Ньютона-Лейбница:
(0;pi)∫cos(x)dx = -cos(pi) + cos(0) = 2.
Ответ: (0;pi)∫sin(x)dx=2
Иногда для простоты и удобства записи приращение функции F на отрезке (F(b)-F(a)) записывают следующим образом:

Используя такое обозначение для приращения, формулу Ньютона-Лейбница можно переписать в следующем виде:

Как уже отмечалось выше, это лишь сокращение для простоты записи, больше ни на что эта запись не влияет. Эта запись и формула (a;b)∫f(x)dx = F(b) - F(a) будут эквивалентны.

Данной формулой до сих пор пользуется большое количество ученых и вычислителей. С ее помощью Лейбниц внес развитие во многие науки.































1 из 30

Презентация на тему: Формула Ньютона-Лейбница

№ слайда 1

Описание слайда:

№ слайда 2

Описание слайда:

№ слайда 3

Описание слайда:

№ слайда 4

Описание слайда:

Ньютон и Лейбниц Из сохранившихся документов историки науки выяснили, что дифференциальное и интегральное исчисление Ньютон открыл ещё в 1665-1666 годы, однако не публиковал его до 1704 года. Лейбниц разработал свой вариант анализа независимо (с 1675 года), хотя первоначальный толчок, вероятно, его мысль получила из слухов о том, что такое исчисление у Ньютона уже имеется, а также благодаря научным беседам в Англии и переписке с Ньютоном. В отличие от Ньютона, Лейбниц сразу опубликовал свою версию, и в дальнейшем, вместе с Якобом и Иоганном Бернулли, широко пропагандировал это эпохальное открытие по всей Европе. Большинство учёных на континенте не сомневались, что анализ открыл Лейбниц.

№ слайда 5

Описание слайда:

Вняв уговорам друзей, взывавших к его патриотизму, Ньютон во 2-й книге своих «Начал» (1687) сообщил:В письмах, которыми около десяти лет тому назад я обменивался с весьма искусным математиком г-ном Лейбницем, я ему сообщал, что обладаю методом для определения максимумов и минимумов, проведения касательных и решения тому подобных вопросов, одинаково приложимых как для членов рациональных, так и для иррациональных, причем я метод скрыл, переставив буквы следующего предложения: «когда задано уравнение, содержащее любое число текущих количеств, найти флюксии и обратно». Знаменитейший муж отвечал мне, что он также напал на такой метод и сообщил мне свой метод, который оказался едва отличающимся от моего, и то только терминами и начертанием формул.

№ слайда 6

Описание слайда:

В 1693 году, когда Ньютон наконец опубликовал первое краткое изложение своей версии анализа, он обменялся с Лейбницем дружескими письмами. Ньютон сообщил:Наш Валлис присоединил к своей «Алгебре», только что появившейся, некоторые из писем, которые я писал к тебе в своё время. При этом он потребовал от меня, чтобы я изложил открыто тот метод, который я в то время скрыл от тебя переставлением букв; я сделал это коротко, насколько мог. Надеюсь, что я при этом не написал ничего, что было 6ы тебе неприятно, если же это случилось, то прошу сообщить, потому что друзья мне дороже математических открытий.

№ слайда 7

Описание слайда:

После появления первой подробной публикации ньютонова анализа (математическое приложение к «Оптике», 1704) в журнале Лейбница «Acta eruditorum» появилась анонимная рецензия с оскорбительными намёками в адрес Ньютона. Рецензия ясно указывала, что автором нового исчисления является Лейбниц. Сам Лейбниц решительно отрицал, что рецензия составлена им, но историки сумели найти черновик, написанный его почерком. Ньютон проигнорировал статью Лейбница, но его ученики возмущённо ответили, после чего разгорелась общеевропейская приоритетная война, «наиболее постыдная склока во всей истории математики».

№ слайда 8

Описание слайда:

31 января 1713 года Королевское общество получило письмо от Лейбница, содержащее примирительную формулировку: он согласен, что Ньютон пришёл к анализу самостоятельно, «на общих принципах, подобных нашим». Рассерженный Ньютон потребовал создать международную комиссию для прояснения приоритета. Комиссии не понадобилось много времени: спустя полтора месяца, изучив переписку Ньютона с Ольденбургом и другие документы, она единогласно признала приоритет Ньютона, причём в формулировке, на этот раз оскорбительной в отношении Лейбница. Решение комиссии было напечатано в трудах Общества с приложением всех подтверждающих документов

№ слайда 9

Описание слайда:

В ответ с лета 1713 года Европу наводнили анонимные брошюры, которые отстаивали приоритет Лейбница и утверждали, что «Ньютон присваивает себе честь, принадлежащую другому». Брошюры также обвиняли Ньютона в краже результатов Гука и Флемстида. Друзья Ньютона, со своей стороны, обвинили в плагиате самого Лейбница; по их версии, во время пребывания в Лондоне (1676) Лейбниц в Королевском обществе ознакомился с неопубликованными работами и письмами Ньютона, после чего изложенные там идеи Лейбниц опубликовал и выдал за свои.Война не ослабевала до декабря 1716 года, когда аббат Конти сообщил Ньютону: «Лейбниц умер - диспут окончен

№ слайда 10

Описание слайда:

№ слайда 11

Описание слайда:

№ слайда 12

Описание слайда:

Зададим произвольное значение x € (a.b) и определим новую функцию Она определена для всех значений x € (a.b) , потому что мы знаем, что если существует интеграл от ʄ на (a,b) , то существует также интеграл от ʄ на (a,b) , где Напомним, что мы считаем по определению

№ слайда 13

Описание слайда:

№ слайда 14

Описание слайда:

Таким образом, F непрерывна на (a,b) независимо от того, имеет или не имеет ʄ разрывы; важно, что ʄ интегрируема на (a,b)На рисунке изображен график ʄ . Площадь переменной фигуры aABx равна F (X) Ее приращение F (X+h)-F(x) равно площади фигуры xBC(x+h) , которая в силу Ограниченности ʄ очевидно, стремится к нулю при h→ 0 независимо от того, будет ли x точкой непрерывности или разрыва ʄ например точкой x-d

№ слайда 15

Описание слайда:

№ слайда 16

Описание слайда:

№ слайда 17

Описание слайда:

Переход к пределу в при h→0 показывает существование производной от F в точке и справедливость равенства. При x=a,b речь здесь идет соответственно о правой и левой производной. Если функция ʄ непрерывна на (a,b) , то на основании доказанного выше соответствующая ей функция имеет производную, равнуюСледовательно, функция F(x) есть первообразная для ʄ (a,b)

№ слайда 18

Описание слайда:

Мы доказали, что произвольная непрерывная на отрезке (a,b) функция ʄ имеет на этом отрезке первообразную, определенную равенством. Этим доказано существование первообразной для всякой непрерывной на отрезке функции. Пусть теперь есть произвольная первообразная функции ʄ(x) на (a,b) . Мы знаем, что Где C - некоторая постоянная. Полагая в этом равенстве x=a и учитывая, что F(a)=0 получим Ф(a)=C Таким образом, Но

№ слайда 19

Описание слайда:

№ слайда 20

Описание слайда:

Интеграл Интеграл функции - естественный аналог суммы последовательности. Согласно основной теореме анализа, интегрирование - операция, обратная к дифференцированию. Процесс нахождения интеграла называется интегрированием.Существует несколько различных определений операции интегрирования, отличающиеся в технических деталях. Однако все они совместимы, то есть любые два способа интегрирования, если их можно применить к данной функции, дадут один и тот же результат.

№ слайда 21

Описание слайда:

№ слайда 22

Описание слайда:

История Знаки интеграла ʃ дифференцирования dx были впервые использованы Лейбницем в конце XVII века. Символ интеграла образовался из буквы S - сокращения слова лат. summa (сумма). Интеграл в древностиИнтегрирование прослеживается ещё в древнем Египте, примерно в 1800 до н. э., Московский математический папирус демонстрирует знание формулы объёма усечённой пирамиды. Первым известным методом для расчёта интегралов является метод исчерпывания Евдокса (примерно 370 до н. э.), который пытался найти площади и объёмы, разрывая их на бесконечное множество частей, для которых площадь или объём уже известны. Этот метод был подхвачен и развит Архимедом, и использовался для расчёта площадей парабол и приближенного расчёта площади круга. Аналогичные методы были разработаны независимо в Китае в 3-м веке н.э Лю Хуэйем, который использовал их для нахождения площади круга. Этот метод был впоследствии использован Дзю Чонгши для нахождения объёма шара.

№ слайда 23

Описание слайда:

Историческое значение и философский смысл формулы Ньютона-Лейбница Одним из важнейших исследовательских инструментов этого ряда является формула Ньютона-Лейбница, и стоящий за ней метод нахождения первообразной функции путем интегрирования ее производной. Историческое значение формулы в использовании бесконечно малых величин и абсолютно точном ответе на поставленный вопрос. Общеизвестны преимущества применения этого метода для решения математических, физических и прочих естественнонаучных задач, например, классической задачи о квадратуре круга – построении квадрата равновеликого заданному кругу. Философский смысл – в возможности получения информации о целом по его бесконечно малой части, замеченный ранее – наглядно реализуется в медицине и биологии, примером чему могут служить успехи генной инженерии в клонировании – создании взаимоподобных живых существ. Редким исключением в перечне наук, воспользовавшихся формулой Ньютона-Лейбница, остается история. Невозможность представления информации исторических источников в виде цифр – аргументов формулы – традиционна. Таким образом, до сих пор философский смысл формулы является не совсем философским, так как реализуется лишь в естественнонаучном знании, оставляя социально-гуманитарное знание без столь мощного инструмента. Хотя, если придерживаться традиционных особенностей социально-гуманитарного знания, его так сказать, слабостей, то и по делом ему.

№ слайда 24

Описание слайда:

Но дальнейший научный анализ дает в наше время новую, иную картину происходящего процесса. Ныне господствующие в науке атомистические воззрения разлагают материю на кучу мельчайших частиц или правильно расположенных центров сил, находящихся в вечных разнообразных движениях. Точно так же и проникающий материю эфир постоянно возбуждается и волнообразно колеблется. Все эти движения материи и эфира находятся в теснейшей и непрерывной связи с бесконечным для нас мировым пространством. Такое представление, недоступное нашему конкретному воображению, вытекает из данных физики.

№ слайда 25

Описание слайда:

Даже мистические и магические течения должны считаться с этим положением, хотя они могут, придав иной смысл понятию времени, совершенно уничтожить значение этого факта в общем миросозерцании. Таким образом, пока вопрос касается явлений, воспринимаемых органами чувств, даже эти наиболее далекие от точного знания области философии и религии должны считаться с научно доказанным фактом, как они должны считаться с тем, что дважды два – четыре в той области, которая подлежит ведению чувств и разума.

№ слайда 26

Описание слайда:

Вместе с тем объема накопленных человечеством знаний уже вполне достаточно для того, что бы эту традицию нарушить. В самом деле, нет необходимости на пифагорейский лад искать цифровое соответствие высказываниям «Петр I посетил Венецию во время Великого посольства» и «Петр I не был в Венеции во время Великого посольства», когда сами эти выражения легко могут служить аргументами алгебры логики Джорджа Буля. Результат каждого исторического исследования по сути и есть набор таких аргументов. Таким образом, оправдано, на мой взгляд, использование в качестве подинтегральной функции набора исторических исследований, представленных в виде аргументов алгебры логики, с целью соответствующего получения в качестве первообразной – наиболее вероятной реконструкции исследуемого исторического события. На этом пути есть много проблем. В частности: представление конкретного исторического исследования – производной реконструируемого события – в виде набора логических выражений – операция заведомо более сложная, чем, например, электронная каталогизация простого библиотечного архива. Однако информационный прорыв конца XX – начала XXI века (чрезвычайно высокая степень интегрированности элементной базы и увеличение мощности информационных) делают выполнение такой задачи вполне реальным.

№ слайда 27

Описание слайда:

В свете вышесказанного, на современном этапе исторический анализ представляет собой математический анализ с теорией вероятности и алгеброй логики, а искомая первообразная функция – вероятность исторического события, что в целом вполне соответствует и даже дополняет представление о науке на современном этапе, ибо замена понятия сущность понятием функция – главное в понимании науки в Новое время – дополняется оценкой этой функции. Следовательно, современное историческое значение формулы в возможности претворения в жизнь мечты Лейбница «о том времени, когда два философа вместо бесконечных споров будут подобно двум математикам брать перья в руки и, засаживаясь за стол, заменять спор вычислением» . Каждое историческое исследование – заключение имеет право на существование, отражает реально происходившее событие и дополняет информационную историческую картину. Опасность вырождения исторической науки в набор бесцветных фраз-утверждений – результата применения предлагаемого метода, не больше опасности вырождения музыки в набор звуков, а живописи в набор красок на современном этапе развития человечества. Таким видится мне новый философский смысл формулы Ньютона-Лейбница, приведенной впервые в конце XVII – начале XVIII вв.

№ слайда 28

Описание слайда:

Собственно же формулу, ввиду особенности восприятия математических символов носителями социально-гуманитарного знания, выражающуюся в панической боязни этими носителями любого представления таковых знаков, приведем в словесной форме: определенный интеграл производной функции есть первообразная этой функции. Некоторое формальное отличие приводимого примера задачи о квадратуре круга от обычного учебно-математического примера вычисления площади, расположенной под произвольной кривой в декартовой системе координат, не меняет, естественно, сути.

№ слайда 29

Описание слайда:

ИСПОЛЬЗОВАННАЯ ЛИТЕРАТУРА: 1. Бродский И.А. Сочинения в четырех томах. Т.3. СПб., 1994. 2. Вернадский В.И. Биосфера и ноосфера. М., 2003. 3. Вундт, Вильгельм. Введение в философию. М., 2001. 4. Гайденко П.П. Эволюция понятия науки. М., 1980. 5. Декарт, Рене. Размышления о первоначальной философии. СПб., 1995. 6. Карпов Г.М. Великое посольство Петра I. Калининград, 1998. 7. Кунцман П., Буркард Ф.-П., Видман Ф. Философия: dtv-Atlas. М., 2002. 8. Малаховский В.С. Избранные главы истории математики. Калининград, 2002. 9. Натансон И.П. Краткий курс высшей математики. СПб., 2001. 10. Энгельс Ф. Анти-Дюринг. М., 1988. 11. Шереметевский В.П. Очерки по истории математики. М., 2004 Интернет ресурсы http://ru.wikipedia.org

№ слайда 30

Описание слайда:



Последние материалы раздела:

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...