Кто изобрел теорию вероятности. Теория вероятностей

ВВЕДЕНИЕ

Многие вещи нам непонятны не потому, что наши понятия слабы;
но потому, что сии вещи не входят в круг наших понятий.
Козьма Прутков

Основная цель изучения математики в средних специальных учебных заведениях состоит в том, чтобы дать студентам набор математических знаний и навыков, необходимых для изучения других программных дисциплин, использующих в той или иной мере математику, для умения выполнять практические расчеты, для формирования и развития логического мышления.

В данной работе последовательно вводятся все базовые понятия раздела математики "Основы теории вероятностей и математической статистики", предусмотренные программой и Государственными образовательными стандартами среднего профессионального образования (Министерство образования Российской Федерации. М., 2002г.), формулируются основные теоремы, большая часть которых не доказывается. Рассматриваются основные задачи и методы их решения и технологии применения этих методов к решению практических задач. Изложение сопровождается подробными комментариями и многочисленными примерами.

Методические указания могут быть использованы для первичного ознакомления с изучаемым материалом, при конспектировании лекций, для подготовки к практическим занятиям, для закрепления полученных знаний, умений и навыков. Кроме того, пособие будет полезно и студентам- старшекурсникам как справочное пособие, позволяющее быстро восстановить в памяти то, что было изучено ранее.

В конце работы приведены примеры и задания, которые студенты могут выполнять в режиме самоконтроля.

Методические указания предназначены для студентов заочной и дневной форм обучения.

ОСНОВНЫЕ ПОНЯТИЯ

Теория вероятностей изучает объективные закономерности массовых случайных событий. Она является теоретической базой для математической статистики, занимающейся разработкой методов сбора, описания и обработки результатов наблюдений. Путем наблюдений (испытаний, экспериментов), т.е. опыта в широком смысле слова, происходит познание явлений действительного мира.

В своей практической деятельности мы часто встречаемся с явлениями, исход которых невозможно предсказать, результат которых зависит от случая.

Случайное явление можно охарактеризовать отношением числа его наступлений к числу испытаний, в каждом из которых при одинаковых условиях всех испытаний оно могло наступить или не наступить.

Теория вероятностей есть раздел математики, в котором изучаются случайные явления (события) и выявляются закономерности при массовом их повторении.

Математическая статистика - это раздел математики, который имеет своим предметом изучения методов сбора, систематизации, обработки и использования статистических данных для получения научно обоснованных выводов и принятия решений.

При этом под статистическими данными понимается совокупность чисел, которые представляют количественные характеристики интересующих нас признаков изучаемых объектов. Статистические данные получаются в результате специально поставленных опытов, наблюдений.

Статистические данные по своей сущности зависят от многих случайных факторов, поэтому математическая статистика тесно связана с теорией вероятностей, которая является ее теоретической основой.

I. ВЕРОЯТНОСТЬ. ТЕОРЕМЫ СЛОЖЕНИЯ И УМНОЖЕНИЯ ВЕРОЯТНОСТЕЙ

1.1. Основные понятия комбинаторики

В разделе математики, который называется комбинаторикой, решаются некоторые задачи, связанные с рассмотрением множеств и составлением различных комбинаций из элементов этих множеств. Например, если взять 10 различных цифр 0, 1, 2, 3,: , 9 и составлять из них комбинации, то будем получать различные числа, например 143, 431, 5671, 1207, 43 и т.п.

Мы видим, что некоторые из таких комбинаций отличаются только порядком цифр (например, 143 и 431), другие - входящими в них цифрами (например, 5671 и 1207), третьи различаются и числом цифр (например, 143 и 43).

Таким образом, полученные комбинации удовлетворяют различным условиям.

В зависимости от правил составления можно выделить три типа комбинаций: перестановки, размещения, сочетания .

Предварительно познакомимся с понятием факториала .

Произведение всех натуральных чисел от 1 до n включительно называют n-факториалом и пишут .

Вычислить: а) ; б) ; в) .

Решение. а) .

б) Так как и , то можно вынести за скобки

Тогда получим

в) .

Перестановки.

Комбинация из n элементов, которые отличаются друг от друга только порядком элементов, называются перестановками.

Перестановки обозначаются символом Р n , где n- число элементов, входящих в каждую перестановку. (Р - первая буква французского слова permutation - перестановка).

Число перестановок можно вычислить по формуле

или с помощью факториала:

Запомним, что 0!=1 и 1!=1.

Пример 2. Сколькими способами можно расставлять на одной полке шесть различных книг?

Решение. Искомое число способов равно числу перестановок из 6 элементов, т.е.

Размещения.

Размещениями из m элементов в n в каждом называются такие соединения, которые отличаются друг от друга либо самими элементами (хотя бы одним), либо порядком из расположения.

Размещения обозначаются символом , где m - число всех имеющихся элементов, n - число элементов в каждой комбинации. (А- первая буква французского слова arrangement , что означает "размещение, приведение в порядок").

При этом полагают, что nm.

Число размещений можно вычислить по формуле

,

т.е. число всех возможных размещений из m элементов по n равно произведению n последовательных целых чисел, из которых большее есть m .

Запишем эту формулу в факториальной форме:

Пример 3. Сколько вариантов распределения трех путевок в санатории различного профиля можно составить для пяти претендентов?

Решение. Искомое число вариантов равно числу размещений из 5 элементов по 3 элемента, т.е.

.

Сочетания.

Сочетаниями называются все возможные комбинации из m элементов по n , которые отличаются друг от друга по крайней мере хотя бы одним элементом (здесь m и n- натуральные числа, причем n m ).

Число сочетаний из m элементов по n обозначаются (С -первая буква французского слова combination - сочетание).

В общем случае число из m элементов по n равно числу размещений из m элементов по n , деленному на число перестановок из n элементов:

Используя для чисел размещений и перестановок факториальные формулы, получим:

Пример 4. В бригаде из 25 человек нужно выделить четырех для работы на определенном участке. Сколькими способами это можно сделать?

Решение. Так как порядок выбранных четырех человек не имеет значения, то это можно сделать способами.

Находим по первой формуле

.

Кроме того, при решении задач используются следующие формулы, выражающие основные свойства сочетаний:

(по определению полагают и );

.

1.2. Решение комбинаторных задач

Задача 1. На факультете изучается 16 предметов. На понедельник нужно в расписание поставить 3 предмета. Сколькими способами можно это сделать?

Решение. Способов постановки в расписание трех предметов из 16 столько, сколько можно составить размещений из 16 элементов по 3.

Задача 2. Из 15 объектов нужно отобрать 10 объектов. Сколькими способами это можно сделать?

Задача 3. В соревнованиях участвовало четыре команды. Сколько вариантов распределения мест между ними возможно?

.

Задача 4. Сколькими способами можно составить дозор из трех солдат и одного офицера, если имеется 80 солдат и 3 офицера?

Решение. Солдат в дозор можно выбрать

способами, а офицеров способами. Так как с каждой командой из солдат может пойти любой офицер, то всего имеется способов.

Задача 5. Найти , если известно, что .

Так как , то получим

,

,

По определению сочетания следует, что , . Т.о. .

1.3. Понятие о случайном событии. Виды событий. Вероятность события

Всякое действие, явление, наблюдение с несколькими различными исходами, реализуемое при данном комплексе условий, будем называть испытанием.

Результат этого действия или наблюдения называется событием .

Если событие при заданных условиях может произойти или не произойти, то оно называется случайным . В том случае, когда событие должно непременно произойти, его называют достоверным , а в том случае, когда оно заведомо не может произойти,- невозможным .

События называются несовместными , если каждый раз возможно появление только одного из них.

События называются совместными , если в данных условиях появление одного из этих событий не исключает появление другого при том же испытании.

События называются противоположными , если в условиях испытания они, являясь единственными его исходами, несовместны.

События принято обозначать заглавными буквами латинского алфавита: А, В, С, Д, : .

Полной системой событий А 1 , А 2 , А 3 , : , А n называется совокупность несовместных событий, наступление хотя бы одного из которых обязательно при данном испытании.

Если полная система состоит из двух несовместных событий, то такие события называются противоположными и обозначаются А и .

Пример. В коробке находится 30 пронумерованных шаров. Установить, какие из следующих событий являются невозможными, достоверными, противоположными:

достали пронумерованный шар (А);

достали шар с четным номером (В);

достали шар с нечетным номером (С);

достали шар без номера (Д).

Какие из них образуют полную группу?

Решение. А - достоверное событие; Д - невозможное событие;

В и С - противоположные события.

Полную группу событий составляют А и Д, В и С .

Вероятность события, рассматривается как мера объективной возможности появления случайного события.

1.4. Классическое определение вероятности

Число, являющееся выражением меры объективной возможности наступления события, называется вероятностью этого события и обозначается символом Р(А).

Определение. Вероятностью события А называется отношение числа исходов m, благоприятствующих наступлению данного события А , к числу n всех исходов (несовместных, единственно возможных и равновозможных), т.е. .

Следовательно, для нахождения вероятности события необходимо, рассмотрев различные исходы испытания, подсчитать все возможные несовместные исходы n, выбрать число интересующих нас исходов m и вычислить отношение m к n .

Из этого определения вытекают следующие свойства:

Вероятность любого испытания есть неотрицательное число, не превосходящее единицы.

Действительно, число m искомых событий заключено в пределах . Разделив обе части на n , получим

2. Вероятность достоверного события равна единице, т.к. .

3. Вероятность невозможного события равна нулю, поскольку .

Задача 1. В лотерее из 1000 билетов имеются 200 выигрышных. Вынимают наугад один билет. Чему равна вероятность того, что этот билет выигрышный?

Решение. Общее число различных исходов есть n =1000. Число исходов, благоприятствующих получению выигрыша, составляет m=200. Согласно формуле, получим

.

Задача 2. В партии из 18 деталей находятся 4 бракованных. Наугад выбирают 5 деталей. Найти вероятность того, что из этих 5 деталей две окажутся бракованными.

Решение. Число всех равновозможных независимых исходов n равно числу сочетаний из 18 по 5 т.е.

Подсчитаем число m, благоприятствующих событию А. Среди 5 взятых наугад деталей должно быть 3 качественных и 2 бракованных. Число способов выборки двух бракованных деталей из 4 имеющихся бракованных равно числу сочетаний из 4 по 2:

Число способов выборки трех качественных деталей из 14 имеющихся качественных равно

.

Любая группа качественных деталей может комбинироваться с любой группой бракованных деталей, поэтому общее число комбинаций m составляет

Искомая вероятность события А равна отношению числа исходов m, благоприятствующих этому событию, к числу n всех равновозможных независимых исходов:

.

Суммой конечного числа событий называется событие, состоящее в наступлении хотя бы одного из них.

Сумму двух событий обозначают символом А+В, а сумму n событий символом А 1 +А 2 + : +А n .

Теорема сложения вероятностей.

Вероятность суммы двух несовместных событий равна суммевероятностей этих событий.

Следствие 1. Если событие А 1 , А 2 , : ,А n образуют полную систему, то сумма вероятностей этих событий равна единице.

Следствие 2. Сумма вероятностей противоположных событий и равна единице.

.

Задача 1. Имеется 100 лотерейных билетов. Известно, что на 5 билетов попадает выигрыш по 20000 руб., на 10 - по 15000 руб, на 15 - по 10000 руб., на 25 - по 2000 руб. и на остальные ничего. Найти вероятность того, что на купленный билет будет получен выигрыш не менее 10000 руб.

Решение. Пусть А, В, и С- события, состоящие в том, что на купленный билет падает выигрыш, равный соответственно 20000, 15000 и 10000 руб. так как события А, В и С несовместны, то

Задача 2. На заочное отделение техникума поступают контрольные работы по математике из городов А, В и С . Вероятность поступления контрольной работы из города А равна 0,6, из города В - 0,1. Найти вероятность того, что очередная контрольная работа поступит из города С .

Как к свойствам реальных событий, и они формулировались в наглядных представлениях. Самые ранние работы учёных в области теории вероятностей относятся к XVII веку. Исследуя прогнозирование выигрыша в азартных играх, Блез Паскаль и Пьер Ферма открыли первые вероятностные закономерности, возникающие при бросании костей . Под влиянием поднятых и рассматриваемых ими вопросов решением тех же задач занимался и Христиан Гюйгенс . При этом с перепиской Паскаля и Ферма он знаком не был, поэтому методику решения изобрёл самостоятельно. Его работа, в которой вводятся основные понятия теории вероятностей (понятие вероятности как величины шанса; математическое ожидание для дискретных случаев, в виде цены шанса), а также используются теоремы сложения и умножения вероятностей (не сформулированные явно), вышла в печатном виде на двадцать лет раньше (1657 год) издания писем Паскаля и Ферма (1679 год) .

Важный вклад в теорию вероятностей внёс Якоб Бернулли : он дал доказательство закона больших чисел в простейшем случае независимых испытаний. В первой половине XIX века теория вероятностей начинает применяться к анализу ошибок наблюдений; Лаплас и Пуассон доказали первые предельные теоремы. Во второй половине XIX века основной вклад внесли русские учёные П. Л. Чебышёв , А. А. Марков и А. М. Ляпунов . В это время были доказаны закон больших чисел , центральная предельная теорема , а также разработана теория цепей Маркова . Современный вид теория вероятностей получила благодаря аксиоматизации , предложенной Андреем Николаевичем Колмогоровым . В результате теория вероятностей приобрела строгий математический вид и окончательно стала восприниматься как один из разделов математики .

Основные понятия теории

См. также

Напишите отзыв о статье "Теория вероятностей"

Примечания

Вводные ссылки

  • Вероятностей теория // Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров . - 3-е изд. - М . : Советская энциклопедия, 1969-1978.
  • - статья из энциклопедии «Кругосвет»

Литература

А

  • Ахтямов, А. М. «Экономико-математические методы»: учеб. пособие Башк. гос. ун-т. - Уфа: БГУ, 2007.
  • Ахтямов, А. М. «Теория вероятностей». - М.: Физматлит, 2009

Б

  • Боровков, А. А. «Математическая статистика» , М.: Наука, 1984.
  • Боровков, А. А. «Теория вероятностей» , М.: Наука, 1986.
  • Булдык, Г. М. , Мн., Высш. шк., 1989.
  • Булинский, А. В., Ширяев, А. Н. «Теория случайных процессов» , М.: Физматлит, 2003.
  • Бекарева, Н. Д. «Теория вероятностей. Конспект лекций» , Новосибирск НГТУ
  • Баврин, И. И. « Высшая математика» (Часть 2 «Элементы теории вероятностей и математической статистики»), М.: Наука, 2000.

В

  • Вентцель Е. С. Теория вероятностей. - М.: Наука, 1969. - 576 с.
  • Вентцель Е. С. Теория вероятностей. - 10-е изд., стер.. - М .: «Академия» , 2005. - 576 с. - ISBN 5-7695-2311-5 .

Г

  • Гихман И. И., Скороход А. В. Введение в теорию случайных процессов. - М.: Наука, 1977.
  • Гмурман, В. Е. «Теория вероятностей и математическая статистика» : Учеб. пособие - 12-е изд., перераб.- М.: Высшее образование, 2006.-479 с.:ил (Основы наук).
  • Гмурман, В. Е. «Руководство к решению задач по теории вероятностей и математической статистике» : Учеб. пособие - 11-е изд., перераб. - М.: Высшее образование, 2006.-404 с. (Основы наук).
  • Гнеденко, Б. В. «Курс теории вероятностей» , - М.: Наука, 1988.
  • Гнеденко, Б. В. «Курс теории вероятностей» , УРСС. М.: 2001.
  • Гнеденко Б. В., Хинчин А. Я. , 1970.
  • Гурский Е. И. «Сборник задач по теории вероятностей и математической статистике» , - Минск: Высшая школа, 1975.

Д

  • П. Е. Данко, А. Г. Попов, Т. Я. Кожевников. Высшая математика в упражнениях и задачах. (В 2-х частях)- М.: Высш.шк, 1986.

Е

  • А. В. Ефимов, А. Е. Поспелов и др. 4 часть // Сборник задач по математике для втузов. - 3-е изд., перераб. и дополн.. - М .: «Физматлит », 2003. - Т. 4. - 432 с. - ISBN 5-94052-037-5 .

К

  • Колемаев, В. А. и др. «Теория вероятностей и математическая статистика» , - М.: Высшая школа, 1991.
  • Колмогоров, А. Н. «Основные понятия теории вероятностей» , М.: Наука, 1974.
  • Коршунов, Д. А., Фосс, С. Г. «Сборник задач и упражнений по теории вероятностей» , Новосибирск, 1997.
  • Коршунов, Д. А., Чернова, Н. И. «Сборник задач и упражнений по математической статистике» , Новосибирск. 2001.
  • Кремер Н. Ш. Теория вероятностей и математическая статистика: Учебник для ВУЗов. - 2- изд., перераб. и доп.-М:ЮНИТИ-ДАНА, 2004. - 573 с.
  • Кузнецов, А. В. «Применение критериев согласия при математическом моделировании экономических процессов» , Мн.: БГИНХ, 1991.

Л

  • Лихолетов И. И., Мацкевич И. Е. «Руководство к решению задач по высшей математике, теории вероятностей и математической статистике» , Мн.: Выш. шк., 1976.
  • Лихолетов И. И. «Высшая математика, теория вероятностей и математическая статистика» , Мн.: Выш. шк., 1976.
  • Лоэв М.В «Теория вероятностей» , - М.: Издательство иностранной литературы, 1962.

М

  • Маньковский Б. Ю., «Таблица вероятности».
  • Мацкевич И. П., Свирид Г. П. «Высшая математика. Теория вероятностей и математическая статистика» , Мн.: Выш. шк., 1993.
  • Мацкевич И. П., Свирид Г. П., Булдык Г. М. «Сборник задач и упражнений по высшей математике. Теория вероятностей и математическая статистика» , Мн.: Выш. шк., 1996.
  • Мейер П.-А. Вероятность и потенциалы. Издательство Мир, Москва, 1973.
  • Млодинов Л.

П

  • Прохоров, А. В., В. Г. Ушаков, Н. Г. Ушаков. «Задачи по теории вероятностей» , Наука. М.: 1986.
  • Прохоров Ю. В., Розанов Ю. А. «Теория вероятностей» , - М.: Наука, 1967.
  • Пугачев, В. С. «Теория вероятностей и математическая статистика» , Наука. М.: 1979.

Р

  • Ротарь В. И., «Теория вероятностей» , - М.: Высшая школа, 1992.

С

  • Свешников А. А. и др., «Сборник задач по теории вероятностей, математической статистике и теории случайных функций» , - М.: Наука, 1970.
  • Свирид, Г. П., Макаренко, Я. С., Шевченко, Л. И. «Решение задач математической статистики на ПЭВМ» , Мн., Выш. шк., 1996.
  • Севастьянов Б. А., «Курс теории вероятностей и математической статистики» , - М.: Наука, 1982.
  • Севастьянов, Б. А., Чистяков, В. П., Зубков, А. М. «Сборник задач по теории вероятностей» , М.: Наука, 1986.
  • Соколенко А. И., «Высшая математика» , учебник. М.: Академия, 2002.

Ф

  • Феллер, В. «Введение в теорию вероятностей и её приложения» .

Х

  • Хамитов, Г. П., Ведерникова, Т. И. «Вероятности и статистики» , БГУЭП. Иркутск.: 2006.

Ч

  • Чистяков, В. П. «Курс теории вероятностей» , М., 1982.
  • Чернова, Н. И. «Теория вероятностей», Новосибирск. 2007.

Ш

  • Шейнин О. Б. Берлин: NG Ferlag, 2005, 329 с.
  • Ширяев, А. Н. «Вероятность» , Наука. М.: 1989.
  • Ширяев, А. Н. «Основы стохастической финансовой математики В 2-х т.» , ФАЗИС. М.: 1998.

Отрывок, характеризующий Теория вероятностей

– Ведь у нас есть хлеб господский, братнин? – спросила она.
– Господский хлеб весь цел, – с гордостью сказал Дрон, – наш князь не приказывал продавать.
– Выдай его мужикам, выдай все, что им нужно: я тебе именем брата разрешаю, – сказала княжна Марья.
Дрон ничего не ответил и глубоко вздохнул.
– Ты раздай им этот хлеб, ежели его довольно будет для них. Все раздай. Я тебе приказываю именем брата, и скажи им: что, что наше, то и ихнее. Мы ничего не пожалеем для них. Так ты скажи.
Дрон пристально смотрел на княжну, в то время как она говорила.
– Уволь ты меня, матушка, ради бога, вели от меня ключи принять, – сказал он. – Служил двадцать три года, худого не делал; уволь, ради бога.
Княжна Марья не понимала, чего он хотел от нее и от чего он просил уволить себя. Она отвечала ему, что она никогда не сомневалась в его преданности и что она все готова сделать для него и для мужиков.

Через час после этого Дуняша пришла к княжне с известием, что пришел Дрон и все мужики, по приказанию княжны, собрались у амбара, желая переговорить с госпожою.
– Да я никогда не звала их, – сказала княжна Марья, – я только сказала Дронушке, чтобы раздать им хлеба.
– Только ради бога, княжна матушка, прикажите их прогнать и не ходите к ним. Все обман один, – говорила Дуняша, – а Яков Алпатыч приедут, и поедем… и вы не извольте…
– Какой же обман? – удивленно спросила княжна
– Да уж я знаю, только послушайте меня, ради бога. Вот и няню хоть спросите. Говорят, не согласны уезжать по вашему приказанию.
– Ты что нибудь не то говоришь. Да я никогда не приказывала уезжать… – сказала княжна Марья. – Позови Дронушку.
Пришедший Дрон подтвердил слова Дуняши: мужики пришли по приказанию княжны.
– Да я никогда не звала их, – сказала княжна. – Ты, верно, не так передал им. Я только сказала, чтобы ты им отдал хлеб.
Дрон, не отвечая, вздохнул.
– Если прикажете, они уйдут, – сказал он.
– Нет, нет, я пойду к ним, – сказала княжна Марья
Несмотря на отговариванье Дуняши и няни, княжна Марья вышла на крыльцо. Дрон, Дуняша, няня и Михаил Иваныч шли за нею. «Они, вероятно, думают, что я предлагаю им хлеб с тем, чтобы они остались на своих местах, и сама уеду, бросив их на произвол французов, – думала княжна Марья. – Я им буду обещать месячину в подмосковной, квартиры; я уверена, что Andre еще больше бы сделав на моем месте», – думала она, подходя в сумерках к толпе, стоявшей на выгоне у амбара.
Толпа, скучиваясь, зашевелилась, и быстро снялись шляпы. Княжна Марья, опустив глаза и путаясь ногами в платье, близко подошла к ним. Столько разнообразных старых и молодых глаз было устремлено на нее и столько было разных лиц, что княжна Марья не видала ни одного лица и, чувствуя необходимость говорить вдруг со всеми, не знала, как быть. Но опять сознание того, что она – представительница отца и брата, придало ей силы, и она смело начала свою речь.
– Я очень рада, что вы пришли, – начала княжна Марья, не поднимая глаз и чувствуя, как быстро и сильно билось ее сердце. – Мне Дронушка сказал, что вас разорила война. Это наше общее горе, и я ничего не пожалею, чтобы помочь вам. Я сама еду, потому что уже опасно здесь и неприятель близко… потому что… Я вам отдаю все, мои друзья, и прошу вас взять все, весь хлеб наш, чтобы у вас не было нужды. А ежели вам сказали, что я отдаю вам хлеб с тем, чтобы вы остались здесь, то это неправда. Я, напротив, прошу вас уезжать со всем вашим имуществом в нашу подмосковную, и там я беру на себя и обещаю вам, что вы не будете нуждаться. Вам дадут и домы и хлеба. – Княжна остановилась. В толпе только слышались вздохи.
– Я не от себя делаю это, – продолжала княжна, – я это делаю именем покойного отца, который был вам хорошим барином, и за брата, и его сына.
Она опять остановилась. Никто не прерывал ее молчания.
– Горе наше общее, и будем делить всё пополам. Все, что мое, то ваше, – сказала она, оглядывая лица, стоявшие перед нею.
Все глаза смотрели на нее с одинаковым выражением, значения которого она не могла понять. Было ли это любопытство, преданность, благодарность, или испуг и недоверие, но выражение на всех лицах было одинаковое.
– Много довольны вашей милостью, только нам брать господский хлеб не приходится, – сказал голос сзади.
– Да отчего же? – сказала княжна.
Никто не ответил, и княжна Марья, оглядываясь по толпе, замечала, что теперь все глаза, с которыми она встречалась, тотчас же опускались.
– Отчего же вы не хотите? – спросила она опять.
Никто не отвечал.
Княжне Марье становилось тяжело от этого молчанья; она старалась уловить чей нибудь взгляд.
– Отчего вы не говорите? – обратилась княжна к старому старику, который, облокотившись на палку, стоял перед ней. – Скажи, ежели ты думаешь, что еще что нибудь нужно. Я все сделаю, – сказала она, уловив его взгляд. Но он, как бы рассердившись за это, опустил совсем голову и проговорил:
– Чего соглашаться то, не нужно нам хлеба.
– Что ж, нам все бросить то? Не согласны. Не согласны… Нет нашего согласия. Мы тебя жалеем, а нашего согласия нет. Поезжай сама, одна… – раздалось в толпе с разных сторон. И опять на всех лицах этой толпы показалось одно и то же выражение, и теперь это было уже наверное не выражение любопытства и благодарности, а выражение озлобленной решительности.
– Да вы не поняли, верно, – с грустной улыбкой сказала княжна Марья. – Отчего вы не хотите ехать? Я обещаю поселить вас, кормить. А здесь неприятель разорит вас…
Но голос ее заглушали голоса толпы.
– Нет нашего согласия, пускай разоряет! Не берем твоего хлеба, нет согласия нашего!
Княжна Марья старалась уловить опять чей нибудь взгляд из толпы, но ни один взгляд не был устремлен на нее; глаза, очевидно, избегали ее. Ей стало странно и неловко.
– Вишь, научила ловко, за ней в крепость иди! Дома разори да в кабалу и ступай. Как же! Я хлеб, мол, отдам! – слышались голоса в толпе.
Княжна Марья, опустив голову, вышла из круга и пошла в дом. Повторив Дрону приказание о том, чтобы завтра были лошади для отъезда, она ушла в свою комнату и осталась одна с своими мыслями.

Долго эту ночь княжна Марья сидела у открытого окна в своей комнате, прислушиваясь к звукам говора мужиков, доносившегося с деревни, но она не думала о них. Она чувствовала, что, сколько бы она ни думала о них, она не могла бы понять их. Она думала все об одном – о своем горе, которое теперь, после перерыва, произведенного заботами о настоящем, уже сделалось для нее прошедшим. Она теперь уже могла вспоминать, могла плакать и могла молиться. С заходом солнца ветер затих. Ночь была тихая и свежая. В двенадцатом часу голоса стали затихать, пропел петух, из за лип стала выходить полная луна, поднялся свежий, белый туман роса, и над деревней и над домом воцарилась тишина.
Одна за другой представлялись ей картины близкого прошедшего – болезни и последних минут отца. И с грустной радостью она теперь останавливалась на этих образах, отгоняя от себя с ужасом только одно последнее представление его смерти, которое – она чувствовала – она была не в силах созерцать даже в своем воображении в этот тихий и таинственный час ночи. И картины эти представлялись ей с такой ясностью и с такими подробностями, что они казались ей то действительностью, то прошедшим, то будущим.
То ей живо представлялась та минута, когда с ним сделался удар и его из сада в Лысых Горах волокли под руки и он бормотал что то бессильным языком, дергал седыми бровями и беспокойно и робко смотрел на нее.
«Он и тогда хотел сказать мне то, что он сказал мне в день своей смерти, – думала она. – Он всегда думал то, что он сказал мне». И вот ей со всеми подробностями вспомнилась та ночь в Лысых Горах накануне сделавшегося с ним удара, когда княжна Марья, предчувствуя беду, против его воли осталась с ним. Она не спала и ночью на цыпочках сошла вниз и, подойдя к двери в цветочную, в которой в эту ночь ночевал ее отец, прислушалась к его голосу. Он измученным, усталым голосом говорил что то с Тихоном. Ему, видно, хотелось поговорить. «И отчего он не позвал меня? Отчего он не позволил быть мне тут на месте Тихона? – думала тогда и теперь княжна Марья. – Уж он не выскажет никогда никому теперь всего того, что было в его душе. Уж никогда не вернется для него и для меня эта минута, когда бы он говорил все, что ему хотелось высказать, а я, а не Тихон, слушала бы и понимала его. Отчего я не вошла тогда в комнату? – думала она. – Может быть, он тогда же бы сказал мне то, что он сказал в день смерти. Он и тогда в разговоре с Тихоном два раза спросил про меня. Ему хотелось меня видеть, а я стояла тут, за дверью. Ему было грустно, тяжело говорить с Тихоном, который не понимал его. Помню, как он заговорил с ним про Лизу, как живую, – он забыл, что она умерла, и Тихон напомнил ему, что ее уже нет, и он закричал: „Дурак“. Ему тяжело было. Я слышала из за двери, как он, кряхтя, лег на кровать и громко прокричал: „Бог мой!Отчего я не взошла тогда? Что ж бы он сделал мне? Что бы я потеряла? А может быть, тогда же он утешился бы, он сказал бы мне это слово“. И княжна Марья вслух произнесла то ласковое слово, которое он сказал ей в день смерти. «Ду ше нь ка! – повторила княжна Марья это слово и зарыдала облегчающими душу слезами. Она видела теперь перед собою его лицо. И не то лицо, которое она знала с тех пор, как себя помнила, и которое она всегда видела издалека; а то лицо – робкое и слабое, которое она в последний день, пригибаясь к его рту, чтобы слышать то, что он говорил, в первый раз рассмотрела вблизи со всеми его морщинами и подробностями.

Либерт Елена

Азарт и жажда разбогатеть дали толчок возникновению новой чрезвычайно существенной математической дисциплины: теории вероятностей. В разработке ее основ принимали участие математики такого масштаба, как Паскаль и Ферма, Гюйгенс.

Скачать:

Предварительный просмотр:

МБОУ СШ №8 г. Ярцево Смоленской области

Проект по математике:

«История возникновения теории вероятностей»

Подготовила: ученица 11 класса

средней школы №8 Либерт Елена

Руководитель: учитель математики

Борисенкова Ольга Владимировна

Г. Ярцево, 2015г.

История возникновения теории вероятностей…………………………………………………………..…...3

Средневековая Европа и начало Нового времени……………………….4

XVII век: Паскаль, Ферма, Гюйгенс…..………………………………….5

XVIII век……..…………………………………………………………….7

XIX век. Общие тенденции и критика……………………….…………..7

Применение теории вероятности в XIX-XX веках……………….…..…8

  1. Астрономия………………………………………………………….8
  2. Физика………………………….……………………………………9
  3. Биометрия……………...……………………………………………9
  4. Сельское хозяйство………………………..………………………..9
  5. Промышленность …………………………………………………..10
  6. Медицина…………………………………………………………....10
  7. Биоинформатика……………...…………………………………….10
  8. Экономика и банковское дело…….……………………………….11

История возникновения теории вероятностей

Французский дворянин, некий господин де Мере, был азартным игроком в кости и страстно хотел разбогатеть. Он затратил много времени, чтобы открыть тайну игры в кости. Он выдумывал различные варианты игры, предполагая, что таким образом приобретет крупное состояние. Так, например, он предлагал бросать одну кость по очереди 4 раза и убеждал партнера, что по крайней мере один раз выпадет при этом шестерка. Если за 4 броска шестерка не выходила, то выигрывал противник.

В те времена еще не существовала отрасль математики, которую сегодня мы называем теорией вероятностей, а поэтому, чтобы убедиться, верны ли его предположения, господин Мере обратился к своему знакомому, известному математику и философу Б. Паскалю с просьбой, чтобы он изучил два знаменитых вопроса, первый из которых он попытался решить сам. Вопросы были такие:

Сколько раз надо бросать две игральные кости, чтобы случаев выпадения сразу двух шестерок было больше половины от общего числа бросаний?

Как справедливо разделить поставленные на кон двумя игроками деньги, если они по каким-то причинам прекратили игру преждевременно?

Паскаль не только сам заинтересовался этим, но и написал письмо известному математику П. Ферма, чем спровоцировал его заняться общими законами игры в кости и вероятностью выигрыша.

Таким образом, азарт и жажда разбогатеть дали толчок возникновению новой чрезвычайно существенной математической дисциплины: теории вероятностей. В разработке ее основ принимали участие математики такого масштаба, как Паскаль и Ферма, Гюйгенс (1629-1695), который написал тракта «О расчетах при азартных играх», Яков Бернулли (1654-1705), Муавр (1667-1754), Лаплас (1749- 1827), Гаусс (1777-1855) и Пуассон (1781-1840). В наше время теория вероятности используется почти во всех отраслях знаний: в статистике, синоптике (прогноз погоды), биологии, экономике, технологии, строительстве и т. д.

Средневековая Европа и начало Нового времени

Первые задачи вероятностного характера возникли в различных азартных играх - костях, картах и др. Французский каноник XIII века Ришар де Фурниваль правильно подсчитал все возможные суммы очков после броска трёх костей и указал число способов, которыми может получиться каждая из этих сумм. Это число способов можно рассматривать как первую числовую меру ожидаемости события, аналогичную вероятности. До Фурниваля, а иногда и после него, эту меру часто подсчитывали неверно, считая, например, что суммы 3 и 4 очка равновероятны, так как оба могут получиться «только одним способом»: по результатам броска «три единицы» и «двойка с двумя единицами» соответственно. При этом не учитывалось, что три единицы в самом деле получаются только одним способом: ~1+1+1, а двойка с двумя единицами - тремя: ~1+1+2;\;1+2+1;\;2+1+1, так что эти события не равновероятны. Аналогичные ошибки неоднократно встречались и в дальнейшей истории науки.

В обширной математической энциклопедии «Сумма арифметики, геометрии, отношений и пропорций» итальянца Луки Пачоли (1494) содержатся оригинальные задачи на тему: как разделить ставку между двумя игроками, если серия игр прервана досрочно. Пример подобной задачи: игра идёт до 60 очков, победитель получает всю ставку в 22 дуката, в ходе игры первый игрок набрал 50 очков, второй - 30, и тут игру пришлось прекратить; требуется справедливо разделить исходную ставку. Решение зависит от того, что понимать под «справедливым» разделом; сам Пачоли предложил делить пропорционально набранным очкам (55/4 и 33/4 дуката); позднее его решение было признано ошибочным.

Распределение суммы очков после бросания двух костей

Крупный алгебраист XVI века ДжероламоКардано посвятил анализу игры содержательную монографию «Книга об игре в кости» (1526 год, опубликована посмертно). Кардано провёл полный и безошибочный комбинаторный анализ для значений суммы очков и указал для разных событий ожидаемое значение доли «благоприятных» событий: например, при бросании трёх костей доля случаев, когда значения всех 3 костей совпадают, равна 6/216 или 1/36. Кардано сделал проницательное замечание: реальное количество исследуемых событий может при небольшом числе игр сильно отличаться от теоретического, но чем больше игр в серии, тем доля этого различия меньше. По существу, Кардано близко подошёл к понятию вероятности:

Итак, имеется одно общее правило для расчёта: необходимо учесть общее число возможных выпадений и число способов, которыми могут появиться данные выпадения, а затем найти отношение последнего числа к числу оставшихся возможных выпадений.

Другой итальянский алгебраист, Никколо Тарталья, раскритиковал подход Пачоли к решению задачи о разделе ставки: ведь если один из игроков ещё не успел набрать ни одного очка, то алгоритм Пачоли отдаёт всю ставку его сопернику, но это трудно назвать справедливым, поскольку некоторые шансы на выигрыш у отстающего всё же имеются. Кардано и Тарталья предложили свои (различные) способы раздела, но впоследствии и эти способы были признаны неудачными.

Исследованием данной темы занимался и Галилео Галилей, написавший трактат «О выходе очков при игре в кости» (1718 год, опубликован посмертно). Изложение теории игры у Галилея отличается исчерпывающей полнотой и ясностью. В своей главной книге «Диалог о двух главнейших системах мира, птоломеевой и коперниковой» Галилей также указал на возможность оценки погрешности астрономических и иных измерений, причём заявил, что малые ошибки измерения вероятнее, чем большие, отклонения в обе стороны равновероятны, а средний результат должен быть близок к истинному значению измеряемой величины. Эти качественные рассуждения стали первым в истории предсказанием нормального распределения ошибок.

XVII век: Паскаль, Ферма, Гюйгенс

В XVII веке начало формироваться отчётливое представление о проблематике теории вероятностей и появились первые математические (комбинаторные) методы решения вероятностных задач. Основателями математической теории вероятностей стали Блез Паскаль и Пьер Ферма.

Перед этим математик-любитель шевалье де Мере обратился к Паскалю по поводу так называемой «задачи об очках»: сколько раз нужно бросать две кости, чтобы ставить на одновременное выпадение хотя бы раз двух шестёрок было выгодно? Паскаль и Ферма вступили в переписку друг с другом по поводу данной задачи и родственных вопросов (1654). В рамках этой переписки учёные обсудили ряд проблем, связанных с вероятностными расчётами; в частности, рассматривалась старая задача о разделе ставки, и оба учёных пришли к решению, что надо разделить ставку соответственно остающимся шансам на выигрыш. Паскаль указал де Мере на ошибку, допущенную им при решении «задачи об очках»: в то время как де Мере неверно определил равновероятные события, получив ответ: 24 броска, Паскаль дал правильный ответ: 25 бросков.

Паскаль в своих трудах далеко продвинул применение комбинаторных методов, которые систематизировал в своей книге «Трактат об арифметическом треугольнике» (1665). Опираясь на вероятностный подход, Паскаль даже доказывал (в посмертно опубликованных заметках), что быть верующим выгоднее, чем атеистом.

Гюйгенс, вначале использовал термин «стоимость», а термин «ожидание» появился впервые при переводе трактата Гюйгенса Ван Схоутеном на латинский язык и стал общепринятым в науке.

В книге большое число задач, некоторые с решениями, другие «для самостоятельного решения». Из последних особый интерес и оживлённое обсуждение вызвала «задача о разорении игрока». В несколько обобщённом виде она формулируется так: у игроков A и B есть a и b монет соответственно, в каждой игре выигрывается одна монета, вероятность выигрыша A в каждой игре равна p, требуется найти вероятность полного его разорения. Полное общее решение «задачи о разорении» дал Абрахам де Муавр полвека спустя (1711). В наши дни вероятностная схема «задачи о разорении» используется при решении многих задач типа «случайное блуждание».

Гюйгенс проанализировал и задачу о разделе ставки, дав её окончательное решение: ставку надо разделить пропорционально вероятностям выигрыша при продолжении игры. Он также впервые применил вероятностные методы к демографической статистике и показал, как рассчитать среднюю продолжительность жизни.

К этому же периоду относятся публикации английских статистиков Джона Граунта (1662) и Уильяма Петти (1676, 1683). Обработав данные более чем за столетие, они показали, что многие демографические характеристики лондонского населения, несмотря на случайные колебания, имеют достаточно устойчивый характер - например, соотношение числа новорождённых мальчиков и девочек редко отклоняется от пропорции 14 к 13, невелики колебания и процента смертности от конкретных случайных причин. Эти данные подготовили научную общественность к восприятию новых идей.

Граунт также впервые составил таблицы смертности - таблицы вероятности смерти как функции возраста. Вопросами теории вероятностей и её применения к демографической статистике занялись также Иоганн Худде и Ян де Витт в Нидерландах, которые в 1671 году также составили таблицы смертности и использовали их для вычисления размеров пожизненной ренты. Более подробно данный круг вопросов был изложен в 1693 году Эдмундом Галлеем.

XVIII век

На книгу Гюйгенса опирались появившиеся в начале XVIII века трактаты Пьера де Монмора «Опыт исследования азартных игр» (опубликован в 1708 и переиздан с дополнениями в 1713 году) и Якоба Бернулли «Искусство предположений» (опубликован уже после смерти учёного, в том же 1713 году). Последний имел для теории вероятностей особенно большое значение.

XIX век

Общие тенденции и критика

В XIX веке число работ по теории вероятностей продолжало расти, были даже компрометирующие науку попытки распространить её методы далеко за разумные пределы - например, на область морали, психологии, правоприменения и даже богословия. В частности, валлийский философ Ричард Прайс, а следом за ним и Лаплас, считали возможным рассчитать по формулам Байеса вероятность предстоящего восхода Солнца, Пуассон пытался провести вероятностный анализ справедливости судебных приговоров и достоверности показаний свидетелей. Философ Дж. С. Милль в 1843 году, указав на подобные спекулятивные применения, назвал исчисление вероятностей «позором математики». Эта и другие оценки свидетельствовали о недостаточной строгости обоснования теории вероятностей.

Математический аппарат теории вероятностей тем временем продолжал совершенствоваться. Основной сферой её применения в тот период была математическая обработка результатов наблюдений, содержащих случайные погрешности, а также расчёты рисков в страховом деле и других статистических параметров. Среди главных прикладных задач теории вероятностей и математической статистики XIX века можно назвать следующие:

найти вероятность того, что сумма независимых случайных величин с одинаковым (известным) законом распределения находится в заданных пределах. Особую важность эта проблема представляла для теории ошибок измерения, в первую очередь для оценки погрешности наблюдений;

установление статистической значимости различия случайных значений или серий таких значений. Пример: сравнение результатов применения нового и старого видов лекарств для принятия решения о том, действительно ли новое лекарство лучше;

исследование влияния заданного фактора на случайную величину (факторный анализ).

Уже к середине XIX века формируется вероятностная теория артиллерийской стрельбы. В большинстве крупных стран Европы были созданы национальные статистические организации. В конце века область применения вероятностных методов начала успешно распространяться на физику, биологию, экономику, социологию.

Применение теории вероятности в XIX-XX веках.

В 19 и 20 столетиях теория вероятностей проникает сначала в науку (астрономию, физику, биологию), потом в практику (сельское хозяйство, промышленность, медицину), и наконец, после изобретения компьютеров, в повседневную жизнь любого человека, пользующегося современными средствами получения и передачи информации. Проследим применение в различных областях.

1.Астрономия.

Именно для использования в астрономии был разработан знаменитый “метод наименьших квадратов” (Лежандр 1805, Гаусс 1815). Главной задачей, для решения которой он был первоначально использован, стал расчет орбит комет, который приходилось производить по малому числу наблюдений. Ясно, что надежное определение типа орбиты (эллипс или гипербола) и точный расчет ее параметров оказывается трудным, так как орбита наблюдается лишь на небольшом участке. Метод оказался эффективным, универсальным, и вызвал бурные споры о приоритете. Его стали использовать в геодезии и картографии. Сейчас, когда искусство ручных расчетов утрачено, трудно представить, что при составлении карт мирового океана в 1880-х годах в Англии методом наименьших квадратов была численно решена система, состоящая из примерно 6000 уравнений с несколькими сотнями неизвестных.

2.Физика.

Во второй половине 19 века была в работах Максвелла, Больцмана и Гиббса была развита статистическая механика, которая описывала состояние разряженных систем, содержащих огромное число частиц (порядка числа Авогадро). Если раньше понятие распределения случайной величины было преимущественно связано с распределением ошибок измерения, то теперь распределенными оказались самые разные величины – скорости, энергии, длины свободного пробега.

3.Биометрия.

В 1870-1900 годах бельгиец Кетле и англичане Френсис Гальтон и Карл Пирсон основали новое научное направление – биометрию, в которой впервые стала систематически и количественно изучаться неопределенная изменчивость живых организмов и наследование количественных признаков. В научный оборот были введены новые понятия – регрессии и корреляции.

Итак, вплоть до начала 20 века основные приложения теории вероятности были связаны с научными исследованиями. Внедрение в практику – сельское хозяйство, промышленность, медицину произошло в 20 веке.

4.Сельское хозяйство.

В начале 20 века в Англии была поставлена задача количественного сравнения эффективности различных методов ведения сельского хозяйства. Для решения этой задачи была развита теория планирования экспериментов, дисперсионный анализ. Основная заслуга в развитии этого уже чисто практического использования статистики принадлежит сэру Рональду Фишеру, астроному по образованию, а в дальнейшем фермеру, статистику, генетику, президенту английского Королевского общества. Современная математическая статистика, пригодная для широкого применения в практике, была развита в Англии (Карл Пирсон, Стьюдент, Фишер). Стьюдент впервые решил задачу оценки неизвестного параметра распределения без использования байесовского подхода.

5.Промышленность.

Введение методов статистического контроля на производстве (контрольные карты Шухарта). Сокращение необходимого количества испытаний качества продукции. Математические методы оказываются уже настолько важными, что их стали засекречивать. Так книга с описанием новой методики, позволявшей сократить количество испытаний (“Последовательный анализ” Вальда), была издана только после окончания второй мировой войны в 1947 году.

6.Медицина.

Широкое применение статистических методов в медицине началось сравнительно недавно (вторая половина 20 века). Развитие эффективных методов лечения (антибиотики, инсулин, эффективная анестезия, искусственное кровообращение) потребовало достоверных методов оценки их эффективности. Возникло новое понятие “Доказательная медицина”. Начал развиваться более формальный, количественный подход к терапии многих заболевании – введение протоколов, guidelines.

С середины 1980-х годов возник новый и важнейший фактор, революционизировавший все приложения теории вероятностей – возможность широкого использования быстрых и доступных компьютеров. Почувствовать всю громадность произошедшего переворота можно, если учесть, что один современный персональный компьютер превосходит по быстродействию и памяти все компьютеры СССР и США, имевшиеся к 1968 году, времени, когда уже были осуществлены проекты, связанные со строительством атомных электростанций, полетами на Луну, созданием термоядерной бомбы. Сейчас методом прямого экспериментирования можно получать результаты, которые ранее были недоступны – thinkingofunthinkable.

7.Биоинформатика.

Начиная с 1980-х годов количество известных последовательностей белков и нуклеиновых кислот стремительно возрастает. Объем накопленной информации таков, что только компьютерный анализ этих данных может решать задачи по извлечению информации.

8.Экономика и банковское дело.

Широкое применение имеет теория риска. Теория риска есть теория принятия решений в условиях вероятностной неопределенности. С математической точки зрения она является разделом теории вероятностей, а приложения теории риска практически безграничны. Наиболее продвинута финансовая область приложений: банковское дело и страхование, управление рыночными и кредитными рисками, инвестициями, бизнес-рисками, телекоммуникациям. Развиваются и нефинансовые приложения, связанные с угрозами здоровью, окружающей среде, рисками аварий и экологических катастроф, и другими направлениями.

Некоторые программисты после работы в области разработки обычных коммерческих приложений задумываются о том, чтобы освоить машинное обучение и стать аналитиком данных. Часто они не понимают, почему те или иные методы работают, и большинство методов машинного обучения кажутся магией. На самом деле, машинное обучение базируется на математической статистике, а та, в свою очередь, основана на теории вероятностей. Поэтому в этой статье мы уделим внимание базовым понятиям теории вероятностей: затронем определения вероятности, распределения и разберем несколько простых примеров.

Возможно, вам известно, что теория вероятностей условно делится на 2 части. Дискретная теория вероятностей изучает явления, которые можно описать распределением с конечным (или счетным) количеством возможных вариантов поведения (бросания игральных костей, монеток). Непрерывная теория вероятностей изучает явления, распределенные на каком-то плотном множестве, например на отрезке или в круге.

Можно рассмотреть предмет теории вероятностей на простом примере. Представьте себя разработчиком шутера. Неотъемлемой частью разработки игр этого жанра является механика стрельбы. Ясно, что шутер в котором всё оружие стреляет абсолютно точно, будет малоинтересен игрокам. Поэтому, обязательно нужно добавлять оружию разброс. Но простая рандомизация точек попадания оружия не позволит сделать его тонкую настройку, поэтому, корректировка игрового баланса будет сложна. В то же время, используя случайные величины и их распределения можно проанализировать то, как будет работать оружие с заданным разбросом, и поможет внести необходимые корректировки.

Пространство элементарных исходов

Допустим, из некоторого случайного эксперимента, который мы можем многократно повторять (например, бросание монеты), мы можем извлечь некоторую формализуемую информацию (выпал орел или решка). Эта информация называется элементарным исходом, при этом целесообразно рассматривать множество всех элементарных исходов, часто обозначаемое буквой Ω (Омега).

Структура этого пространства целиком зависит от природы эксперимента. Например, если рассматривать стрельбу по достаточно большой круговой мишени, - пространством элементарных исходов будет круг, для удобства размещенный с центром в нуле, а исходом - точка в этом круге.

Кроме того, рассматривают множества элементарных исходов - события (например, попадание в «десятку» - это концентрический круг маленького радиуса с мишенью). В дискретном случае всё достаточно просто: мы можем получить любое событие, включая или исключая элементарные исходы за конечное время. В непрерывном же случае всё гораздо сложнее: нам понадобится некоторое достаточно хорошее семейство множеств для рассмотрения, называемое алгеброй по аналогии с простыми вещественными числами, которые можно складывать, вычитать, делить и умножать. Множества в алгебре можно пересекать и объединять, при этом результат операции будет находиться в алгебре. Это очень важное свойство для математики, которая лежит за всеми этими понятиями. Минимальное семейство состоит всего из двух множеств - из пустого множества и пространства элементарных исходов.

Мера и вероятность

Вероятность - это способ делать выводы о поведении очень сложных объектов, не вникая в принцип их работы. Таким образом, вероятность определяется как функция от события (из того самого хорошего семейства множеств), которая возвращает число - некоторую характеристику того, насколько часто может происходить такое событие в реальности. Для определённости математики условились, что это число должно лежать между нулем и единицей. Кроме того, к этой функции предъявляются требования: вероятность невозможного события нулевая, вероятность всего множества исходов единичная, и вероятность объединения двух независимых событий (непересекающихся множеств) равна сумме вероятностей. Другое название вероятности - вероятностная мера. Чаще всего используется Лебегова мера , обобщающая понятия длина, площадь, объём на любые размерности (n -мерный объем), и таким образом она применима для широкого класса множеств.

Вместе совокупность множества элементарных исходов, семейства множеств и вероятностной меры называется вероятностным пространством . Рассмотрим, каким образом можно построить вероятностное пространство для примера со стрельбой в мишень.

Рассмотрим стрельбу в большую круглую мишень радиуса R , в которую невозможно промахнуться. Множеством элементарных событий положим круг с центром в начале координат радиуса R . Поскольку мы собираемся использовать площадь (меру Лебега для двумерных множеств) для описания вероятности события, то будем использовать семейство измеримых (для которых эта мера существует) множеств.

Примечание На самом деле, это технический момент и в простых задачах процесс определения меры и семейства множеств не играет особой роли. Но понимать, что эти два объекта существуют, необходимо, ведь во многих книгах по теории вероятности теоремы начинаются со слов: «Пусть (Ω,Σ,P) - вероятностное пространство … ».

Как уже сказано выше, вероятность всего пространства элементарных исходов должна равняться единице. Площадь (двумерная мера Лебега, которую мы обозначим λ 2 (A) , где А — событие) круга по хорошо известной со школы формуле равна π *R 2 . Тогда мы можем ввести вероятность P(A) = λ 2 (A) / (π *R 2) , и эта величина уже будет лежать между 0 и 1 для любого события А.

Если предположить, что попадание в любую точку мишени равновероятно, поиск вероятности попадания стрелком в какую-то то область мишени сводится к поиску площади этого множества (отсюда можно сделать вывод, что вероятность попадания в конкретную точку нулевая, ведь площадь точки равна нулю).

Например, мы хотим узнать, какова вероятность того, что стрелок попадёт в «десятку» (событие A — стрелок попал в нужное множество). В нашей модели, «десятка» представляется кругом с центром в нуле и радиусом r. Тогда вероятность попадания в этот круг P(A) = λ 2 /(A)π *R 2 = π * r 2 /(π R 2)= (r/R) 2 .

Это одна из самых простых разновидностей задач на «геометрическую вероятность», - большинство таких задач требуют поиска площади.

Случайные величины

Случайная величина — функция, переводящая элементарные исходы в вещественные числа. К примеру, в рассмотренной задаче мы можем ввести случайную величину ρ(ω) — расстояние от точки попадания до центра мишени. Простота нашей модели позволяет явно задать пространство элементарных исходов: Ω = {ω = (x,y) такие числа, что x 2 +y 2 ≤ R 2 } . Тогда случайная величина ρ(ω) = ρ(x,y) = x 2 +y 2 .

Средства абстракции от вероятностного пространства. Функция распределения и плотность

Хорошо, когда структура пространства хорошо известна, но на самом деле так бывает далеко не всегда. Даже если структура пространства известна, она может быть сложна. Для описания случайных величин, если их выражение неизвестно, существует понятие функции распределения, которую обозначают F ξ (x) = P(ξ < x) (нижний индекс ξ здесь означает случайную величину). Т.е. это вероятность множества всех таких элементарных исходов, для которых значение случайной величины ξ на этом событии меньше, чем заданный параметр x .

Функция распределения обладает несколькими свойствами:

  1. Во-первых, она находится между 0 и 1 .
  2. Во-вторых, она не убывает, когда ее аргумент x растёт.
  3. В третьих, когда число -x очень велико, функция распределения близка к 0 , а когда само х большое, функция распределения близка к 1 .

Вероятно, смысл этой конструкции при первом чтении не слишком понятен. Одно из полезных свойств — функция распределения позволяет искать вероятность того, что величина принимает значение из интервала. Итак, P (случайная величина ξ принимает значения из интервала ) = F ξ (b)-F ξ (a) . Исходя из этого равенства, можем исследовать, как изменяется эта величина, если границы a и b интервала близки.

Пусть d = b-a , тогда b = a+d . А следовательно, F ξ (b)-F ξ (a) = F ξ (a+d) - F ξ (a) . При малых значениях d , указанная выше разность так же мала (если распределение непрерывное). Имеет смысл рассматривать отношение p ξ (a,d)= (F ξ (a+d) - F ξ (a))/d . Если при достаточно малых значениях d это отношение мало отличается от некоторой константы p ξ (a) , не зависящей от d, то в этой точке случайная величина имеет плотность, равную p ξ (a) .

Примечание Читатели, которые ранее сталкивались понятием производной, могут заметить что p ξ (a) — производная функции F ξ (x) в точке a . Во всяком случае, можно изучить понятие производной в посвященной этой теме статье на сайте Mathprofi.

Теперь смысл функции распределения можно определить так: её производная (плотность p ξ , которую мы определили выше) в точке а описывает, насколько часто случайная величина будет попадать в небольшой интервал с центром в точке а (окрестность точки а) по сравнению с окрестностями других точек. Другими словами, чем быстрее растёт функция распределения, тем более вероятно появление такого значения при случайном эксперименте.

Вернемся к примеру. Мы можем вычислить функцию распределения для случайной величины, ρ(ω) = ρ(x,y) = x 2 +y 2 , которая обозначает расстояние от центра до точки случайного попадания в мишень. По определению F ρ (t) = P(ρ(x,y) < t) . т.е. множество {ρ(x,y) < t)} — состоит из таких точек (x,y) , расстояние от которых до нуля меньше, чем t . Мы уже считали вероятность такого события, когда вычисляли вероятность попадания в «десятку» - она равна t 2 /R 2 . Таким образом, Fρ(t) = P(ρ(x,y) < t) = t 2 /R 2 , для 0

Мы можем найти плотность p ρ этой случайной величины. Сразу заметим, что вне интервала она нулевая, т.к. функция распределения на этом промежутке неизменна. На концах этого интервала плотность не определена. Внутри интервала её можно найти, используя таблицу производных (например из на сайте Mathprofi) и элементарные правила дифференцирования. Производная от t 2 /R 2 равна 2t/R 2 . Значит, плотность мы нашли на всей оси вещественных чисел.

Ещё одно полезное свойство плотности — вероятность того, что функция принимает значение из промежутка, вычисляется при помощи интеграла от плотности по этому промежутку (ознакомиться с тем, что это такое, можно в статьях о собственном , несобственном , неопределенном интегралах на сайте Mathprofi).

При первом чтении, интеграл по промежутку от функции f(x) можно представлять себе как площадь криволинейной трапеции. Ее сторонами являются фрагмент оси Ох, промежуток (горизонтальной оси координат), вертикальные отрезки, соединяющие точки (a,f(a)), (b,f(b)) на кривой с точками (a,0), (b,0) на оси Ох. Последней стороной является фрагмент графика функции f от (a,f(a)) до (b,f(b)) . Можно говорить об интеграле по промежутку (-∞; b] , когда для достаточно больших отрицательных значений, a значение интеграла по промежутку будет меняться пренебрежимо мало по сравнению с изменением числа a. Аналогичным образом определяется и интеграл по промежуткам Тематики информационные технологии в целом EN probability theorytheory of chancesprobability calculation … Справочник технического переводчика

Теория вероятностей - есть часть математики, изучающая зависимости между вероятностями (см. Вероятность и Статистика) различных событий. Перечислим важнейшие теоремы, относящиеся к этой науке. Вероятность появления одного из нескольких несовместных событий равняется… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

ТЕОРИЯ ВЕРОЯТНОСТЕЙ - математич. наука позволяющая по вероятностям одних событий случайных (см.) находить вероятности случайных событий, связанных к. л. образом с первыми. Современная Т.в. основана на аксиоматике (см. Метод аксиоматический) А. Н. Колмогорова. На… … Российская социологическая энциклопедия

Теория вероятностей - раздел математики, в котором по данным вероятностям одних случайных событий находят вероятности других событий, связанных некоторым образом с первыми. Теория вероятностей изучает также случайные величины и случайные процессы. Одна из основных… … Концепции современного естествознания. Словарь основных терминов

теория вероятностей - tikimybių teorija statusas T sritis fizika atitikmenys: angl. probability theory vok. Wahrscheinlichkeitstheorie, f rus. теория вероятностей, f pranc. théorie des probabilités, f … Fizikos terminų žodynas

Теория Вероятностей - … Википедия

Теория вероятностей - математическая дисциплина, изучающая закономерности случайных явлений … Начала современного естествознания

ТЕОРИЯ ВЕРОЯТНОСТЕЙ - (probability theory) см. Вероятность … Большой толковый социологический словарь

Теория вероятностей и её применения - («Теория вероятностей и её применения»,) научный журнал Отделения математики АН СССР. Публикует оригинальные статьи и краткие сообщения по теории вероятностей, общим вопросам математической статистики и их применениям в естествознании и… … Большая советская энциклопедия

Книги

  • Теория вероятностей. , Вентцель Е.С.. Книга представляет собой учебник, предназначенный для лиц, знакомых с математикой в объёме обычного втузовского курса и интересующихся техническими приложениямитеории вероятностей, в… Купить за 2056 грн (только Украина)
  • Теория вероятностей. , Вентцель Е.С.. Эта книга будет изготовлена в соответствии с Вашим заказом по технологии Print-on-Demand. Книга представляет собой учебник, предназначенный для лиц, знакомых с математикой в объёме обычного…


Последние материалы раздела:

Важность Патриотического Воспитания Через Детские Песни
Важность Патриотического Воспитания Через Детские Песни

Патриотическое воспитание детей является важной частью их общего воспитания и развития. Оно помогает формировать у детей чувство гордости за свою...

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...