На чем основан принцип работы камеры вильсона. Камера Вильсона

Атомным прибором огромной важности явилась ионизационная камера, сконструированная английским физиком . Это знаменитое изобретение принесло Вильсону Нобелевскую премию 1937 г., а созданная им камера Вильсона навсегда увековечила имя своего создателя. Камера возникла из наблюдения, сделанного в 1897 г., заключающегося в том, что ионы являются центрами конденсации водяных паров. Основываясь на этом наблюдении, Г. А. Вильсон предложил метод определения заряда электрона, из которого, как мы видели, развились методы Милликена. Статья Чарлза Томаса Риса Вильсона , описывающая это наблюдение, называлась "Конденсация водяного пара в присутствии обеспыленного воздуха и других газов". В истории лаборатории Кавендиша, вышедшей в 1910 г., Д. Д. Томсон , бывший в это время руководителем лаборатории, писал об открытии Вильсона: "Мы должны теперь рассмотреть замечательную серию исследований Ч. Т. Р. Вильсона об условиях конденсации воды в обеспыленных газах, насыщенных водяным паром. Эти исследования не только значительно увеличили наши знания по исследуемой проблеме, но и открыли новый и поразительный метод исследования свойств ионизационного газа".

Томсон был прав, назвав новый метод "поразительным", однако вряд ли он в то время, когда писал эти строки, представлял себе все могущество этого метода. В работах 1897 г. Вильсон показал, что центрами конденсации в обеспыленном воздухе являются ионы, производимые рентгеновскими или беккерелевыми лучами. При этом для образования капель на отрицательных ионах требовалось внезапное расширение до 1,252 первоначального объема, для образования же капель на положительных ионах требовалось расширение до 1,375 первоначального объема. Через год-два после того, как Томсон написал выше процитированные строки, Вильсон сделал сообщение (1911), в котором описал "метод обнаружения путей ионизирующих частиц во влажных газах, основанный на конденсации пара на ионах, непосредственно после образования этих ионов".

Первые результаты не удовлетворили Вильсона и в 1912 г. он окончательно нашел конструкцию прибора, получившего позже название камеры Вильсона.

Приведем первые вильсоновские фотографии с его пояснениями.

"Эти рисунки представляют собою снимки с фотографий облачков, конденсировавшихся на ионах, которые освобождаются при прохождении лучей разного рода сквозь влажный газ. В последующем 1 обозначает плотность воздуха перед расширением (по отношению к насыщенному водяным паром воздуху при 15° С и 760 мм рт. ст. ), 2 - плотность после расширения, v 2 / v 1 - величину расширения, V - разность потенциалов между крышкой и дном ионизационной камеры в вольтах, М - увеличение фотографического аппарата. Во всех случаях крышка камеры была положительна, так что отрицательные ионы двигались вверх, положительные же - вниз.

Ионизация α-лучами.

Ось фотографической камеры вертикальна; горизонтальный слой глубиной в 2 см освещается ртутной искрой.

Рис. 1 (табл. I). α-лучи радия. Одни из α-частиц прошли сквозь воздух до расширения, другие - после него.

1 = 0,98, v 2 / v 1 = 1,36, 2 = 0,72, V = 40 в, М = 1 / 2,18 .

Рис. 2 (табл. I). α-лучи радия. Все α-частицы прошли сквозь воздух после расширения.

1 = 0,97, v 2 / v 1 = 1,33, 2 = 0,73, V = 40 в, М = 1,05.

Рис. 3 (табл. I). α-лучи радия. Увеличение части рис. 2.

1 = 0,97, v 2 / v 1 = 1,33, 2 = 0,73, V = 40 в, М = 2,57.

Рис. 4 (табл. I). α-лучи радиевой эманации и активного осадка.

1 = 1,00, v 2 / v 1 = 1,36, 2 = 0,74, V = 40 в, М = 1 / 124 .

Рис. 5 (табл. I). Полный путь α-частицы, выброшенной радиевой эманацией.

М. Новикова

Крохотные неуловимые частицы, испускаемые радиоактивными элементами! Масса их ничтожна; какими весами взвесить их! Скорость их колоссальна - до 10 тыс, км в сек, - разве можно уследить за их полетом! И все-таки это сделано: микрочастицы взвешены, измерены, «увидены». С помощью несложного в изготовлении прибора - так называемой камеры Вильсона - может «увидеть» их каждый.

Устройство этого прибора показано на рисунке.

Стенки камеры шириной 150 и высотой 80 мм делаются из стекла или плексигласа толщиной от 4 до 6 мм. Чтобы камера была герметична, стенки

должны быть хорошо склеены и притерты ко дну (2) и крышке (3). Между стенками и дном и между стенками и крышкой желательно поставить резиновые прокладки толщиной 1 - 2 мм (4). Дно камеры - это ровная плита из меди, латуни или дюралюминия размером 190 х 190 мм и толщиной 5-6 мм. Она привинчивается двенадцатью винтами к обойме (5), сделанной из гетинакса или текстолита. Крышка камеры размером 170 х 170 мм сделана из того же материала, что и дно. Посередине крышки делается окно 70x70 мм, через которое производится наблюдение. Это окно закрывается стеклом (6), которое через резиновую

кладку прижимается к крышке винтами. С помощью текстолитовой рамы (7) и стержней (8) стенки камеры прижимаются ко дну и к крышке. Внутри камеры к крышке прикрепляется корытце (9), сделанное из тонкой меди или жести. В стенке камеры и в крышке нужно просверлить небольшие отверстия для ввода в камеру радиоактивного излучения. Отверстия закрываются пробками «а».

Как работает камера?

Из физики известно, что давление насыщенных паров жидкости уменьшается с понижением температуры. Если температуру насыщенных паров понизить, они перейдут в пересыщенное состояние. Когда в пересыщенных парах находятся мелкие пылинки, то на них будет конденсироваться пар, и на пылинках вырастут капельки видимого размера. При значительном пересыщении паров центрами конденсации могут быть не только такие крупные «частички», как пылинки, но даже ионы газов, а каждая о-частица на своем пути ионизирует до 100 тыс. атомов. След л частицы становится видимым, - он отмечен мгновенно возникающей нитью тумана.

Рабочей жидкостью в данной камере может служить метиловый или этиловый спирт (метиловый спирт - только для стеклянной камеры: плексиглас не годится). Пересыщение достигается за счет непрерывной диффузии пара в вертикальном направлении от нагретой крышки к охлажденному дну. Чтобы получить следы частиц хорошего качества, дно камеры должно быть охлаждено до - 50^- 80° С, а крышка должна находиться при обычной комнатной температуре.

Охлаждение дна камеры производится твердой углекислотой («сухим льдом»), которая в количестве 2 -3 кг загружается в деревянный ящик (10). Твердая углекислота поджимается ко дну пружинами (11). к -г- 3 кг «сухого льда» хватает примерно на два часа работы.

Для запуска камеры пружины сжимаются и фиксируются стержнями (12). В ящик засыпаются кусочки твердой углекислоты. Затем дно ставится в обойме и привинчивается к ящику с помощью четырех коротких стержней (13) и гаек (14) по углам. На дно кладется бархат, прокладка и ставятся стенки, на стенки - крышка. Вся эта система стягивается рамой и четырьмя длинными стержнями. Через отверстие для наблюдения в крышке в камеру заливается спирт, чтобы на дне оказался слой его высотой 2 -т- 3 мм. При заливке надо следить, чтобы камера стояла горизонтально и уровень спирта на дне был бы везде одинаков. В корытце (9) спирт заливается через отверстие «а» в крышке (3) камеры.

Фиксирующие стержни одновременно вынимаются, и с"ухой лед" поджимается пружинами ко дну. После этого примерно через 20 мин. около дна камеры можно наблюдать следы частиц. Высота слоя, в котором видны следы частиц (чувствительного слоя), в данной камере составляет примерно 20 мм. Освещение чувствительного слоя производится сбоку. Для этой цели может быть использован осветитель с лампой накаливания мощностью 100 ~ 300 вт и дающий более или менее параллельный пучок света (эпидиаскоп, например).

Боковые стенки камеры в процессе работы обмерзают. Поэтому стенку камеры, через которую производится освещение, следует время от времени протирать тряпочкой, смоченной в спирте. Перед сборкой камеры внутренние поверхности стенок, дна и крышки, а также и корытце должны быть промыты спиртом. Наблюдение надо вести в темной комнате.

В качестве источника a - частиц могут быть использованы часы со светящимся циферблатом, которые подносятся вплотную к камере. Можно радиоактивное вещество нанести на кончик проволоки и ввести его в чувствительный слой. Однако источник частиц не должен находиться длительное время в чувствительном слое, так как на нем конденсируются пары спирта и вылет частиц прекращается.

Конструкция камеры не обязательно должна быть прямоугольной. Если найдется круглая стеклянная байка подходящего диаметра, можно использовать и ее.

ВИЛЬСОНА КАМЕРА, трековый детектор частиц. Создана Ч. Т. Р. Вильсоном в 1912 году. В Вильсона камере следы (треки) заряженных частиц становятся видимыми благодаря конденсации пересыщенного пара на ионах, образованных движущейся заряженной частицей в газе. Возникшие на ионах капли жидкости вырастают до больших размеров, и при достаточно сильном освещении их можно сфотографировать. Пересыщение достигается быстрым (почти адиабатическим) расширением смеси газа и пара и определяется отношением давления р 1 пара к давлению р 2 насыщенных паров при температуре, устанавливающейся после расширения. Величина пересыщения, необходимая для образования капель на ионах, зависит от природы пара и знака заряда иона. Так, водяной пар конденсируется преимущественно на отрицательных ионах, пары этилового спирта - на положительных. В Вильсона камере чаще используют смесь воды и спирта, в этом случае требуемое пересыщение р 1 /р 2 ≈1,62, что является минимальным из всех возможных значений.

Исследуемые частицы могут либо испускаться помещаемым внутри камеры источником, либо попадать в камеру через прозрачное для них окно. Природу и свойства исследуемых частиц можно установить по длине пробега и импульсу частиц. Для измерения импульсов частиц Вильсона камеру помещают в магнитное поле; для образования вторичных частиц в Вильсона камере располагают пластины из плотного материала, оставляя между ними зазоры для наблюдения следов частиц.

Вильсона камера может использоваться в так называемом управляемом режиме, когда она приводится в действие пусковым устройством, срабатывающим при попадании в неё исследуемой частицы. Полное время цикла обычной Вильсона камеры ≥ 1 мин. Оно складывается из времени, нужного для медленного (очищающего) расширения, времени, необходимого для прекращения движения газа, и времени диффузии пара в газе. В качестве источников света при фотографировании треков частиц используют импульсные лампы большой мощности.

С помощью Вильсона камеры сделан ряд открытий в ядерной физике, физике элементарных частиц. Наиболее яркие из них связаны с исследованиями космических лучей: открытие широких атмосферных ливней (1929), позитрона (1932), обнаружение следов мюонов, открытие странных частиц. В 1950-60-х годах Вильсона камера была практически полностью вытеснена пузырьковой камерой, обладающей большим быстродействием и поэтому более пригодной к работе на современных ускорителях заряженных частиц.

Лит.: Дас Гупта Н., Гош С. Камера Вильсона и ее применения в физике. М., 1947; Вильсон Дж. Камера Вильсона. М., 1954; Принципы и методы регистрации элементарных частиц. М., 1963.

В конце XIX века ученые открыли радиоактивное излучение урана и установили, что оно представляет собой поток разнообразных быстрых частиц. Можно ли проследить за их движением и взаимодействием с различными мишенями? Ведь эти частицы меньше атома, а их скорость соизмерима со скоростью света: даже относительно тяжелые и медленные альфа-частицы уже движутся со скоростью около 5% от световой и представляют собой лишь крохотное ядро одного из самых легких элементов — гелия.

1. В качестве корпуса камеры мы взяли прозрачную акриловую коробку от конфет. Можно использовать и любую другую прозрачную прямоугольную или цилиндрическую емкость (даже целый аквариум). Главное, чтобы материал стенок не лопался от сильных перепадов температуры, так что пластик предпочтительнее стекла.

Камера Вильсона

В 1912 году Чарльз Вильсон, исследовавший до этого далекие от ядерной физики процессы образования туманов и дождей, сконструировал камеру, за которую в 1927 году получил Нобелевскую премию. В ней резкое движение поршня на доли секунды создавало перенасыщенный пар какой-либо летучей жидкости. Перенасыщенный пар неустойчив, малейшие возмущения заставляют его сконденсироваться в капли. Пролетающие через объем камеры альфа- и бета-частицы оставляют за собой след ионов воздуха, который немедленно вызывает конденсацию жидкости, создавая видимый невооруженным глазом трек (след), в точности повторяющий траекторию частицы. По длине и толщине трека можно судить об энергии, скорости и массе частицы. Толстые треки остаются за тяжелыми медленными частицами, а легкие и быстрые дают тонкий, едва заметный след.


2. К верхней крышке обычным канцелярским скотчем или суперклеем крепится марлевый жгут с ватой внутри, пропитанный спиртом (этиловым или изопропиловым). Дно заклеивается черной изолентой, чтобы белые треки частиц были лучше видны (можно покрасить дно черной матовой краской или приклеить лист черной бумаги). В качестве источника частиц мы взяли сварочный электрод марки WT-20, состоящий из вольфрама с добавкой 2% тория (несмотря на радиоактивный торий, электроды безопасны, если их не глотать).

Камера Вильсона, особенно помещенная по предложению советских физиков Петра Капицы и Дмитрия Скобельцына в сильное магнитное поле, оказалась феноменально эффективным инструментом, позволившим сделать множество открытий — в частности, обнаружить позитроны и мюоны. Однако она имела серьезный недостаток — находилась в чувствительном к частицам состоянии в лучшем случае секунды. Это делало ее совершенно непригодной для исследования редких случайных событий.


3. Конструкция охладителя тоже предельно проста: в пластиковый пищевой контейнер насыпаются гранулы сухого льда, сверху кладется миллиметровый лист алюминия, позволяющий сделать охлаждение максимально равномерным.

Диффузионная камера

Во второй половине 1930-х годов американский физик Александр Лангсдорф-младший решил эту проблему. Вместо того чтобы создавать перенасыщенный пар резким снижением давления, он создал в камере постоянный градиент температуры. В области высокой температуры испарялась летучая жидкость, пары диффундировали в область низкой температуры и там непрерывно находились в перенасыщенном состоянии, всегда готовые показать исследователям траектории частиц. Кроме непрерывности работы, диффузионная камера Лангсдорфа имеет еще одно достоинство: ее предельно просто сделать. Она состоит из емкости с прозрачными стенками и нагревателем вверху и/или охладителем внизу. Вверху также располагается ткань, вата или иное пористое хранилище для жидкости. Вот, собственно, и вся конструкция. Именно такую камеру мы решили собрать в редакции «Популярной механики».


4. Далее устанавливаем камеру на алюминиевый лист охладителя и подсвечиваем ее сбоку фонариком. Через несколько минут, когда в коробке установится градиент температур и вблизи дна образуются перенасыщенные пары спирта, можно любоваться медитативным зрелищем треков альфа-частиц — туманных следов, которые рождаются в объеме камеры и плавно опускаются на дно.

Антимир своими глазами

Используя неодимовые магниты, можно заставить частицы двигаться по искривленной траектории. А если вместо электрода с торием поместить в камеру небольшое количество калийных удобрений (природный калий содержит бета-активный калий-40) и набраться терпения, то можно будет лично наблюдать античастицы — позитроны. Калий-40, пусть и очень редко, испускает их вместо обычных электронов. В магнитном поле треки редких позитронов отклоняются в противоположную по отношению к электронам сторону.

Принцип действия приборов для регистрации элементарных частиц. Любое устройство, регистрирующее элементарные частицы или движущиеся атомные ядра, подобно заряженному ружью с взведенным курком. Небольшое усилие при нажатии на спусковой крючок ружья вызывает эффект, не сравнимый с затраченным усилием, - выстрел.

Регистрирующий прибор - это более или менее сложная макроскопическая система, которая может находиться в неустойчивом состоянии. При небольшом возмущении, вызванном пролетевшей частицей, начинается процесс перехода системы в новое, более устойчивое состояние. Этот процесс и позволяет регистрировать частицу. В настоящее время используется множество различных методов регистрации частиц.

В зависимости от целей эксперимента и условий, в которых он проводится, применяются те или иные регистрирующие устройства, отличающиеся друг от друга по основным характеристикам.

Газоразрядный счетчик Гейгера. Счетчик Гейгера - один из важнейших приборов для автоматического подсчета частиц.

Счетчик (рис. 13.1) состоит из стеклянной трубки, покрытой изнутри металлическим слоем (катод), и тонкой металлической нити, идущей вдоль оси трубки (анод). Трубка заполняется газом, обычно аргоном. Действие счетчика основано на ударной ионизации. Заряженная частица (электрон, -частица и т. д.), пролетая в газе, отрывает от атомов электроны и создает положительные ионы и свободные электроны. Электрическое поле между анодом и катодом (к ним подводится высокое напряжение) ускоряет электроны до энергий, при которых начинается ударная ионизация. Возникает лавина ионов, и ток через счетчик резко возрастает. При этом на нагрузочном резисторе R образуется импульс напряжения, который подается в регистрирующее устройство.

Для того чтобы счетчик мог регистрировать следующую попавшую в него частицу, лавинный paзряд, необходимо погасить. Это происходит автоматически. Так как в момент появления импульса тока падение напряжения на нагрузочном резисторе R велико, то напряжение между анодом и катодом резко уменьшается - настолько, что разряд прекращается.

Счетчик Гейгера применяется в основном для регистрации электронов и -квантов (фотонов большой энергии).

В настоящее время созданы счетчики, работающие на и пых принципах.

Камера Вильсона. Счетчики позволяют лишь регистрировать факт прохождения через них частицы и фиксировать некоторые ее характеристики. В камере же Вильсона, созданной в 1912 г., быстрая заряженная частица оставляет след, который можно наблюдать непосредственно или сфотографировать. Этот прибор можно назвать окном в микромир, т. е. мир элементарных частиц и состоящих из них систем.

Принцип действия камеры Вильсона основан на конденсации перенасыщенного пара на ионах с образованием капелек воды. Эти ионы создает вдоль своей траектории движущаяся заряженная частица.

Камера Вильсона представляет собой герметически закрытый сосуд, заполненный парами воды или спирта, близкими к насыщению (рис. 13.2). При резком опускании поршня, вызванном уменьшением давления под ним, пар в камере адиабатно расширяется. Вследствие этого происходит охлаждение, и пар становится перенасыщенным. Это -неустойчивое состояние пара: он легко конденсируется, если в сосуде появляются центры конденсации. Центрами

конденсации становятся ионы, которые образует в рабочем пространстве камеры пролетевшая частица. Если частица проникает в камеру сразу после расширения пара, то на ее пути появляются капельки воды. Эти капельки образуют видимый след пролетевшей частицы - трек (рис. 13.3). Затем камера возвращается в исходное состояние, и ионы удаляются электрическим полем. В зависимости от размеров камеры время восстановления рабочего режима варьируется от нескольких секунд до десятков минут.

Информация, которую дают треки в камере Вильсона, значительно богаче той, которую могут дать счетчики. По длине трека можно определить энергию частицы, а по числу капелек на единицу длины трека - ее скорость. Чем длиннее трек частицы, тем больше ее энергия. А чем больше капелек воды образуется на единицу длины трека, тем меньше ее скорость. Частицы с большим зарядом оставляют трек большей толщины. Советские физики П. Л. Капица и Д. В. Скобельцын предложили помещать камеру Вильсона в однородное магнитное поле.

Магнитное поле действует на движущуюся заряженную частицу с определенной силой (силой Лоренца). Эта сила искривляет траекторию частицы, не изменяя модуля ее скорости. Трек имеет тем большую кривизну, чем больше заряд частицы и чем меньше ее масса. По кривизне трека можно определить отношение заряда частицы к ее массе. Если известна одна из этих величин, то можно вычислить другую. Например, по заряду частицы и кривизне ее трека можно найти массу частицы.

Пузырьковая камера. В 1952 г. американским ученым Д. Глейзером было предложено использовать для обнаружения треков частиц перегретую жидкость. В такой жидкости на ионах (центрах парообразования), образующихся при движении быстрой заряженной частицы, появляются пузырьки пара, дающие видимый трек. Камеры данного типа были названы пузырьковыми.

В исходном состоянии жидкость в камере находится под высоким давлением, предохраняющим ее от закипания, несмотря на то, что температура жидкости несколько выше температуры кипения при атмосферном давлении. При резком понижении давления жидкость оказывается перегретой, и в течение небольшого времени она будет находиться в неустойчивом состоянии. Заряженые частицы, пролетающие именно в это время, вызывают появление треков, состоящих из пузырьков пара (рис. 1.4.4). И качестве жидкости используются главным образом жидкий водород и пропан. Длительность рабочего цикла пузырьковой камеры невелика - около 0,1 с.

Преимущество пузырьковой камеры перед камерой Вильсона обусловлено большей плотностью рабочего вещества. Пробеги частиц вследствие этого оказываются достаточно короткими, и частицы даже больших энергий застревают в камере. Это позволяет наблюдать серию последовательных превращений частицы и вызываемые ею реакции.

Треки в камере Вильсона и пузырьковой камере - один из главных источников информации о поведении и свойствах частиц.

Наблюдение следов элементарных частиц производит сильное впечатление, создает ощущение непосредственного соприкосновения с микромиром.

ЧЕРЕНКОВСКИЙ СЧЁТЧИК детектор для регистрации заряж. ч-ц, в к-ром используется Черенкова Вавилова излучение. При движении заряж. ч-цы в среде со скоростью v, превышающей фазовую скорость света c/n в данной среде (n - показатель преломления среды), ч-ца излучает в направлении, составляющем угол q с её траекторией. Угол q связан со скоростью ч-цы v и показателем преломления среды га соотношением: cosq=c/vn=1/bn, b=v/c. (1) Интенсивность W черенковского излучения на 1 см пути заряж. ч-цы в интервале длин волн от l1 до l2 выражается соотношением:


Похожая информация.




Последние материалы раздела:

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...

Пробный ЕГЭ по русскому языку
Пробный ЕГЭ по русскому языку

Здравствуйте! Уточните, пожалуйста, как верно оформлять подобные предложения с оборотом «Как пишет...» (двоеточие/запятая, кавычки/без,...