Поль дирак и вернер гейзенберг их открытия. Один из создателей квантовой механики

Вернер Карл Гейзенберг (нем. Werner Heisenberg, 5 декабря 1901, Вюрцбург — 1 февраля 1976, Мюнхен) — немецкий физик, создатель «матричной квантовой механики Гейзенберга», лауреат нобелевской премии по физике (1932).

Немецкий физик Вернер Карл Гейзенберг родился в Дуйсбурге в семье Августа Гейзенберга, профессора древнегреческого языка Мюнхенского университета, и урожденной Анни Веклейн. Детские годы прошли в Дуйсбурге, где он учился в гимназии Максимилиана.

В 1920 поступил в Мюнхенский университет, где изучал физику под руководством знаменитого Арнольда Зоммерфельда. Гейзенберг был выдающимся студентом и уже в 1923 защитил докторскую диссертацию. Она была посвящена некоторым аспектам квантовой теории. Следующий год он провел в Геттингенском университете ассистентом у Макса Борна, а затем, получив стипендию Рокфеллеровского фонда, отправился к Нильсу Бору в Копенгаген, где пробыл до 1927, если не считать продолжительных визитов в Геттинген.

В 1933 Гейзенбергу была вручена Нобелевская премия по физике 1932 «за создание квантовой механики, применение которой привело помимо прочего к открытию аллотропических форм водорода».

Гейзенберг был награжден золотой медалью Барнарда «За выдающиеся научные заслуги» Колумбийского университета (1929), золотой медалью Маттеуччи Национальной академии наук Италии (1929), медалью Макса Планка Германского физического общества (1933), бронзовой медалью Национальной академии наук США (1964), международной золотой медалью Нильса Бора Датского общества инженеров-строителей, электриков и механиков (1970).

Он был удостоен почетных степеней университетов Брюсселя, Будапешта, Копенгагена, Загреба и Технического университета в Карлсруэ, состоял членом академий наук Норвегии, Геттингена, Испании, Германии и Румынии, а также Лондонского королевского общества. Американского философского общества, Нью-Йоркской академии наук. Королевской ирландской академии и Японской академии.

Книги (7)

Введение в единую полевую теорию элементарных частиц

Выдающийся современный физик-теоретик Вернер Гейзенберг последние годы много работал над построением единой теории элементарных частиц — главной, принципиально важной проблемой современной теоретической физики. Хотя путь, предложенный Гейзенбергом, не единственный (параллельно разрабатываются и имеют определенные успехи другие направления), вклад автора в решение этой сложнейшей проблемы весьма значителен. В настоящей книге систематически изложены результаты его исследований.

Книга Гейзенберга является первой в мировой научной литературе монографией по единой спинорной нелинейной теории материи.

Избранные труды

Предлагаемое вниманию читателей собрание избранных научных трудов выдающегося физика-теоретика, одного из создателей новой физики Вернера Гейзенберга (1901-1976) с запозданием завершает многолетнюю работу по собиранию, отбору, переводу и редактированию его трудов.

Гидродинамическая устойчивость и турбулентность, строение атома и молекул, квантовая механика и ее приложения, квантовая теория поля, теория дырок Дирака, космические лучи, матрица рассеяния, ферромагнетизм и попытка создания нелинейной единой теории поля таков далеко не полный перечень научных проблем, в постановку и во многих случаях решение которых Гейзенберг внес решающий вклад. Его физическая интуиция и научная дерзость поражали даже тех, кто в разные периоды его жизни работали с ним.

Гейзенбергу, более полувека принимавшему активное участие в создании новой физики, принадлежат и многочисленные попытки ее философского осмысления. Из под его пера вышли такие замечательные книги, как «Физика и философия», «Революция в современной физике», «Физика и за ее пределами: встречи и беседы», «Традиция в науке», и духовная автобиография «Часть и целое».

В настоящее издание включены работы Гейзенберга по квантовой механике, квантовой теории поля, теории феррмагнетизма, теории турбулентности, теории ядра и теории космических ливней. Несмотря на заведомую неполноту, они позволяют составить представление о масштабах научной деятельности выдающегося теоретика.

Принцип неопределенности

Существует ли мир, если на него никто не смотрит?

В течение многих лет Вернер Гейзенберг считался одним из самых демонических представителей западной науки. И это неудивительно, ведь именно он стоял во главе нацистской ядерной программы, к счастью, безуспешной. И все же сотрудничество ученого с преступным режимом не заслонило его огромный вклад в науку.

В 1925 году Гейзенберг обобщил беспорядочное на первый взгляд скопление наблюдений в сфере квантовой физики за предыдущие десятилетия, а через два года вывел свой знаменитый принцип неопределенности. Ученый заявил, что наблюдатель влияет на созерцаемую им реальность.

Это принцип и выводы, из него следующие, заставили недоумевать многих ученых, в том числе и Эйнштейна, который, протестуя, писал: «Мне бы хотелось думать, что Луна существует, даже если я на нее не смотрю».

Физика и философия

В различных университетах Шотландии ежегодно читаются так называемые гиффордовские лекции. Эти лекции, по завещанию основателя, имеют своим предметом естественную теологию.

С естественной теологией связана такая точка зрения на вопросы бытия, которая является результатом отказа от какой-либо частной религии или мировоззрения.

Физика и философия. Часть и целое

Книга содержит два произведения выдающегося физика-теоретика, одного из создателей квантовой механики и теории поля, лауреата Нобелевской премии Вернера Гейзенберга.

В цикле лекций «Физика и философия» рассказывается о философских проблемах перехода от ньютоновского представления об основных элементах мироздания к современным теориям, о прошлом и будущем естествознания, о значении науки.

Сочинение «Часть и целое» представляет собой творческую автобиографию ученого, мыслителя и человека, живое свидетельство эпохи становления квантовой механики и первых шагов атомной техники. В качестве приложения в книге содержится статья А. В. Ахутина «Вернер Гейзенберг и философия».

Философские проблемы атомной физики

Книга выдающегося немецкого физика, лауреата Нобелевской премии Вернера Гейзенберга освещает широкий круг принципиальных вопросов физической науки.

В ней затрагиваются философские основы физики, рассматриваются ее пути развития, важнейшие проблемы и задачи, делается попытка проанализировать социальную роль науки. Автор привлекает разнообразный материал, относящийся к различным этапам истории естествознания, в ряде случаев апеллируя к своему собственному опыту и жизненным наблюдениям.

Шаги за горизонт

Вернер Гейзенбер — один из пионеров современной теоретической физики, который закладывал основы атомной физики. С не меньшей смелостью и глубиной ставил и решал он связанные с нею философские, логические и гуманитарные проблемы.

Сборник составлен на основе двух книг В. Гейзенберга: «Шаги за горизонт» (1973) и «Традиция в науке» (1977). В нем дается теоретико-познавательное, гносеологическое осмысление новейших научных достижений, путей развития теоретической физики.

О том, как один нобелевский лауреат чуть было не завалил диссертацию другого, как одна прогулка изменила всю современную физику, и о том, как Вернер Гейзенберг всей своей жизнью иллюстрировал собственный принцип неопределенности, рассказывает наш сегодняшний выпуск рубрики «Как получить Нобелевку».

Нынешний выпуск «нобелевской» рубрики на портале сайт – юбилейный. С начала года мы написали ровно 99 биографий нобелевских лауреатов по физике, химии и физиологии или медицины. С 1901 года мы добрались в 1930-е и на уже солидной статистике можно сделать четкий вывод: практически все биографии лауреатов делятся на две категории – про первых написано огромное количество материалов на русском языке и приходится жестоко отбирать известные факты, проверяя их по альтернативным источникам. Мечников, Эйнштейн, Планк… В некоторых других случаях не хватает даже материалов на английском и приходится залезать в немецкие, итальянские, шведские, датские источники.

Наш сотый герой, безусловно, из первой категории. А как может быть иначе, если речь идет, не больше и не меньше, об одном из основателей квантовой механики, одном из самых молодых лауреатов премии по физике, о человеке, который создал свои основные труды всего в 25 лет, и сумел оставить след не только в физике, но и в философии (можете себе представить себе философа из ФРГ, сотрудничавшего с гитлеровской Германией, чьи философские труды издавались в Советском Союзе и поступали в открытую продажу?). Итак, встречайте: Вернер Гейзенберг.

Гейзенберг в начале 1930-х

Wikimedia Commons

Вернер Карл Гейзенберг

Нобелевская премия по физике 1932 года. Формулировка Нобелевского комитета: «За создание квантовой механики, применение которой привело, помимо прочего, к открытию аллотропических форм водорода (for the creation of quantum mechanics, the application of which has, inter alia, led to the discovery of the allotropic forms of hydrogen)».

Наш герой родился в самом начале XX веке в городе Вюрцбурге на реке Майна, родине Рентгена и нынешнего главы Международного олимпийского комитета Томаса Баха. Предки со стороны отца были ремесленниками, со стороны матери – крестьянами и фермерами, и тем не менее, дед Вернера по матери был уже директором Максимиллиановской гимназии – лучшего среднего учебного заведения Мюнхена, а отец уже преподавал классическую филологию. Вернер был вторым сыном в семье – старший брат Эрвин, родившийся годом раньше, тоже тянулся к наукам и стал в итоге химиком. Судя по всему, Август Гейзенберг поддерживал конкуренцию братьев, что привело к неплохим результатам. Когда Вернеру исполнилось 9, он переехал с семьей в Мюнхен где начал учиться в гимназии, которой руководил его дед. Во время Первой мировой Эрвин успел повоевать около года, а Вернер только готовился к войне в местной мюнхенской ячейке Wehrkraftverein – Баварской ассоциации оборонительных сил.

Арнольд Зоммерфельд в 1935 году

Wikimedia Commons

Впрочем, война закончилась, империя пала, началась Баварская советская республика, потом она пала, в стране и в умах началось брожение, а Гейзенберг заинтересовался философией и задумался об атомах, одновременно познакомившись с теорией относительности Эйнштейна. Примерно с таким компотом мыслей – Кант, Платон, атомы и Эйнштейн – в 1920 году Вернер Гейзенберг и попал в Мюнхенский университет, где угодил в цепкие руки «делателя нобелевских лауреатов»: Арнольда Зоммерфельда.

Пожалуй, только Джозеф Джон Томсон превосходит Зоммерфельда в количестве учеников-нобелиатов: помимо Гейзенберга, еще шестеро: Вольфганг Паули, Питер Дебай, Ханс Бете, Лайнус Полинг, Исидор Раби и Макс фон Лауэ стали лауреатами Нобелевской премии. Самого же Зоммерфельда номинировали 84 раза (в том числе – и все его ученики), но увы – не судьба!

Арнольд Зоммерфельд сразу приметил гения, которого отказались принять математики на свой семинар – и начал его готовить сразу к защите докторской: по правилам Зоммерфельда, талантливые студенты защищали диссертацию сразу по окончанию обучения.

В июне 1922 года Макс Борн организовал в Геттингене встречу физиков Германии и Нильса Бора, который в том же году получит Нобелевскую премию. Так получился «Боровский фестиваль»: великий датчанин две недели читал лекции по атомной физике и квантовой теории, немецкие физики вышли из-под бойкота, который им устроили победившие страны, а Гейзенберг, которого привез вместе с другими своими учениками туда Зоммерфельд получил важный толчок для своего развития. В одной из лекций Бор представил работу своего коллеги и фактического заместителя в Институте теоретической физики в Копенгагене, Хендрика Антони Крамерса, нидерландца по происхождению, об эффекте Штарка (о нем мы в статье об этом нобелевском лауреате).

Хендрик Антони Крамерс в 1928 году

Wikimedia Commons

Гейзенберг был знаком с этой статьей и обратился с критикой работы к Бору. Аудитория, естественно, мягко скажем… ну, применим слово «удивилась»: студент-недоучка критикует зама САМОГО БОРА! Но «сам Бор» не нашел ничего неуместного в замечаниях студента недоучки – они действительно нашли слабые места в работе. Бор предложил Гейзенбергу прогуляться и продолжить дискуссию.

Как вспоминал потом Гейзенберг, «разговор почти сразу же перешел к его любимым темам: философским вопросам об атомах, использованию привычных понятий для их описания, а также к тому, что означает «понимание» физических явлений».

Много позже физик написал в своей книге «Беседы вокруг атомной физики»: «Эта прогулка оказала огромное влияние на мою последующую научную карьеру. Возможно, было бы точнее указать, что мое развитие как ученого началось с этой прогулки».

В Геттингене же решилась и дальнейшая судьба Гейзенберга: дело в том, что на 1922-1923 учебный год Зоммерфельд уплывал в США, где ему предложили позицию приглашенного профессора. Поэтому очень уместно было оказаться рядом с Максом Борном – ему можно было «сдать» на семестр своих студентов для продолжения обучения и экспериментальной работы.

Макс Борн

Wikimedia Commons

В октябре 1922 года Гейзенберг прибыл к Борну. Тот описывал нового студента, как «простого крестьянина с короткими белыми волосами, ясными блестящими глазами и очаровательным выражением лица». Тем не менее, мощный талант «крестьянина» был ясен, и в январе нового, 1923 года Борн уже писал Зоммерфельду: «Я очень горжусь Гейзенбергом. Все мы высоко ценим его. У него невероятный талант». И предложил, чтобы юноша после защиты докторской приехал к нему работать.

И дело не только в том, что по вечерам Борн и Гейзенберг играли на пианино в четыре руки – они оба были еще и талантливыми музыкантами, а в том, что уже тогда нащупывались берега новой физики. В общем, уже к лету и Борн, и еще один гениальный студент Борна, Вольфганг Паули, и сам Нильс Бор понимали – все квантовые модели описания простейших атомов сложнее водорода не работают. Нужна новая физика – квантовая механика.

Правда, участие Гейзенберга в ее создании чуть было не погубила докторская. В диссертации Зоммерфельд, который делал «халтурку» для мюнхенского водопровода, поручил ученику несколько задач из гидродинамики, с которыми его студент блестяще справился. Однако, кроме защиты самой работы, требовалось еще сдать теоретический и практический экзамен по физике. И вот тут Вернер не смог ответить ни на один вопрос нобелевского лауреата Вильгельма Вина. Он даже не смог объяснить принцип действия аккумулятора. Высший бал по теорфизике и математике – и «двойка» по экспериментальной физике… Такого экзаменаторы не помнили! Лишь вмешательство Зоммерфельда заставило комиссию поставить Гейзенбергу суммарную положительную оценку. Следующую ночь юноша провел в поезде в Геттинген и в раздумьях – не выгонит ли его Борн после такого разноса. Впрочем, Макс Борн, расспросив о ходе экзамена, решил не менять планы, и в октябре 1923 года у Борна появился новый помощник и коллега по игре в четыре руки на пианино.

Удивительное дело: за два года в статусе помощника Борна, Гейзенбергом были заложены основы квантовой механики. Более того, если Гейзенберг, однажды осененный на острове Гельголанд в Северном море, куда он сбежал от сенной лихорадки, изложил свои уравнения в матричной форме, то чуть позже Эрвин Шредингер изложил то же самое в формате волновых уравнений. Началось веселое время в физике – споров, приятий и неприятий, обсуждений и понимания, что Гейзенберг и Шредингер пишут об одном и том же. К 1927 году это стало понятно почти всем, однако из математического описания Гейзенберга стало понятно еще одно – при перемножении матриц важен порядок множителей. Несколько логических ходов – и мы получаем принцип неопределенности Гейзенберга: невозможно бесконечно точно одновременно узнать импульс частицы и ее координаты. Надежный старый мир стал расплываться.

Поразительно: вчерашний студент перевернул (не один, конечно), самые основы мироздания. Естественно, дальше последовал длинный путь математического оформления, следствий, практического применения квантовой механики – иногда через многие десятилетия. Так, основанный на принципе неопределенности Гейзенберга мысленный эксперимент (или парадокс) Эйнштейна-Подольского-Розена в этом году привел к квантово-шифрованному чату между Пекином и Парижем через спутник.

Была Нобелевская премия, принятие (или не принятие) нацистского режима, работа над ядерным оружием Третьего Рейха (или его саботаж), таинственная встреча в Копенгагене с Нильсом Бором в 1941 году, философские работы послевоенного времени… о Гейзенберге можно писать и говорить много. Но, видимо, в полном согласии с квантовым духом нашего героя, будет всегда оставаться что-то неопределенное.

ВЕРНЕР ГЕЙЗЕНБЕРГ — ЛАУРЕАТ НОБЕЛЕВСКОЙ ПРЕМИИ ПО ФИЗИКЕ

Нобелевская премия: Вернер Гейзенберг (1901-1976) был удостоен Нобелевской премии по физике в 1932 г. «за создание квантовой механики, применение которой привело, помимо прочего, к открытию аллотропических форм водорода «. В 1927 году Гейзенберг сформулировал знаменитый принцип неопределенности, названный его именем.

Гражданство: Германия.

Образование: доктор философии (физика), Мюнхенский университет, Германия, 1923 г.; доктор философии, Геттингенский университет, Германия, 1924 г.

Профессиональная деятельность: профессор физики в университетах Копенгагена (Дания), Лейпцига, Берлина, Геттингена и Мюнхена.

1. «Первый глоток из кубка естествознания порождает атеизм, но на дне сосуда нас ожидает Бог». [«Der erste Trunk aus dem Becher der Naturwissenschaft macht atheistisch, aber auf dem Grund des Bechers wartet Gott.»] (Цит. по: Hildebrand 1988, 10).

2. Генри Маргенау (почетный профессор физики и естественных наук в Йельском университете) в автобиографической статье, опубликованной в журнале «Истина» (Truth), писал: «Хотя я ничего не сказал о годах с 1936-го по 1950-й, они были отмечены несколькими незабываемыми для меня событиями. Одним из них была первая встреча с Гейзенбергом, приехавшим в Америку вскоре после окончания Второй мировой войны. В личной беседе с ним я был поражен глубиной его религиозных убеждений. Он был истинным христианином в полном смысле этого слова». (Margenau 1985, Vol. 1).

3. В статье «Естественнонаучная и религиозная истина» (1973) Гейзенберг писал:

«В ходе развития естествознания, начиная со знаменитого процесса против Галилея, снова и снова высказывалось мнение, что естественнонаучная истина не может быть приведена в согласие с религиозным истолкованием мира. Но должен сказать, что, хотя я убежден в неоспоримости естественнонаучной истины в своей сфере, мне все же никогда не представлялось возможным отбросить содержание религиозной мысли просто как часть преодоленной ступени сознания человечества — часть, от которой в будущем все равно придется отказаться. Так что на протяжении моей жизни мне постоянно приходилось задумываться о соотношении этих двух духовных миров, ибо у меня никогда не возникало сомнения в реальности того, на что они указывают». (Гейзенберг В. Шаги за горизонт. М., 1987. — С. 328).

4. «Где нет уже никаких путеводных ориентиров, там вместе с ценностной шкалой пропадает и смысл наших действий и нашего страдания, и в конечном счете остаются лишь отрицание и отчаяние. Религия есть, таким образом, фундамент этики, а этика — предпосылка нашей жизни». (Гейзенберг, 1987. — С. 333).

5. Эйнштейн до конца своей жизни верил в строгую причинность. В последнем дошедшем до нас письме к Эйнштейну Гейзенберг писал, что хотя в новой квантовой механике излюбленный Эйнштейном принцип причинности не подтверждается, «мы можем утешаться тем, что благому Господу Богу, должно быть, известно положение частиц, так что принцип причинности все равно, наверное, остается в силе». (Цит. по: Holton 2000, vol. 53).

См. также следующие публикации Гейзенберга:

— Heisenberg, Werner. 1970. «Erste Gesprache uber das Verhaltnis von Naturwissenschaft und Religion (1927).» Werner Trutwin, ed. Religion-Wissenschaft-Weltbild. Dusseldorf: Patmos-Verlag, pp. 23-31. (Theologisches Forum. Texte fur den Religionsunterricht 4.)

— Heisenberg, Werner. 1973. «Naturwissenschaftliche und religiose Wahrheit.» Frankfurter Allgemeine Zeitung, 24 Marz, pp. 7-8. (Speech before the Catholic Academy of Bavaria, on acceptance of the Guardini Prize, 23 March 1973.)

— Heisenberg, Werner. 1968. «Religion und Naturwissenschaft.» Bayer, Leverkusen. Sofort-Kongress-Dienst 24, 1-2.

— Heisenberg, Werner. 1969. «Kein Chaos, aus dem nicht wieder Ordnung wurde. Drei Atomphysiker diskutieren uber Positivismus, Metaphysik und Religion.» Die Zeit 24, No. 34, 29-30.

Post Views: 2 892

Гейзенберг был членом Саксонской академии наук в Лейпциге .

Знаменитые высказывания

  • Первый глоток из стакана естествознания делает атеистом, но на дне стакана ожидает Бог.
  • Только немногие знают, как много надо знать, чтобы понять, как мало знаешь.
  • Физика рождается в общении.
  • Сложнее всего говорить обычным языком о квантовой теории. Непонятно, какие слова нужно употреблять вместо соответствующих математических символов. Ясно только одно: понятия обычного языка не подходят для описания строения атома.
  • Красота природы отражается в красоте наук о природе.

Сочинения

  • Физические принципы квантовой теории. М.-Л., 1932.
  • Физика атомного ядра. М.-Л., 1947.
  • Теория атомного ядра. М., 1953.
  • Философские проблемы современной атомной физики. М., 1953.
  • Введение в единую полевую теорию элементарных частиц. М., 1968.
  • Шаги за горизонт. М.: Прогресс, 1987.
  • Физика и философия. Часть и целое . М.: Наука, 1990.

Ссылки

  • Гейзенберг, Вернер Карл в библиотеке Максима Мошкова

Wikimedia Foundation . 2010 .

Смотреть что такое "Вернер Гейзенберг" в других словарях:

    Вернер Карл Гейзенберг Werner Karl Heisenberg … Википедия

    Вернер Гейзенберг Сольвеевский конгресс Вернер Карл Гейзенберг (нем. Werner Heisenberg; 5 декабря 1901, Вюрцбург 1 февраля 1976, Мюнхен) немецкий физик, создатель «матричной квантовой механики Гейзенберга», лауреат Нобелевской премии по физике … Википедия

    Хайзенберг (Heisenberg) Вер нер (5. 12. 1901, Вюрцбург, 1.2.1976, Мюнхен), нем. физик теоретик, один из создателей квантовой механики. С 1941 директор Ин та кайзера Вильгельма (с1946 Ин т Макса Планка). Нобелевская пр. по физике (1932).… … Философская энциклопедия

    - (нем. Heisenberg) фамилия: Гейзенберг, Вернер Карл немецкий физик теоретик Гейзенберг, Август немецкий историк и филолог, византинист … Википедия

    ГЕЙЗЕНБЕРГ (Хайзенберг) (Heisenberg) Вернер (1901 76) немецкий физик теоретик, один из создателей квантовой механики. Предложил (1925) матричный вариант квантовой механики; сформулировал (1927) принцип неопределенности; ввел концепцию матрицы… … Большой Энциклопедический словарь

    Гейзенберг, Хайзенберг (Heisenberg) Вернер (р. 5.12.1901, Вюрцбург), немецкий физик, один из создателей квантовой механики. В 1923 окончил Мюнхенский университет, где слушал лекции А. Зоммерфельда. В 1923≈27 ассистент М. Борна. В 1927≈41… … Большая советская энциклопедия

Немецкий физик-теоретик, удостоенный в 1932 Нобелевской премии по физике за создание матричной механики. Родился 5 декабря 1901 в Вюрцбурге.


Родился 5 декабря 1901 в Вюрцбурге. В 1920 поступил в Мюнхенский университет, где прослушал курс лекций по теоретической физике А.Зоммерфельда; досрочно окончил университет в 1923. В 1923–1927 – ассистент М.Борна в Гёттингенском университете, в 1927–1941 – профессор физики Лейпцигского и Берлинского университетов, с 1941 – директор Института физики Макса Планка в Берлине и профессор Гёттингенского университета.

В 1925 Гейзенберг совместно с Н.Бором разработал т.н. матричную механику – первый вариант квантовой механики. К этой теории Гейзенберг пришел, пытаясь разрешить противоречия модели строения атома, сочетающей классические уравнения движения и постулаты Бора. Гейзенберг постулировал, что элементарные частицы обладают волновыми свойствами и не могут быть наблюдаемы в традиционном смысле. Это – распространяющиеся в пространстве волновые «пакеты», которые в зависимости от характера исследования можно рассматривать либо как волны, либо как частицы. Каждой физической величине ставился в соответствие некий оператор, а операторы представлялись в виде бесконечных матриц (отсюда и название теории). На основе своей теории Гейзенберг произвел квантовомеханический расчет атома гелия, показав возможность существования его в двух различных состояниях (орто- и пара-).

В 1927 Гейзенберг сформулировал в математическом виде «принцип неопределенности», возникший из необходимости учета материального характера наблюдения за элементарной частицей. Согласно этому принципу, невозможно точно указать одновременно координаты частицы и ее импульс: чем точнее экспериментатор определит одну из этих характеристик, тем менее точным будет значение другой. В описание атомного объекта, его состояния и поведения вводился существенно новый момент – понятие вероятности.

В 1928 Гейзенберг совместно с П.Дираком выдвинул идею обменного взаимодействия, независимо от Я.И.Френкеля разработал квантовомеханическую теорию спонтанной намагниченности ферромагнетиков, основанную на обменном взаимодействии электронов. В 1929 совместно с В.Паули работал над построением теории квантовой электродинамики, введя схему квантования полей. Пытался получить массы и другие характеристики элементарных частиц из единого полевого уравнения.

Гейзенберг опубликовал ряд книг, в числе которых Физические принципы квантовой теории (Die physikalische Prinzipien der Quantentheorie , 1930), Физика и философия (Physik und Philosophie , 1958), Физика и за ее пределами (Physics and Beyond , 1971).



Последние материалы раздела:

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...