Водород распространение физические и химические свойства. Различные формы водорода

  • Земля́ - третья от Солнца планета. Пятая по размеру среди всех планет Солнечной системы. Она является также крупнейшей по диаметру, массе и плотности среди планет земной группы.

    Иногда упоминается как Мир, Голубая планета, иногда Терра (от лат. Terra). Единственное известное человеку на данный момент тело Солнечной системы в частности и Вселенной вообще, населённое живыми организмами.

    Научные данные указывают на то, что Земля образовалась из солнечной туманности около 4,54 миллиарда лет назад и вскоре после этого приобрела свой единственный естественный спутник - Луну. Предположительно жизнь появилась на Земле примерно 4,25 млрд лет назад, то есть вскоре после её возникновения. С тех пор биосфера Земли значительно изменила атмосферу и прочие абиотические факторы, обусловив количественный рост аэробных организмов, а также формирование озонового слоя, который вместе с магнитным полем Земли ослабляет вредную для жизни солнечную радиацию, тем самым сохраняя условия существования жизни на Земле. Радиация, обусловленная самой земной корой, со времён её образования значительно снизилась благодаря постепенному распаду радионуклидов в ней. Кора Земли разделена на несколько сегментов, или тектонических плит, которые движутся по поверхности со скоростями порядка нескольких сантиметров в год. Изучением состава, строения и закономерностей развития Земли занимается наука геология.

    Приблизительно 70,8 % поверхности планеты занимает Мировой океан, остальную часть поверхности занимают континенты и острова. На материках расположены реки, озёра, подземные воды и льды, вместе с Мировым океаном они составляют гидросферу. Жидкая вода, необходимая для всех известных жизненных форм, не существует на поверхности какой-либо из известных планет и планетоидов Солнечной системы, кроме Земли. Полюсы Земли покрыты ледяным панцирем, который включает в себя морской лёд Арктики и антарктический ледяной щит.

    Внутренние области Земли достаточно активны и состоят из толстого, очень вязкого слоя, называемого мантией, которая покрывает жидкое внешнее ядро, являющееся источником магнитного поля Земли, и внутреннее твёрдое ядро, предположительно, состоящее из железа и никеля. Физические характеристики Земли и её орбитального движения позволили жизни сохраниться на протяжении последних 3,5 млрд лет. По различным оценкам, Земля будет сохранять условия для существования живых организмов ещё в течение 0,5 - 2,3 млрд лет.

    Земля взаимодействует (притягивается гравитационными силами) с другими объектами в космосе, включая Солнце и Луну. Земля обращается вокруг Солнца и делает вокруг него полный оборот примерно за 365,26 солнечных суток - сидерический год. Ось вращения Земли наклонена на 23,44° относительно перпендикуляра к её орбитальной плоскости, это вызывает сезонные изменения на поверхности планеты с периодом в один тропический год - 365,24 солнечных суток. Сутки сейчас составляют примерно 24 часа. Луна начала своё обращение на орбите вокруг Земли примерно 4,53 миллиарда лет назад. Гравитационное воздействие Луны на Землю является причиной возникновения океанских приливов. Также Луна стабилизирует наклон земной оси и постепенно замедляет вращение Земли. Некоторые теории полагают, что падения астероидов приводили к существенным изменениям в окружающей среде и поверхности Земли, вызывая, в частности, массовые вымирания различных видов живых существ.

    Планета является домом для миллионов видов живых существ, включая человека. Территория Земли разделена на 195 независимых государств, которые взаимодействуют между собой. Человеческая культура сформировала много представлений об устройстве мироздания - таких, как концепция о плоской Земле, геоцентрическая система мира и гипотеза Геи, по которой Земля представляет собой единый суперорганизм.

Земля

Земля́

планета Солнечной системы, третья по порядку от Солнца. Обращается вокруг него по эллиптической, близкой к круговой орбите (с эксцентрисистетом 0,017), со ср. скоростью ок. 30 км/с. Ср. расстояние Земли от Солнца 149,6 млн. км, период обращения 365,24 ср. солнечных суток (тропический год). На ср. расстоянии 384,4 тыс. км от Земли вокруг неё вращается естественный спутник Луна. Земля вращается вокруг своей оси (имеющей наклон к плоскости эклиптики, равный 66°33 22) за 23 ч 56 мин (звёздные сутки). С вращением Земли вокруг Солнца и наклоном земной оси связана смена на Земле времён года, а с вращением её вокруг оси – смена дня и ночи.

Строение Земли: 1 – континентальная кора; 2 океаническая кора; 3 – осадочные породы; 4 – гранитный слой; 5 – базальтовый слой; 6 – мантия; 7 – внешняя часть ядра; 8 – внутреннее ядро

Земля имеет форму геоида (приближённо – трёхосного эллипсоидного сфероида), ср. радиус которого 6371,0 км, экваториальный – 6378,2 км, полярный – 6356,8 км; дл. окружности экватора – 40075,7 км. Площадь поверхности Земли – 510,2 млн. км² (в т. ч. суша – 149 км², или 29,2 %, моря и океаны – 361,1 млн. км², или 70,8 %), объём – 1083·1012 км³, масса – 5976·1021 кг, ср. плотность – 5518 кг/м³. Земля обладает гравитационным полем, обусловливающим её сферическую форму и прочно удерживающим атмосферу , а также магнитным полем и тесно связанным с ним электрическим полем. В составе Земли преобладает железо (34,6 %), кислород (29,5 %), кремний (15,2 %) и магний (12,7 %). Строение земных недр показано на рисунке.

Общий вид Земли из космоса

Условия Земли благоприятны для существования жизни. Область активной жизни образует особую оболочку Земли – биосферу , в ней осуществляется биологический кругооборот веществ и потоков энергии. Земля имеет также географическую оболочку , отличающуюся сложным составом и строением. Изучением Земли занимаются многие науки (астрономия, геодезия , геология , геохимия, геофизика , физическая география , землеведение, биология и др.).

География. Современная иллюстрированная энциклопедия. - М.: Росмэн . Под редакцией проф. А. П. Горкина . 2006 .

Земля

планета, на которой мы живем; третья от Солнца и пятая из крупнейших планет в Солнечной системе. Как полагают, Солнечная система сформировалась из вихревых газово-пылевых облаков ок. 5 млрд. лет назад. Земля богата природными ресурсами, имеет в целом благоприятный климат и, возможно, является единственной планетой, на которой существует жизнь. В недрах Земли протекают активные геодинамические процессы, проявляющиеся в спрединге океанического дна (наращивании океанической коры и последующем ее раздвижении), дрейфе материков, землетрясениях, вулканических извержениях и др.
Земля вращается вокруг своей оси. Хотя это движение и не заметно на поверхности, точка на экваторе перемещается со скоростью ок. 1600 км/ч. Земля также обращается вокруг Солнца по орбите протяженностью ок. 958 млн. км со средней скоростью 29,8 км/с, совершая полный оборот примерно за год (365,242 средних солнечных суток). См. также Солнечная система .
ФИЗИЧЕСКИЕ ХАРАКТЕРИСТИКИ
Форма и состав. Земля представляет собой сферу, состоящую из трех слоев – твердого (литосферы), жидкого (гидросферы) и газообразного (атмосферы). Плотность пород, слагающих литосферу, увеличивается по направлению к центру. Так называемая «твердая Земля» включает ядро, выполненное главным образом железом, мантию, состоящую из минералов более легких металлов (например, магния), и относительно тонкую твердую кору. Местами она раздроблена (в областях разломов) или смята в складки (в горных поясах).
Под влиянием притяжения Солнца, Луны и других планет на протяжении года форма орбиты и конфигурация Земли слегка меняются, а также возникают приливы. На самой Земле происходит медленный дрейф материков, постепенно меняется соотношение суши и океанов, а в процессе постоянной эволюции жизни происходит преобразование окружающей среды. Жизнь на Земле сконцентрирована в зоне контакта литосферы, гидросферы и атмосферы. Эта зона в совокупности со всеми живыми организмами, или биотой, называется биосферой. За пределами биосферы жизнь может существовать лишь при наличии специальных систем жизнеобеспечения, например космических кораблей.
Форма и размер. Примерные очертания и размеры Земли известны уже более 2000 лет. Еще в 3 в. до н.э. греческий ученый Эратосфен довольно точно рассчитал радиус Земли. В настоящее время известно, что ее экваториальный диаметр составляет 12 754 км, а полярный – ок. 12 711 км. Геометрически Земля представляет собой трехосный эллипсоидный сфероид, сплющенный у полюсов (рис. 1, 2). Площадь поверхности Земли ок. 510 млн. км 2 , из них 361 млн. км 2 приходится на воду. Объем Земли равен ок. 1121 млрд. км 3 .
Неравенство радиусов Земли частично обусловлено вращением планеты, в результате которого возникает центробежная сила, максимальная на экваторе и ослабевающая по направлению к полюсам. Если бы на Земле действовала только одна эта сила, все находящиеся на ее поверхности предметы улетели бы в космос, однако из-за силы земного притяжения этого не происходит.
Сила земного притяжения, или гравитация, удерживает Луну на орбите, а атмосферу – вблизи земной поверхности. Из-за вращения Земли и действия центробежной силы гравитация на ее поверхности несколько уменьшается. Силой земного притяжения обусловлено ускорение свободного падения предметов, величина которого составляет примерно 9,8 м/с 2 .
Неоднородность земной поверхности предопределяет различия гравитации в разных районах. Измерения ускорения силы тяжести позволяют получать информацию о внутреннем строении Земли. Например, вблизи гор прослеживаются бóльшие его значения. Если показатели меньше ожидаемых, то можно предположить, что горы сложены менее плотными породами. См. также геодезия .
Масса и плотность. Масса Земли составляет ок. 6000×10 18 т. Для сравнения масса Юпитера больше примерно в 318 раз, Солнца – в 333 тыс. раз. С другой стороны, масса Земли в 81,8 раза превышает массу Луны. Плотность Земли варьирует от незначительной в верхних слоях атмосферы до исключительно высокой в центре планеты. Зная массу и объем Земли, ученые рассчитали, что ее средняя плотность примерно в 5,5 раза больше плотности воды. Одна из наиболее распространенных пород на поверхности Земли – гранит имеет плотность 2,7 г/см 3 , плотность в мантии изменяется от 3 до 5 г/см 3 , в пределах ядра от 8 до 15 г/см 3 . В центре Земли она может достигать 17 г/см 3 . Напротив, плотность воздуха у земной поверхности составляет примерно 1/800 плотности воды, а в верхних слоях атмосферы она очень мала.
Давление. Атмосфера оказывает давление на земную поверхность на уровне моря с силой 1 кг/см 2 (давление в одну атмосферу), которое уменьшается с высотой. На высоте ок. 8 км оно понижается примерно на две трети. Внутри Земли давление быстро возрастает: на границе ядра оно составляет ок. 1,5 млн. атмосфер, а в его центре – до 3,7 млн. атмосфер.
Температуры на Земле сильно варьируют. Например, рекордно высокая температура +58° C была зарегистрирована в Эль-Азизии (Ливия) 13 сентября 1922, а рекордно низкая, –89,2° С, на станции Восток близ Южного полюса в Антарктиде 21 июля 1983. С глубиной на протяжении первых километров от земной поверхности температура повышается на 0,6° C каждые 18 м, далее этот процесс замедляется. Расположенное в центре Земли ядро раскалено до температуры 5000–6000° C. В приповерхностном слое атмосферы средняя температура воздуха составляет 15° C, в тропосфере (нижней основной Земле части атмосферы) она постепенно понижается, а выше (начиная со стратосферы) меняется в широких пределах в зависимости от абсолютной высоты.
Оболочка Земли, в пределах которой температуры обычно ниже 0° С, называется криосферой. В тропиках она начинается на высоте ок. 4500 м, в высоких широтах (к северу и югу от 60–70°) – от уровня моря. В приполярных районах на материках криосфера может простираться на несколько десятков сотен метров ниже земной поверхности, формируя горизонт многолетней мерзлоты.
Геомагнетизм. Еще в 1600 английский физик У.Гильберт, показал, что Земля ведет себя, как огромный магнит. По-видимому, турбулентные движения в расплавленном железосодержащем внешнем ядре генерируют электрические токи, под действием которых возникает сильное магнитное поле, простирающееся в космосе на расстоянии более 64 000 км. Силовые линии этого поля выходят из одного магнитного полюса Земли и входят в другой (рис. 3). Магнитные полюсы перемещаются вокруг географических полюсов Земли. Геомагнитное поле дрейфует в западном направлении со скоростью 24 км/год. В настоящее время Северный магнитный полюс расположен среди островов северной Канады. Ученые полагают, что на протяжении продолжительных этапов геологической истории магнитные полюсы примерно совпадали с географическими. В любой точке земной поверхности магнитное поле характеризуется горизонтальной составляющей напряженности, магнитным склонением (угол между этой составляющей и плоскостью географического меридиана) и магнитным наклонением (угол между вектором напряженности и плоскостью горизонта). На Северном магнитном полюсе стрелка компаса, который установлен вертикально, будет указывать строго вниз, а на Южном – строго вверх. Однако на магнитном полюсе стрелка компаса, расположенного горизонтально, беспорядочно вертится вокруг своей оси, поэтому компас здесь бесполезен для навигации. См. также геомагнетизм .
Геомагнетизм обусловливает существование внешнего магнитного поля – магнитосферы. В настоящее время Северный магнитный полюс соответствует положительному знаку (силовые линии поля направлены внутрь Земли), а Южный – отрицательному (силовые линии направлены вовне). В геологическом прошлом полярность время от времени менялась на противоположную. Солнечный ветер (поток элементарных частиц, испускаемых Солнцем) деформирует магнитное поле Земли: на обращенной к Солнцу дневной стороне оно сжимается, а на противоположной, ночной, – вытягивается в т.н. магнитный хвост Земли.
Ниже 1000 км электромагнитные частицы в тонком верхнем слое земной атмосферы сталкиваются с молекулами кислорода и азота, возбуждая их, в результате происходит свечение, известное как полярное сияние, во всей полноте видимое только из космоса. Наиболее впечатляющие полярные сияния сопряжены с солнечными магнитными бурями, синхронными с максимумами солнечной активности, имеющими цикличность 11 лет и 22 года. В настоящее время Северное полярное сияние наилучшим образом видно из Канады и с Аляски. В средние века, когда северный магнитный полюс располагался восточнее, полярное сияние часто было видно в Скандинавии, северной России и северном Китае.
СТРОЕНИЕ
Литосфера (от греч. lithos – камень и sphaira – шар) – оболочка «твердой» Земли. Прежде считали, что Земля состоит из твердой тонкой коры и горячего кипящего расплава под ней, а к литосфере относили только твердую кору. Сегодня полагают, что «твердая» Земля включает три концентрические оболочки, называемые земной корой, мантией и ядром (рис. 4). Земная кора и верхняя мантия представляют собой твердые тела, внешняя часть ядра ведет себя как жидкая среда, а внутренняя – как твердое тело. Сейсмологи относят к литосфере земную кору и верхнюю часть мантии. Основание литосферы расположено на глубинах от 100 до 160 км на контакте с астеносферой (зоной пониженной твердости, прочности и вязкости в пределах верхней мантии, состоящей предположительно из расплавленных пород).
Земная кора – тонкая внешняя оболочка Земли средней мощностью 32 км. Наиболее тонкая она под океанами (от 4 до 10 км), а наиболее мощная – под материками (от 13 до 90 км). На кору приходится примерно 5% объема Земли.
Различают континентальную и океаническую земную кору (рис. 5). Первая из них ранее называлась сиаль, поскольку слагающие ее граниты и некоторые другие породы содержат в основном кремний (Si) и алюминий (Al). Океаническая кора называлась сима по преобладанию в составе ее пород кремния (Si) и магния (Mg). Обычно она состоит из темноцветных базальтов, часто вулканического происхождения. Существуют также районы с корой переходного типа, где океаническая кора медленно превращается в континентальную или, наоборот, часть континентальной коры преобразуется в океаническую. Такого рода трансформации происходят в процессе частичного или полного плавления, а также в результате коровых динамических процессов.
Около трети земной поверхности составляет суша, состоящая из шести материков (Евразии, Северной и Южной Америки, Австралии и Антарктиды), островов и групп островов (архипелагов). Бóльшая часть суши расположена в Северном полушарии. Взаимное расположение материков менялось на протяжении геологической истории. Около 200 млн. лет назад материки располагались в основном в Южном полушарии и образовывали гигантский суперконтинент Гондвану (см. также ГЕОЛОГИЯ) .
Высота поверхности земной коры существенно различается от района к району: самая высокая точка на Земле – гора Джомолунгма (Эверест) в Гималаях (8848 м над уровнем моря), а самая низкая – на дне впадины Челленджер в Марианском желобе вблизи Филиппин (11 033 м ниже у.м.). Таким образом, амплитуда высот поверхности земной коры – более 19 км. В целом горные страны с высотами свыше 820 м над у. м. занимают примерно 17% поверхности Земли, а остальная территория суши – менее 12%. Около 58% земной поверхности приходится на глубоководные (3–5 км) океанические бассейны, а 13% – на довольно мелководный континентальный шельф и переходные области. Бровка шельфа обычно расположена на глубине ок. 200 м.
Крайне редко непосредственными исследованиями могут быть охвачены слои земной коры, расположенные глубже 1,5 км (как, например, в золотоносных рудниках ЮАР глубиной свыше 3 км, нефтяных скважинах Техаса глубиной ок. 8 км и в самой глубокой в мире – более 12 км – Кольской буровой экспериментальной скважине). На основе изучения этих и других скважин получено большое количество информации о составе, температуре и других свойствах земной коры. Кроме того, в районах интенсивных тектонических движений, например, в Большом Каньоне р.Колорадо и в горных странах, удалось составить детальное представление о глубинном строении земной коры.
Установлено, что земная кора состоит из твердых горных пород. Исключение составляют привулканические зоны, где существуют очаги расплавленных пород, или магмы, которые изливаются на поверхность в виде лавы. В целом породы земной коры примерно на 75% состоят из кислорода и кремния и на 13% – из алюминия и железа. Сочетания этих и некоторых других элементов образуют минералы, входящие в состав горных пород. Иногда в земной коре обнаруживаются в значительных концентрациях имеющие важное хозяйственное значение отдельные химические элементы и минералы. К ним относятся углерод (алмазы и графит), сера, руды золота, серебра, железа, меди, свинца, цинка, алюминия и др. металлов. См. также минеральные ресурсы ; минералы и минералогия .
Мантия – оболочка «твердой» Земли, расположенная под земной корой и простирающаяся примерно до глубины 2900 км. Она подразделяется на верхнюю (мощностью ок. 900 км) и нижнюю (мощностью ок. 1900 км) мантию и состоит из плотных зеленовато-черных железо-магниевых силикатов (перидотита, дунита, эклогита). В условиях поверхностных температур и давлений эти породы примерно вдвое жестче, чем гранит, а на больших глубинах становятся пластичными и медленно текут. Благодаря распаду радиоактивных элементов (особенно изотопов калия и урана) мантия постепенно нагревается снизу. Иногда в процессе горообразования блоки земной коры погружаются в мантийное вещество, где они плавятся, а затем во время вулканических извержений вместе с лавой выносятся на поверхность (иногда лава включает обломки перидотита, дунита и эклогита).
В 1909 хорватский геофизик А.Мохоровичич установил, что скорость распространения продольных сейсмических волн резко увеличивается на глубине ок. 35 км под материками и 5–10 км – под океаническим дном. Этот рубеж соответствует границе между земной корой и мантией и называется поверхностью Мохоровичича. Положение нижней границы верхней мантии менее определенно. Продольные волны, проникая в мантию, распространяются с ускорением до тех пор, пока не достигнут астеносферы, где их движение замедляется. Нижняя мантия, в которой скорость этих волн вновь увеличивается, более жесткая, чем астеносфера, но несколько более упругая, чем верхняя мантия.
Ядро Земли делится на внешнее и внутреннее. Первое из них начинается примерно на глубине 2900 км и имеет мощность ок. 2100 км. Граница нижней мантии и внешнего ядра известна как слой Гутенберга. В его пределах продольные волны замедляются, а поперечные вообще не распространяются. Это свидетельствует о том, что внешнее ядро ведет себя как жидкость, поскольку поперечные волны не способны распространяться в жидкой среде. Полагают, что внешнее ядро состоит из расплавленного железа, имеющего плотность от 8 до 10 г/см 3 . Внутреннее ядро радиусом ок. 1350 км рассматривается как твердое тело, т.к. скорость распространения в нем сейсмических волн вновь резко возрастает. Внутреннее ядро, по-видимому, состоит почти полностью из элементов, имеющих очень высокую плотность, – железа и никеля. См. также геология .
Гидросфера представляет собой совокупность всех природных вод на земной поверхности и вблизи нее. Ее масса – менее 0,03% массы всей Земли. Почти 98% гидросферы составляют соленые воды океанов и морей, покрывающих ок. 71% земной поверхности. Около 4% приходится на материковые льды, озерные, речные и подземные воды, немного воды содержится в минералах и в живой природе.
Четыре океана (Тихий – самый большой и глубокий, занимающий почти половину земной поверхности, Атлантический, Индийский и Северный Ледовитый) вместе с морями образуют единую акваторию – Мировой океан. Однако океаны неравномерно распределены на Земле и сильно различаются по глубине. Местами океаны разделены только узкой полосой суши (например, Атлантический и Тихий – Панамским перешейком) или мелководными проливами (например, Беринговым – Северный Ледовитый и Тихий океаны). Подводным продолжением материков являются довольно мелководные континентальные шельфы, занимающие большие площади у берегов Северной Америки, восточной Азии и северной Австралии и полого спускающиеся по направлению к открытому океану. Край шельфа (бровка) обычно резко обрывается при переходе к континентальному склону, первоначально круто падающему, а затем постепенно выполаживающемуся в зоне континентального подножья, которое сменяется глубоководным ложем со средними глубинами 3700–5500 м. Континентальный склон обычно изрезан глубокими подводными каньонами, часто являющимися морским продолжением крупных речных долин. Речные осадки выносятся через эти каньоны и образуют подводные конусы выноса на континентальном подножии. Глубоководных абиссальных равнин достигают только тончайшие глинистые частицы. Ложе океана имеет неровную поверхность и представляет собой сочетание подводных плато и горных хребтов, местами увенчанных вулканическими горами (плосковершинные подводные горы называются гайотами). В тропических морях подводные горы завершаются кольцеобразными коралловыми рифами, образующими атоллы. По периферии Тихого океана и вдоль молодых островных дуг Атлантического и Индийского океанов имеются желоба глубиной более 11 км.
Морская вода представляет собой раствор, содержащий в среднем 3,5% минеральных веществ (ее соленость обычно выражается в промилле, ‰). Основным компонентом морской воды является хлористый натрий, присутствуют также хлорид и сульфат магния, сульфат кальция, бромид натрия и др. Некоторые внутренние моря благодаря поступлению огромного количества пресной воды имеют менее высокую соленость (например, максимальная соленость Балтийского моря 11‰), тогда как другие внутренние моря и озера отличаются очень высокой соленостью (Мертвое море – 260–310‰, Большое Соленое озеро – 137–300‰).
Атмосфера воздушная оболочка Земли, состоящая из пяти концентрических слоев – тропосферы, стратосферы, мезосферы, термосферы и экзосферы. Реальная верхняя граница атмосферы отсутствует. Внешний слой, начинающийся примерно на высоте 700 км, постепенно разреживается и переходит в межпланетное пространство. Кроме того, существует еще магнитосфера, пронизывающая все слои атмосферы и простирающаяся далеко за ее пределы.
Атмосфера состоит из смеси газов: азота (78,08% ее объема), кислорода (20,95%), аргона (0,9%), диоксида углерода (0,03%) и редких газов – неона, гелия, криптона и ксенона (в сумме 0,01%). Почти всюду близ земной поверхности присутствует водяной пар. В атмосфере городов и промышленных районов обнаруживаются повышенные концентрации сернистого ангидрида, углекислого и угарного газов, метана, фтористого углерода и других газов антропогенного происхождения. См. также загрязнение воздуха .
Тропосфера – слой атмосферы, в котором формируется погода. В умеренных широтах она простирается примерно до высоты 10 км. Ее верхний предел, известный как тропопауза, на экваторе выше, чем на полюсах. Имеются также сезонные изменения – летом тропопауза располагается несколько выше, чем зимой. В пределах тропопаузы происходит циркуляция огромных масс воздуха. Средняя температура воздуха в приземном слое атмосферы ок. 15° C. С высотой температура понижается примерно на 0,6° на каждые 100 м высоты. Холодный воздух верхних слоев атмосферы опускается, а теплый – поднимается. Но под влиянием вращения Земли вокруг своей оси и локальных особенностей распределения тепла и влаги эта принципиальная схема циркуляции атмосферы претерпевает изменения. Больше всего солнечной тепловой энергии поступает в атмосферу в тропиках и субтропиках, откуда в результате конвекции теплые воздушные массы переносятся в высокие широты, где теряют тепло. См также МЕТЕОРОЛОГИЯ И КЛИМАТОЛОГИЯ.
Стратосфера расположена в диапазоне от 10 до 50 км над уровнем моря. Для нее характерны довольно постоянные ветры и температуры (в среднем ок. –50° С) и редкие перламутровые облака, образованные кристаллами льда. Однако в верхних слоях стратосферы температура повышается. Сильные турбулентные потоки воздуха, известные под названием струйных течений, циркулируют вокруг Земли в приполярных широтах и в экваториальном поясе. В зависимости от направления движения реактивных самолетов, летающих в нижних слоях стратосферы, струйные течения могут представлять опасность или благоприятствовать полетам. В стратосфере солнечная ультрафиолетовая радиация и заряженные частицы (главным образом, протоны и электроны) взаимодействуют с кислородом, продуцируя озон, ионы кислорода и азота. Наиболее высокие концентрации озона обнаружены в нижней стратосфере.
Мезосфера – слой атмосферы, расположенный в интервале высот от 50 до 80 км. В ее пределах температура постепенно понижается примерно от 0° C у нижней границы до –90° С (иногда до –110° С) у верхней границы – мезопаузы. Со средними слоями мезосферы сопряжена нижняя граница ионосферы, где электромагнитные волны отражаются ионизированными частицами.
Область между 10 и 150 км иногда называется хемосферой, поскольку именно здесь, главным образом в мезосфере, происходят фотохимические реакции.
Термосфера – высокие слои атмосферы примерно от 80 до 700 км, в которых повышается температура. Поскольку атмосфера здесь разрежена, тепловая энергия молекул – главным образом кислорода – низкая, а температуры зависят от времени суток, солнечной активности и некоторых других факторов. В ночное время температуры меняются примерно от 320° C в периоды минимальной солнечной активности до 2200° C во время пиков солнечной активности.
Экзосфера – самый верхний слой атмосферы, начинающийся на высотах ок. 700 км, где атомы и молекулы находятся настолько далеко одни от других, что сталкиваются весьма редко. Это т.н. критический уровень, на котором атмосфера перестает вести себя как обычный газ, а атомы и молекулы перемещаются в гравитационном поле Земли как спутники. В этом слое главными компонентами атмосферы являются водород и гелий – легкие элементы, которые в конечном счете улетучиваются в космическое пространство.
Способность Земли удерживать атмосферу зависит от силы земного притяжения и скорости движения молекул воздуха. Любой объект, который удаляется от Земли со скоростью менее 8 км/с, возвращается на нее под действием силы притяжения. При скорости 8–11 км/с объект выводится на околоземную орбиту, а свыше 11 км/с – преодолевает земную гравитацию.
Многие частицы верхних слоев атмосферы, обладающие высокой энергией, могли бы быстро улетучиться в космическое пространство, если бы не улавливались магнитным полем Земли (магнитосферой), которое защищает все живые организмы (в т.ч. и человека) от пагубного влияния малоинтенсивного космического излучения. См. также атмосфера ;межзвездное вещество ; космоса исследование и использование .
ГЕОДИНАМИКА
Движения земной коры и эволюция материков. Основные изменения лика Земли заключаются в горообразовании и изменении площади и очертаний материков, которые в ходе формирования поднимаются и опускаются. Например, плато Колорадо площадью 647,5 тыс. км 2 , некогда располагавшееся на уровне моря, в настоящее время имеет средние абсолютные высоты ок. 2000 м, а Тибетское нагорье площадью ок. 2 млн. км 2 поднялось примерно на 5 км. Такие массивы суши могли воздыматься со скоростью ок. 1 мм/год. После того, как заканчивается горообразование, начинают действовать разрушительные процессы, главным образом водная и в меньшей степени ветровая эрозия. Реки непрерывно размывают горные породы и отлагают наносы ниже по течению. Например, р.Миссисипи ежегодно выносит в Мексиканский залив ок. 750 млн. т растворенных и твердых осадков.
Континентальная земная кора сложена относительно легким материалом, поэтому материки, подобно айсбергам, плавают в плотной пластичной мантии Земли. При этом нижняя, бóльшая часть массы материков расположена ниже уровня моря. Наиболее глубоко погружена в мантию земная кора в области горных сооружений, образуя т.н. «корни» гор. Когда горы разрушаются и удаляются продукты выветривания, эти потери компенсируются новым «ростом» гор. С другой стороны, перегрузка речных дельт поступающим обломочным материалом является причиной их постоянного погружения. Такое поддержание равновесного состояния погруженной ниже уровня моря и расположенной выше него частей материков носит название изостазии.
Землетрясения и вулканическая деятельность. В результате движений крупных блоков земной поверхности в земной коре образуются разломы и происходит складкообразование. Гигантская мировая система разломов и сбросов, известная как срединно-океанический рифт, опоясывает Землю на протяжении более 65 тыс. км. Для этого рифта характерны движения вдоль разломов, землетрясения и сильный поток внутренней тепловой энергии, что свидетельствует о том, что магма расположена близ поверхности Земли. К этой системе принадлежит и разлом Сан-Андреас в южной Калифорнии, в пределах которого во время землетрясений отдельные блоки земной поверхности смещаются на величину до 3 м по вертикали. Тихоокеанское «огненное кольцо» и Альпийско-Гималайский горный пояс – основные районы вулканической активности, связанные со срединно-океаническим рифтом. К первому из этих районов приурочены почти 2 / 3 из известных примерно 500 вулканов. Здесь же происходит ок. 80% всех землетрясений на Земле. Иногда у нас на глазах возникают новые вулканы, как, например, вулкан Парикутин в Мексике (1943) или Суртсей у южных берегов Исландии (1965).
Земные приливы. Совершенно иную природу имеют периодические деформации Земли со средней амплитудой 10–20 см, известные как земные приливы, частично обусловленные притяжением Земли Солнцем и Луной. Кроме того, точки небосвода, в которых орбита Луны пересекает плоскость земной орбиты, совершают оборот вокруг Земли с периодом 18,6 лет. Этот цикл оказывает влияние на состояние «твердой» Земли, атмосферы и океана. Способствуя увеличению высоты приливов на континентальных шельфах, он может стимулировать сильные землетрясения и вулканические извержения. В умеренных широтах это может привести к повышению скорости некоторых океанических течений, например Гольфстрима и Куросио. Тогда их теплые воды станут более существенно влиять на климат. См. также океанические течения ; океан ; ЛУНА ; приливы и отливы .
Дрейф материков. Хотя большинство геологов и полагало, что на суше и на дне океанов происходит образование разломов и формирование складчатости, считалось, что положение материков и океанических впадин строго фиксировано. В 1912 немецкий геофизик А.Вегенер предположил, что древние массивы суши раскалывались на части и дрейфовали, словно айсберги, по более пластичной океанической коре. Тогда эта гипотеза не нашла поддержки среди большинства геологов. Однако в результате исследований глубоководных бассейнов в 1950–1970-х годах были получены неопровержимые доказательства в пользу гипотезы Вегенера. В настоящее время теория тектоники плит составляет основу представлений об эволюции Земли.
Спрединг океанического дна. Глубоководные магнитные съемки океанического дна показали, что древние вулканические породы перекрыты тонким плащом речных наносов. Эти вулканические породы, главным образом базальты, по мере остывания в процессе эволюции Земли сохраняли информацию о геомагнитном поле. Поскольку, как было сказано выше, время от времени полярность геомагнитного поля меняется, базальты, образовавшиеся в разные эпохи, имеют намагниченность противоположного знака. Океаническое дно делится на полосы, выполненные породами, различающимися знаком намагниченности. Параллельные полосы, расположенные по обе стороны от срединно-океанических хребтов, симметричны по ширине и направлению напряженности магнитного поля. Ближе всего к гребню хребта располагаются самые молодые формации, поскольку представляют свежеизверженную базальтовую лаву. Ученые считают, что горячие расплавленные породы поднимаются по трещинам вверх и растекаются по обе стороны от оси хребта (этот процесс можно сравнить с двумя конвейерными лентами, движущимися в противоположных направлениях), причем на поверхности хребтов чередуются полосы, имеющие противоположную намагниченность. Возраст любой такой полосы морского дна может быть определен с большой точностью. Эти данные рассматриваются как надежные свидетельства в пользу спрединга (расширения) океанического дна.
Тектоника плит. Если дно океана расширяется в шовной зоне срединно-океанического хребта, это означает, что либо поверхность Земли увеличивается, либо имеются районы, где океаническая кора исчезает и погружается в астеносферу. Такие районы, называемые зонами субдукции, действительно были обнаружены в поясе, окаймляющем Тихий океан, и в прерывистой полосе, протягивающейся от Юго-Восточной Азии до Средиземноморья. Все эти зоны приурочены к глубоководным желобам, опоясывающим островные дуги. Большинство геологов полагает, что на поверхности Земли имеется несколько жестких литосферных плит, которые «плавают» по астеносфере. Плиты могут скользить одна относительно другой, или одна может погружаться под другую в зоне субдукции. Единая модель тектоники плит дает наилучшее объяснение распределению крупных геологических структур и зон тектонической активности, а также изменению взаимного расположения материков.
Сейсмические зоны. Срединно-океанические хребты и зоны субдукции представляют собой пояса частых сильных землетрясений и вулканических извержений. Эти районы соединены протяженными линейными разломами, которые прослеживаются по всему земному шару. Землетрясения приурочены к разломам и очень редко происходят в каких-либо других областях. По направлению к материкам эпицентры землетрясений располагаются все глубже. Этот факт дает объяснение механизму субдукции: расширяющаяся океаническая плита ныряет под вулканический пояс под углом ок. 45°. По мере «соскальзывания» океаническая кора плавится, превращаясь в магму, которая через трещины изливается в виде лавы на поверхность.
Горообразование . Там, где древние океанические впадины уничтожаются в процессе субдукции, происходит столкновение материковых плит между собой или с осколками плит. Как только это случается, земная кора сильно сжимается, формируется надвиг, а мощность коры увеличивается почти вдвое. В связи с изостазией смятая в складки зона испытывает подъем и таким образом рождаются горы. Пояс горных сооружений альпийского этапа складчатости прослеживается вдоль побережья Тихого океана и в Альпийско-Гималайской зоне. В этих районах многочисленные столкновения литосферных плит и подъем территории начались ок. 50 млн. лет назад. Более древние горные системы, как, например, Аппалачи, имеют возраст свыше 250 млн. лет, но в настоящее время они настолько разрушены и сглажены, что утратили типичный горный облик и превратились в почти ровную поверхность. Однако, поскольку их «корни» погружены в мантию и плавают, они испытывали неоднократный подъем. И все же со временем такие древние горы превратятся в равнины. Большинство геологических процессов проходят через стадии молодости, зрелости и старости, но обычно такой цикл занимает очень длительное время.
Распределение тепла и влаги. Взаимодействие гидросферы и атмосферы контролирует распределение тепла и влаги на земной поверхности. Соотношение суши и моря в значительной степени определяет характер климата. Когда увеличивается поверхность суши, происходит похолодание. Неравномерное распределение суши и моря в настоящее время является предпосылкой для развития оледенения.
Больше всего тепла поверхность Земли и атмосфера получают от Солнца, которое на протяжении всего времени существования нашей планеты почти с одинаковой интенсивностью излучает тепловую и световую энергию. Атмосфера предохраняет Землю от слишком быстрого возврата этой энергии назад в космос. Около 34% солнечной радиации теряется из-за отражения облаками, 19% поглощается атмосферой и только 47% достигает земной поверхности. Суммарный приток солнечной радиации к верхней границе атмосферы равен отдаче радиации с этой границы в космическое пространство. В результате устанавливается тепловой баланс системы «Земля – атмосфера».
Поверхность суши и воздух приземного слоя быстро нагреваются днем и довольно быстро теряют тепло ночью. Если бы в верхней тропосфере отсутствовали улавливающие тепло слои, амплитуда колебаний суточных температур могла бы быть гораздо больше. Например, Луна получает от Солнца примерно столько же тепла, сколько и Земля, но, поскольку у Луны нет атмосферы, температуры ее поверхности днем повышаются примерно до 101° C, а ночью понижаются до –153° C.
Океаны, температура воды которых меняется гораздо медленнее, чем температура земной поверхности или воздуха, оказывают на климат сильное смягчающее воздействие. Ночью и зимой воздух над океанами остывает значительно медленнее, чем над сушей, а если океанические воздушные массы перемещаются над материками, это приводит к потеплению. И наоборот, днем и летом морской бриз охлаждает сушу.
Распределение влаги на земной поверхности определяется круговоротом воды в природе. Каждую секунду в атмосферу, главным образом с поверхности океанов, испаряется огромное количество воды. Влажный океанический воздух, проносясь над материками, охлаждается. Затем влага конденсируется и возвращается на земную поверхность в форме дождя или снега. Частично она сохраняется в снежном покрове, реках и озерах, а частично возвращается в океан, где снова происходит испарение. Таким образом завершается гидрологический цикл.
Океанические течения являются мощным терморегулирующим механизмом Земли. Благодаря им в тропических океанических районах поддерживается равномерная умеренная температура и теплые воды переносятся в более холодные высокоширотные регионы.
Поскольку вода играет существенную роль в эрозионных процессах, она тем самым влияет на движения земной коры. А любое перераспределение масс, обусловленное такими движениями в условиях вращающейся вокруг своей оси Земли, способно, в свою очередь, внести вклад в изменение положения земной оси. Во время ледниковых эпох уровень моря понижается, так как вода аккумулируется в ледниках. Это, в свою очередь, приводит к разрастанию материков и увеличению климатических контрастов. Сокращение речного стока и понижение уровня Мирового океана препятствуют достижению теплыми океаническими течениями холодных регионов, что ведет к дальнейшим климатическим изменениям.
ДВИЖЕНИЕ ЗЕМЛИ
Земля вращается вокруг своей оси и обращается вокруг Солнца. Эти движения усложняются за счет гравитационного влияния других объектов Солнечной системы, представляющей собой часть нашей Галактики (рис. 6). Галактика вращается вокруг своего центра, следовательно, и Солнечная система вместе с Землей вовлечены в это движение.
Вращение вокруг собственной оси. Земля совершает один оборот вокруг оси за 23 ч 56 мин 4,09 с. Вращение происходит с запада на восток, т.е. против часовой стрелки (если смотреть со стороны Северного полюса). Поэтому кажется, что Солнце и Луна восходят на востоке и заходят на западе. Земля совершает примерно 365 1 / 4 оборота за время одного витка вокруг Солнца, что составляет один год или занимает 365 1 / 4 суток. Поскольку на каждый такой виток, кроме целых суток, дополнительно затрачивается еще четверть суток, каждые четыре года к календарю добавляется один день. Гравитационное притяжение Луны постепенно замедляет вращение Земли и удлиняет сутки примерно на 1/1000 с каждое столетие. По геологическим данным, темпы вращения Земли могли меняться, но не более чем на 5%.
Обращение Земли вокруг Солнца. Земля обращается вокруг Солнца по эллиптической орбите, близкой к круговой, в направлении с запада на восток со скоростью ок. 107 000 км/ч. Среднее расстояние до Солнца 149 598 тыс. км, а разница между наибольшим и наименьшим расстоянием 4,8 млн. км. Эксцентриситет (отклонение от круга) земной орбиты меняется очень незначительно на протяжении цикла продолжительностью 94 тыс. лет. Изменения расстояния до Солнца, как полагают, способствуют формированию сложного климатического цикла, с отдельными этапами которого сопряжено наступание и отступание ледников во время ледниковых периодов. Эта теория, развитая югославским математиком М.Миланковичем, подтверждается геологическими данными.
Ось вращения Земли наклонена к плоскости орбиты под углом 66°33", благодаря чему происходит смена времен года. Когда Солнце находится над Северным тропиком (23°27" с.ш.), в Северном полушарии начинается лето, при этом Земля располагается дальше всего от Солнца. В Южном полушарии лето начинается, когда Солнце поднимается над Южным тропиком (23°27" ю.ш.). В это время в Северном полушарии начинается зима.
Прецессия. Притяжение Солнца, Луны и других планет не изменяет угла наклона земной оси, но приводит к тому, что она перемещается по круговому конусу. Это перемещение называется прецессией. В настоящее время Северный полюс направлен на Полярную звезду. Полный цикл прецессии составляет ок. 25 800 лет и вносит существенный вклад в климатический цикл, о котором писал Миланкович.
Дважды в год, когда Солнце находится непосредственно над экватором, и дважды в месяц, когда аналогичным образом расположена Луна, притяжение, обусловливающее прецессию, уменьшается до нуля и происходит периодическое увеличение и снижение темпов прецессии. Такое колебательное движение земной оси известно как нутация, которая достигает максимума каждые 18,6 лет. Эта периодичность по влиянию на климат занимает второе место после смены времен года.
Система Земля – Луна. Земля и Луна связаны взаимным притяжением. Общий центр тяжести, называемый центром масс, расположен на линии, соединяющей центры Земли и Луны. Поскольку масса Земли почти в 82 раза больше массы Луны, центр масс этой системы расположен на глубине более 1600 км от поверхности Земли. И Земля, и Луна совершают оборот вокруг этой точки за 27,3 суток. Поскольку они обращаются вокруг Солнца, центр масс описывает сглаженный эллипс, хотя каждое из этих тел имеет волнистую траекторию.
Прочие формы движения. В пределах Галактики Земля и остальные объекты Солнечной системы перемещаются со скоростью ок. 19 км/с в направлении звезды Вега. Кроме того, Солнце и другие соседние звезды обращаются вокруг центра Галактики со скоростью ок. 220 км/с. В свою очередь, наша Галактика входит в состав небольшой локальной группы галактик, которая, в свою очередь, является частью гигантского скопления галактик.
ЛИТЕРАТУРА
Магницкий В.А. Внутреннее строение и физика Земли . М., 1965
Вернадский В.И.

ВОДОРОД
Н (лат. hydrogenium) ,
самый легкий газообразный химический элемент - член IA подгруппы периодической системы элементов, иногда его относят к VIIA подгруппе. В земной атмосфере водород в несвязанном состоянии существует только доли минуты, его количество составляет 1-2 части на 1 500 000 частей воздуха. Он выделяется обычно с другими газами при извержениях вулканов, из нефтяных скважин и в местах разложения больших количеств органических веществ. Водород соединяется с углеродом и(или) кислородом в органическом веществе типа углеводов, углеводородов, жиров и животных белков. В гидросфере водород входит в состав воды - наиболее распространенного соединения на Земле. В породах, грунтах, почвах и других частях земной коры водород соединяется с кислородом, образуя воду и гидроксид-ион OH-. Водород составляет 16% всех атомов земной коры, но по массе лишь около 1%, так как он в 16 раз легче кислорода. Масса Солнца и звезд на 70% состоит из водородной плазмы: в космосе это самый распространенный элемент. Концентрация водорода в атмосфере Земли возрастает с высотой благодаря его низкой плотности и способности подниматься на большие высоты. Обнаруженные на поверхности Земли метеориты содержат 6-10 атомов водорода на 100 атомов кремния.
Историческая справка. Еще немецкий врач и естествоиспытатель Парацельс в 16 в. установил горючесть водорода. В 1700 Н.Лемери обнаружил, что газ, выделяющийся при действии серной кислоты на железо, взрывается на воздухе. Водород как элемент идентифицировал Г.Кавендиш в 1766 и назвал его "горючим воздухом", а в 1781 он доказал, что вода - это продукт его взаимодействия с кислородом. Латинское hydrogenium, которое происходит от греческого сочетания "рождающий воду", было присвоено этому элементу А.Лавуазье.
Общая характеристика водорода. Водород - это первый элемент в периодической системе элементов; его атом состоит из одного протона и вращающегося вокруг него одного электрона
(см. также ПЕРИОДИЧЕСКАЯ СИСТЕМА ЭЛЕМЕНТОВ).
Один из 5000 атомов водорода отличается наличием в ядре одного нейтрона, увеличивающего массу ядра с 1 до 2. Этот изотоп водорода называют дейтерием 21H или 21D. Другой, более редкий изотоп водорода содержит два нейтрона в ядре и называется тритием 31H или 31T. Тритий радиоактивен и распадается с выделением гелия и электронов. Ядра различных изотопов водорода различаются спинами протонов. Водород может быть получен а) действием активного металла на воду, б) действием кислот на определенные металлы, в) действием оснований на кремний и некоторые амфотерные металлы, г) действием перегретого пара на уголь и метан, а также на железо, д) электролитическим разложением воды и термическим разложением углеводородов. Химическая активность водорода определяется его способностью отдавать электрон другому атому или обобществлять его почти поровну с другим элементами при образовании химической связи либо присоединять электрон другого элемента в химическом соединении, называемом гидридом. Водород, производимый промышленностью, в огромных количествах расходуют на синтез аммиака, азотной кислоты, гидридов металлов. Пищевая промышленность применяет водород для гидрирования (гидрогенизации) жидких растительных масел в твердые жиры (например, маргарин). При гидрировании насыщенные органические масла, содержащие двойные связи между углеродными атомами, превращаются в насыщенные, имеющие одинарные углерод-углеродные связи. Высокочистый (99,9998%) жидкий водород используется в космических ракетах в качестве высокоэффективного горючего.
Физические свойства. Для сжижения и затвердевания водорода требуются очень низкие температуры и высокое давление (см. таблицу свойств). В нормальных условиях водород - бесцветный газ, без запаха и вкуса, очень легкий: 1 л водорода при 0° C и атмосферном давлении имеет массу 0,08987 г (ср. плотность воздуха и гелия 1,2929 и 0,1785 г/л соответственно; поэтому воздушный шар, наполненный гелием и имеющий такую же подъемную силу, как и воздушный шар с водородом, должен иметь на 8% больший объем). В таблице приведены некоторые физические и термодинамические свойства водорода. СВОЙСТВА ОБЫЧНОГО ВОДОРОДА
(при 273,16 К, или 0° С)
Атомный номер 1 Атомная масса 11Н 1,00797 Плотность, г/л

при нормальном давлении 0,08987 при 2,5*10 5 атм 0,66 при 2,7*10 18 атм 1,12*10 7


Ковалентный радиус, 0,74 Температура плавления, ° С -259,14 Температура кипения, ° С -252,5 Критическая температура, ° С -239,92 (33,24 K) Критическое давление, атм 12,8 (12,80 K) Теплоемкость, Дж/(мольЧK) 28,8 (H2) Растворимость

в воде, объем/100 объемов H2O (при стандартных условиях) 2,148 в бензоле, мл/г (35,2° С, 150,2 атм) 11,77 в аммиаке, мл/г (25° С) при 50 атм 4,47 при 1000 атм 79,25


Степени окисления -1, +1
Строение атома. Обычный водородный атом (протий) состоит из двух фундаментальных частиц (протона и электрона) и имеет атомную массу 1. Из-за огромной скорости движения электрона (2,25 км/с или 7*1015 об./с) и его дуалистической корпускулярно-волновой природы невозможно точно установить координату (положение) электрона в любой данный момент времени, но имеются некоторые области высокой вероятности нахождения электрона, и они определяют размеры атома. Большинство химических и физических свойств водорода, особенно относящихся к возбуждению (поглощению энергии), точно предсказываются математически (см. СПЕКТРОСКОПИЯ). Водород сходен со щелочными металлами в том, что все эти элементы способны отдавать электрон атому-акцептору для образования химической связи, которая может изменяться от частично ионной (переход электрона) до ковалентной (общая электронная пара). С сильным акцептором электронов водород образует положительный ион Н+, т.е. протон. На электронной орбите атома водорода могут находиться 2 электрона, поэтому водород способен также принимать электрон, образуя отрицательный ион Н-, гидрид-ион, и это роднит водород с галогенами, для которых характерно принятие электрона с образованием отрицательного галогенид-иона типа Cl-. Дуализм водорода находит отражение в том, что в периодической таблице элементов его располагают в IA подгруппе (щелочные металлы), а иногда - в VIIA подгруппе (галогены) (см. также ХИМИЯ).
Химические свойства. Химические свойства водорода определяются его единственным электроном. Количество энергии, необходимое для отрыва этого электрона, больше, чем может предоставить любой известный химический окислитель. Поэтому химическая связь водорода с другими атомами ближе к ковалентной, чем к ионной. Чисто ковалентная связь возникает при образовании молекулы водорода: H + H H2
При образовании одного моля (т.е. 2 г) H2 выделяется 434 кДж. Даже при 3000 K степень диссоциации водорода очень невелика и равна 9,03%, при 5000 K достигает 94% и лишь при 10000 K диссоциация становится полной. При образовании двух молей (36 г) воды из атомарного водорода и кислорода (4H + O2 -> 2H2O) выделяется более 1250 кДж и температура достигает 3000-4000° C, тогда как при сгорании молекулярного водорода (2H2 + O2 -> 2H2O) выделяется всего 285,8 кДж и температура пламени достигает лишь 2500° C. При комнатной температуре водород менее реакционноспособен. Для инициирования большинства реакций необходимо разорвать или ослабить прочную связь H-H, израсходовав много энергии. Скорость реакций водорода возрастает с использованием катализатора (металлы платиновой группы, оксиды переходных или тяжелых металлов) и методов возбуждения молекулы (свет, электрический разряд, электрическая дуга, высокие температуры). В таких условиях водород реагирует практически с любым элементом, кроме благородных газов. Активные щелочные и щелочноземельные элементы (например, литий и кальций) реагируют с водородом, являясь донорами электронов и образуя соединения, называемые солевыми гидридами (2Li + H2 -> 2LiH; Ca + H2 -> CaH2).
Вообще гидридами называются соединения, содержащие водород. Широкое разнообразие свойств таких соединений (в зависимости от атома, связанного с водородом) объясняется возможностями водорода проявлять заряд от -1 до практически +1. Это отчетливо проявляется в сходстве LiH и CaH2 и солей типа NaCl и CaCl2. Считается, что в гидридах водород заряжен отрицательно (Н-); такой ион является восстановителем в кислой водной среде: 2H- H2 + 2e- + 2,25B. Ион H- способен восстанавливать протон воды H+ до газообразного водорода: H- + H2O (r) H2 + OH-.
Соединения водорода с бором - бороводороды (борогидриды) - представляют необычный класс веществ, называемых боранами. Простейшим представителем их является BH3, существующий только в устойчивой форме диборана B2H6. Соединения с большим количеством атомов бора получают разными способами. Известны, например, тетраборан B4H10, стабильный пентаборан B5H9 и нестабильный пентаборан B5H11, гексаборан B6H10, декаборан B10H14. Диборан может быть получен из H2 и BCl3 через промежуточное соединение B2H5Cl, которое при 0° C диспропорционирует до B2H6, а также взаимодействием LiH или литийалюминийгидрида LiAlH4 c BCl3. В литийалюминийгидриде (комплексном соединении - солевом гидриде) четыре атома водорода образуют ковалентные связи с Al, но имеется ионная связь Li+ с []-. Другим примером водородсодержащего иона является борогидрид-ион BH4-. Ниже приведена приблизительная классификация гидридов по их свойствам в соответствии с положением элементов в периодической системе элементов. Гидриды переходных металлов называются металлическими или промежуточными и часто не образуют стехиометрических соединений, т.е. отношение атомов водорода к металлу не выражается целым числом, например, гидрид ванадия VH0,6 и гидрид тория ThH3,1. Металлы платиновой группы (Ru, Rh, Pd, Os, Ir и Pt) активно поглощают водород и служат эффективными катализаторами реакций гидрирования (например, гидрогенизации жидких масел с образованием жиров, конверсии азота в аммиак, синтеза метанола CH3OH из CO). Гидриды Be, Mg, Al и подгрупп Cu, Zn, Ga - полярные, термически нестабильные.

Неметаллы образуют летучие гидриды общей формулы MHx (х - целое число) с относительно низкой температурой кипения и высоким давлением паров. Эти гидриды существенно отличаются от солевых гидридов, в которых водород имеет более отрицательный заряд. У летучих гидридов (например, углеводородов) преобладает ковалентная связь между неметаллами и водородом. По мере усиления неметаллического характера образуются соединения с частично ионной связью, например H+Cl-, (H2)2+O2-, N3-(H3)3+. Отдельные примеры образования различных гидридов приведены ниже (в скобках указана теплота образования гидрида):


Изомерия и изотопы водорода. Атомы изотопов водорода непохожи. Обычный водород, протий, всегда представляет собой протон, вокруг которого вращается один электрон, находящийся от протона на огромном расстоянии (относительно размеров протона). Обе частицы обладают спином, поэтому атомы водорода могут различаться либо спином электрона, либо спином протона, либо и тем, и другим. Водородные атомы, различающиеся спином протона или электрона, называются изомерами. Комбинация двух атомов с параллельными спинами приводит к образованию молекулы "ортоводорода", а с противоположными спинами протонов - к молекуле "параводорода". Химически обе молекулы идентичны. Ортоводород имеет очень слабый магнитный момент. При комнатной или повышенной температуре оба изомера, ортоводород и параводород, находятся обычно в равновесии в соотношении 3:1. При охлаждении до 20 K (-253° C) содержание параводорода возрастает до 99%, так как он более стабилен. При сжижении методами промышленной очистки ортоформа переходит в параформу с выделением теплоты, что служит причиной потерь водорода от испарения. Скорость конверсии ортоформы в параформу возрастает в присутствии катализатора, например древесного угля, оксида никеля, оксида хрома, нанесенного на глинозем. Протий - необычный элемент, так как в ядре его нет нейтронов. Если в ядре появляется нейтрон, то такой водород называется дейтерий 21D. Элементы с одинаковым количеством протонов и электронов и разным количеством нейтронов называются изотопами. Природный водород содержит небольшую долю HD и D2. Аналогично, природная вода содержит в малой концентрации (менее 0,1%) DOH и D2O. Тяжелая вода D2O, имеющая массу больше, чем у H2O, отличается по физическим и химическим свойствам, например, плотность обычной воды 0,9982 г/мл (20° С), а тяжелой - 1,105 г/мл, температура плавления обычной воды 0,0° С, а тяжелой - 3,82° С, температура кипения - соответственно 100° С и 101,42° С. Реакции с участием D2O протекают с меньшей скоростью (например, электролиз природной воды, содержащей примесь D2O, с добавкой щелочи NaOH). Скорость электролитического разложения оксида протия H2O больше, чем D2O (с учетом постоянного роста доли D2O, подвергающейся электролизу). Благодаря близости свойств протия и дейтерия можно замещать протий на дейтерий. Такие соединения относятся к так называемым меткам. Смешивая соединения дейтерия с обычным водородсодержащим веществом, можно изучать пути, природу и механизм многих реакций. Таким методом пользуются для изучения биологических и биохимических реакций, например процессов пищеварения. Третий изотоп водорода, тритий (31T), присутствует в природе в следовых количествах. В отличие от стабильного дейтерия тритий радиоактивен и имеет период полураспада 12,26 лет. Тритий распадается до гелия (32He) с выделением b-частицы (электрона). Тритий и тритиды металлов используют для получения ядерной энергии; например, в водородной бомбе происходит следующая реакция термоядерного синтеза: 21H + 31H -> 42He + 10n + 17,6 МэВ
Получение водорода. Зачастую дальнейшее применение водорода определяется характером самого производства. В некоторых случаях, например при синтезе аммиака, небольшие количества азота в исходном водороде, конечно, не являются вредной примесью. Примесь оксида углерода(II) также не будет помехой, если водород используют как восстановитель. 1. Самое крупное производство водорода основано на каталитической конверсии углеводородов с водяным паром по схеме CnH2n + 2 + nH2O (r) nCO + (2n + 1)H2 и CnH2n + 2 + 2nH2O (r) nCO2 + (3n + 1)H2. Температура процесса зависит от состава катализатора. Известно, что температуру реакции с пропаном можно снизить до 370° С, используя в качестве катализатора боксит. До 95% производимого при этом CO расходуется при дальнейшей реакции с парами воды: H2O + CO -> CO2 + H2
2. Метод водяного газа дает значительную часть общего производства водорода. Сущность метода заключается в реакции паров воды с коксом с образованием смеси CO и H2. Реакция эндотермична (DH° = 121,8 кДж/моль), и ее проводят при 1000° С. Нагретый кокс обрабатывают паром; выделяющаяся очищенная газовая смесь содержит некоторое количество водорода, большой процент CO и небольшую примесь CO2. Для повышения выхода H2 монооксид CO удаляют дальнейшей паровой обработкой при 370° C, при этом получается больше CO2. Углекислый газ довольно легко удалить, пропуская газовую смесь через скруббер, орошаемый водой противотоком. 3. Электролиз. В электролитическом процессе водород является фактически побочным продуктом производства главных продуктов - хлора и щелочи (NaOH). Электролиз проводят в слабощелочной водной среде при 80° C и напряжении около 2В, используя железный катод и никелевый анод:

4. Железо-паровой метод, по которому пар при 500-1000° C пропускают над железом: 3Fe + 4H2O Fe3O4 + 4H2 + 160,67 кДж. Получаемый этим методом водород обычно используют для гидрогенизации жиров и масел. Состав оксида железа зависит от температуры процесса; при nC + (n + 1)H2
6. Следующим по объему производства является метанол-паровой метод: CH3OH + H2O -> 3H2 + CO2. Реакция эндотермична и ее проводят при ВОДОРОД260° C в обычных стальных реакторах при давлении до 20 атм. 7. Каталитическое разложение аммиака: 2NH3 -> Реакция обратима. При небольших потребностях в водороде этот процесс неэкономичен. Существуют также разнообразные способы получения водорода, которые, хотя и не имеют большого промышленного значения, в некоторых случаях могут оказаться экономически наиболее выгодными. Очень чистый водород получается при гидролизе очищенных гидридов щелочных металлов; при этом из малого количества гидрида образуется много водорода: LiH + H2O -> LiOH + H2
(Этот метод удобен при непосредственном применении получаемого водорода.) При взаимодействии кислот с активными металлами также выделяется водород, однако при этом он обычно загрязнен парами кислоты или другим газообразным продуктом, например фосфином PH3, сероводородом H2S, арсином AsH3. Наиболее активные металлы, реагируя с водой, вытесняют водород и образуют щелочной раствор: 2H2O + 2Na -> H2 + 2NaOH Распространен лабораторный метод получения H2 в аппарате Киппа по реакции цинка с соляной или серной кислотой:
Zn + 2HCl -> ZnCl2 + H2. Гидриды щелочноземельных металлов (например, CaH2), комплексные солевые гидриды (например, LiAlH4 или NaBH4) и некоторые бороводороды (например, B2H6) при реакции с водой или в процессе термической диссоциации выделяют водород. Бурый уголь и пар при высокой температуре также взаимодействуют с выделением водорода.
Очистка водорода. Степень требуемой чистоты водорода определяется его областью применения. Примесь углекислого газа удаляют вымораживанием или сжижением (например, пропуская газообразную смесь через жидкий азот). Эту же примесь можно полностью удалить барботированием через воду. CO может быть удален каталитическим превращением в CH4 или CO2 или сжижением при обработке жидким азотом. Примесь кислорода, образующаяся в процессе электролиза, удаляется в виде воды после искрового разряда.
Применение водорода. Водород применяется главным образом в химической промышленности для производства хлороводорода, аммиака, метанола и других органических соединений. Он используется при гидрогенизации масел, а также угля и нефти (для превращения низкосортных видов топлив в высококачественные). В металлургии с помощью водорода восстанавливают некоторые цветные металлы из их оксидов. Водород используют для охлаждения мощных электрогенераторов. Изотопы водорода находят применение в атомной энергетике. Водородно-кислородное пламя применяется для резки и сварки металлов.
ЛИТЕРАТУРА
Некрасов Б.В. Основы общей химии. М., 1973 Жидкий водород. М., 1980 Водород в металлах. М., 1981

Энциклопедия Кольера. - Открытое общество . 2000 .

Синонимы :

Смотреть что такое "ВОДОРОД" в других словарях:

    Таблица нуклидов Общие сведения Название, символ Водород 4, 4H Нейтронов 3 Протонов 1 Свойства нуклида Атомная масса 4,027810(110) … Википедия

    Таблица нуклидов Общие сведения Название, символ Водород 5, 5H Нейтронов 4 Протонов 1 Свойства нуклида Атомная масса 5,035310(110) … Википедия

    Таблица нуклидов Общие сведения Название, символ Водород 6, 6H Нейтронов 5 Протонов 1 Свойства нуклида Атомная масса 6,044940(280) … Википедия

    Таблица нуклидов Общие сведения Название, символ Водород 7, 7H Нейтронов 6 Протонов 1 Свойства нуклида Атомная масса 7,052750(1080) … Википедия

МИНСКИЙ КОЛЛЕДЖ ТЕХНОЛОГИИ И ДИЗАЙНА ЛЕГКОЙ ПРОМЫШЛЕННОСТИ

Реферат

по дисциплине: Химия

Тема: «Водород и его соединения»

Подготовила: учащаяся Iкурса343 группы

Вискуп Елена

Проверил: Алябьева Н.В.

Минск 2009

Строение атома водорода в периодической системе

Степени окисления

Распространенность в природе

Водород как простое вещество

Соединения водорода

Список литературы


Строение атома водорода в периодической системе

Первый элемент периодической системы (1-й период, порядковый номер 1). Не имеет полной аналогии с остальными химическими элементами и не принадлежит ни к какой группе, поэтому в таблицах условно помещается в IА группу и/или VIIA-группу.

Атом водорода наименьший по размерам и самый легкий среди атомов всех элементов. Электронная формула атома 1s 1 . Обычная форма существования элемента в свободном состоянии - двухатомная молекула.

Степени окисления

Атом водорода в соединениях с более электроотрицательными элементами проявляет степень окисления +1, например HF, H 2 O и др. А в соединениях с металлами-гидридах - степень окисления атома водорода равна -1, например NaH, CaH 2 и др. Обладает значением электроотрицательности средним между типичными металлами и неметаллами. Способен каталитически восстанавливать в органических растворителях, таких как уксусная кислота или спирт, многие органические соединения: ненасыщенные соединения до насыщенных, некоторые соединения натрия-до аммиака или аминов.

Распространенность в природе

Природный водород состоит из двух стабильных изотопов - протия 1 Н, дейтерия 2 Н и трития 3 Н. По-другому дейтерий обозначают как D, а тритий как Т. Возможны различные комбинации, например НТ, HD, TD, H 2 , D 2 , T 2 . Водород больше распространен в природе в виде различных соединений с серой (H 2 S), кислородом (в виде воды), углеродом, азотом и хлором. Реже в виде соединений с фосфором, йодом, бромом и другими элементами. Входит в состав всех растительных и животных организмов, нефти, ископаемых углей, природного газа, ряда минералов и пород. В свободном состоянии встречается очень редко в небольших количествах – в вулканических газах и продуктах разложения органических остатков. Водород является самым распространенным элементом во Вселенной (около 75%). Он входит в состав Солнца и большинства звезд, а также планет Юпитера и Сатурна, которые в основном состоят из водорода. На отдельных планетах водород может существовать в твердом виде.

Водород как простое вещество

Молекула водорода состоит из двух атомов, связанных между собой ковалентной неполярной связью. Физические свойства - газ без цвета и запаха. Быстрее других газов распространяется в пространстве, проходит через мелкие поры, при высоких температурах сравнительно легко проникает сквозь сталь и другие материалы. Обладает высокой теплопроводностью.

Химические свойства . В обычном состоянии при низких температурах малоактивен, без нагревания реагирует с фтором и хлором (при наличии света).

H 2 + F 2 2HF H 2 +Cl 2 hv 2HCl

С неметаллами взаимодействует активнее, чем с металлами.

При взаимодействии с различными веществами может проявлять как окислительные, так и восстановительные свойства.


Соединения водорода

Одним из соединений водорода являются галогены. Они образуются при соединении водорода с элементами VIIA группы. HF, HCl, HBr и HIпредставляют собой бесцветные газы, хорошо растворимые в воде.

Cl 2 + H 2 OHClO + HCl; HClO-хлорная вода

Так как HBr и HI типичные восстановители, то их нельзя получить по обменной реакции как HCl.

CaF 2 + H 2 SO 4 = CaSO 4 + 2HF

Вода - самое распространенное в природе соединение водорода.

2Н 2 + О 2 = 2Н 2 О

Не имеет ни цвета, ни вкуса, ни запаха. Очень слабый электролит, но активно реагирует со многими металлами и неметаллами, основными и кислотными оксидами.

2Н 2 О+2Na = 2NaOH + H 2

Н 2 О + BaO = Ba(OH) 2

3Н 2 О + P 2 O 5 = 2H 3 PO 4

Тяжелая вода (D 2 O) – изотопная разновидность воды. Растворимость веществ в тяжелой воде значительно меньше чем в обычной. Тяжелая вода ядовита, так как замедляет биологические процессы в живых организмах. Накапливается в остатке электролиза при многоразовом электролизе воды. Используется как теплоноситель и замедлитель нейтронов в ядерных реакторах.

Гидриды – взаимодействие водорода с металлами (при высокой температуре)или менее электроотрицательными чем водород неметаллами.

Si + 2H 2 =SiH 4

Сам же водород был открыт в первой половине 16в. Парацельсом. В 1776 Г. Кавендиш впервые исследовал его свойства, в 1783-1787 А. Лавуазье показал, что водород входит в состав воды, включил его в список химических элементов и предложил название «гидроген».


Список литературы

1. М.Б. Волович, О.Ф. Кабардин, Р.А. Лидин, Л.Ю. Аликберова, В.С. Рохлов, В.Б. Пятунин, Ю.А. Симагин, С.В Симонович/Справочник школьника/Москва «АСТ-ПРЕСС КНИГА» 2003.

2. И.Л. Кнуняц /Химическая энциклопедия/Москва «Советская энциклопедия»1988

3. И.Е. Шиманович /Химия 11/Минск «Народная асвета»2008

4. Ф.Коттон, Дж. Уилкинсон/Современная неорганическая химия/ Москва «Мир» 1969

Водород

ВОДОРО́Д -а; м. Химический элемент (H), лёгкий газ без цвета и запаха, образующий в соединении с кислородом воду.

Водоро́дный, -ая, -ое. В-ые соединения. В-ые бактерии. В-ая бомба (бомба огромной разрушительной силы, взрывное действие которой основано на термоядерной реакции). Водоро́дистый, -ая, -ое.

водоро́д

(лат. Hydrogenium), химический элемент VII группы периодической системы. В природе встречаются два стабильных изотопа (протий и дейтерий) и один радиоактивный (тритий). Молекула двухатомна (Н 2). Газ без цвета и запаха; плотность 0,0899 г/л, t кип - 252,76°C. Соединяется с многими элементами, с кислородом образует воду. Самый распространённый элемент космоса; составляет (в виде плазмы) более 70% массы Солнца и звёзд, основная часть газов межзвёздной среды и туманностей. Атом водорода входит в состав многих кислот и оснований, большинства органических соединений. Применяют в производстве аммиака, соляной кислоты, для гидрогенизации жиров и др., при сварке и резке металлов. Перспективен как горючее (см. Водородная энергетика).

ВОДОРОД

ВОДОРО́Д (лат. Hydrogenium), H, химический элемент с атомным номером 1, атомная масса 1,00794. Химический символ водорода Н читается в нашей стране «аш», как произносится эта буква по-французски.
Природный водород состоит из смеси двух стабильных нуклидов (см. НУКЛИД) с массовыми числами 1,007825 (99,985 % в смеси) и 2,0140 (0,015 %). Кроме того, в природном водороде всегда присутствуют ничтожные количества радиоактивного нуклида - трития (см. ТРИТИЙ) 3 Н (период полураспада Т 1/2 12,43 года). Так как в ядре атома водорода содержится только 1 протон (меньше в ядре атома элемента протонов быть не может), то иногда говорят, что водород образует естественную нижнюю границу периодической системы элементов Д. И. Менделеева (хотя сам элемент водород расположен в самой верхней части таблицы). Элемент водород расположен в первом периоде таблицы Менделеева. Его относят и к 1-й группе (группе IА щелочных металлов (см. ЩЕЛОЧНЫЕ МЕТАЛЛЫ) ), и к 7-й группе (группе VIIA галогенов (см. ГАЛОГЕНЫ) ).
Массы атомов у изотопов водорода различаются между собой очень сильно (в разы). Это приводит к заметным различиям в их поведении в физических процессах (дистилляция, электролиз и др.) и к определенным химическим различиям (различия в поведении изотопов одного элемента называют изотопными эффектами, для водорода изотопные эффекты наиболее существенны). Поэтому в отличие от изотопов всех остальных элементов изотопы водорода имеют специальные символы и названия. Водород с массовым числом 1 называют легким водородом, или протием (лат. Protium, от греческого protos - первый), обозначают символом Н, а его ядро называют протоном (см. ПРОТОН (элементарная частица)) , символ р. Водород с массовым числом 2 называют тяжелым водородом, дейтерием (см. ДЕЙТЕРИЙ) (лат Deuterium, от греческого deuteros - второй), для его обозначения используют символs 2 Н, или D (читается «де»), ядро d - дейтрон. Радиоактивный изотоп с массовым числом 3 называют сверхтяжелым водородом, или тритием (лат. Tritum, от греческого tritos - третий), символ 2 Н или Т (читается «те»), ядро t - тритон.
Конфигурация единственного электронного слоя нейтрального невозбужденного атома водорода 1s 1 . В соединениях проявляет степени окисления +1 и, реже, –1 (валентность I). Радиус нейтрального атома водорода 0,024 нм. Энергия ионизации атома 13,595 эВ, сродство к электрону 0,75 эВ. По шкале Полинга электроотрицательность водорода 2,20. Водород принадлежит к числу неметаллов.
В свободном виде - легкий горючий газ без цвета, запаха и вкуса.
История открытия
Выделение горючего газа при взаимодействии кислот и металлов наблюдали в 16 и 17 веках на заре становления химии как науки. Знаменитый английский физик и химик Г. Кавендиш (см. КАВЕНДИШ Генри) в 1766 исследовал этот газ и назвал его «горючим воздухом». При сжигании «горючий воздух» давал воду, но приверженность Кавендиша теории флогистона (см. ФЛОГИСТОН) помешала ему сделать правильные выводы. Французский химик А. Лавуазье (см. ЛАВУАЗЬЕ Антуан Лоран) совместно с инженером Ж. Менье (см. МЕНЬЕ Жан Батист Мари Шарль) , используя специальные газометры, в 1783 осуществил синтез воды, а затем и ее анализ, разложив водяной пар раскаленным железом. Таким образом он установил, что «горючий воздух» входит в состав воды и может быть из нее получен. В 1787 Лавуазье пришел к выводу, что «горючий воздух» представляет собой простое вещество, и, следовательно, относится к числу химических элементов. Он дал ему название hydrogene (от греческого hydor - вода и gennao - рождаю) - «рождающий воду». Установление состава воды положило конец «теории флогистона». Русское наименование «водород» предложил химик М. Ф. Соловьев (см. СОЛОВЬЕВ Михаил Федорович) в 1824. На рубеже 18 и 19 веков было установлено, что атом водорода очень легкий (по сравнению с атомами других элементов), и вес (масса) атома водорода был принят за единицу сравнения атомных масс элементов. Массе атома водорода приписали значение, равное 1.
Нахождение в природе
На долю водорода приходится около 1% массы земной коры (10-е место среди всех элементов). В свободном виде водород на нашей планете практически не встречается (его следы имеются в верхних слоях атмосферы), но в составе воды распространен на Земле почти повсеместно. Элемент водород входит в состав органических и неорганических соединений живых организмов, природного газа, нефти, каменного угля. Он содержится, разумеется, в составе воды (около 11% по массе), в различных природных кристаллогидратах и минералах, в составе которых имеется одна или несколько гидроксогрупп ОН.
Водород как элемент доминирует во Вселенной. На его долю приходится около половины массы Солнца и других звезд, он присутствует в атмосфере ряда планет.
Получение
Водород можно получить многими способами. В промышленности для этого используют природные газы, а также газы, получаемые при переработке нефти, коксовании и газификации угля и других топлив. При производстве водорода из природного газа (основной компонент - метан) проводят его каталитическое взаимодействие с водяным паром и неполное окисление кислородом:
CH 4 + H 2 O = CO + 3H 2 и CH 4 + 1/2 O 2 = CO 2 + 2H 2
Выделение водорода из коксового газа и газов нефтепереработки основано на их сжижении при глубоком охлаждении и удалении из смеси газов, сжижаемых легче, чем водород. При наличии дешевой электроэнергии водород получают электролизом воды, пропуская ток через растворы щелочей. В лабораторных условиях водород легко получить взаимодействием металлов с кислотами, например, цинка с соляной кислотой.
Физические и химические свойства
При обычных условиях водород - легкий (плотность при нормальных условиях 0,0899 кг/м 3) бесцветный газ. Температура плавления –259,15 °C, температура кипения –252,7 °C. Жидкий водород (при температуре кипения) обладает плотностью 70,8 кг/м 3 и является самой легкой жидкостью. Стандартный электродный потенциал Н 2 /Н - в водном растворе принимают равным 0. Водород плохо растворим в воде: при 0 °C растворимость составляет менее 0,02 см 3 /мл, но хорошо растворим в некоторых металлах (губчатое железо и других), особенно хорошо - в металлическом палладии (около 850 объемов водорода в 1 объеме металла). Теплота сгорания водорода равна 143,06 МДж/кг.
Существует в виде двухатомных молекул Н 2 . Константа диссоциации Н 2 на атомы при 300 К 2,56·10 -34 . Энергия диссоциации молекулы Н 2 на атомы 436 кДж/моль. Межъядерное расстояние в молекуле Н 2 0,07414 нм.
Так как ядро каждого атома Н, входящего в состав молекулы, имеет свой спин (см. СПИН) , то молекулярный водород может находиться в двух формах: в форме ортоводорода (о-Н 2) (оба спина имеют одинаковую ориентацию) и в форме параводорода (п-Н 2) (спины имеют разную ориентацию). При обычных условиях нормальный водород представляет собой смесь 75% о-Н 2 и 25% п-Н 2 . Физические свойства п- и о-Н 2 немного различаются между собой. Так, если температура кипения чистого о-Н 2 20,45 К, то чистого п-Н 2 - 20,26 К. Превращение о-Н 2 в п-Н 2 сопровождается выделением 1418 Дж/моль теплоты.
В научной литературе неоднократно высказывались соображения о том, что при высоких давлениях (выше 10 ГПа) и при низких температурах (около 10 К и ниже) твердый водород, обычно кристаллизующийся в гексагональной решетке молекулярного типа, может переходить в вещество с металлическими свойствами, возможно, даже сверхпроводник. Однако пока однозначных данных о возможности такого перехода нет.
Высокая прочность химической связи между атомами в молекуле Н 2 (что, например, используя метод молекулярных орбиталей, можно объяснить тем, что в этой молекуле электронная пара находится на связывающей орбитали, а разрыхляющая орбиталь электронами не заселена) приводит к тому, что при комнатной температуре газообразный водород химически малоактивен. Так, без нагревания, при простом смешивании водород реагирует (со взрывом) только с газообразным фтором:
H 2 + F 2 = 2HF + Q.
Если смесь водорода и хлора при комнатной температуре облучить ультрафиолетовым светом, то наблюдается немедленное образование хлороводорода НСl. Реакция водорода с кислородом происходит со взрывом, если в смесь этих газов внести катализатор - металлический палладий (или платину). При поджигании смесь водорода и кислорода (так называемый гремучий газ (см. ГРЕМУЧИЙ ГАЗ) ) взрывается, при этом взрыв может произойти в смесях, в которых содержание водорода составляет от 5 до 95 объемных процентов. Чистый водород на воздухе или в чистом кислороде спокойно горит с выделением большого количества теплоты:
H 2 + 1/2O 2 = Н 2 О + 285,75 кДж/моль
С остальными неметаллами и металлами водород если и взаимодействует, то только при определенных условиях (нагревание, повышенное давление, присутствие катализатора). Так, с азотом водород обратимо реагирует при повышенном давлении (20-30 МПа и больше) и при температуре 300-400 °C в присутствии катализатора - железа:
3H 2 + N 2 = 2NH 3 + Q.
Также только при нагревании водород реагирует с серой с образованием сероводорода H 2 S, с бромом - с образованием бромоводорода НBr, с иодом - с образованием иодоводорода НI. С углем (графитом) водород реагирует с образованием смеси углеводородов различного состава. С бором, кремнием, фосфором водород непосредственно не взаимодействует, соединения этих элементов с водородом получают косвенными путями.
При нагревании водород способен вступать в реакции с щелочными, щелочноземельными металлами и магнием с образованием соединений с ионным характером связи, в составе которых содержится водород в степени окисления –1. Так, при нагревании кальция в атмосфере водорода образуется солеобразный гидрид состава СаН 2 . Полимерный гидрид алюминия (AlH 3) x - один из самых сильных восстановителей - получают косвенными путями (например, с помощью алюминийорганических соединений). Со многими переходными металлами (например, цирконием, гафнием и др.) водород образует соединения переменного состава (твердые растворы).
Водород способен реагировать не только со многими простыми, но и со сложными веществами. Прежде всего надо отметить способность водорода восстанавливать многие металлы из их оксидов (такие, как железо, никель, свинец, вольфрам, медь и др.). Так, при нагревании до температуры 400-450 °C и выше происходит восстановление железа водородом из его любого оксида, например:
Fe 2 O 3 + 3H 2 = 2Fe + 3H 2 O.
Следует отметить, что восстановить водородом из оксидов можно только металлы, расположенные в ряду стандартных потенциалов за марганцем. Более активные металлы (в том числе и марганец) до металла из оксидов не восстанавливаются.
Водород способен присоединяться по двойной или тройной связи ко многим органическим соединениям (это - так называемые реакции гидрирования). Например, в присутствии никелевого катализатора можно осуществить гидрирование этилена С 2 Н 4 , причем образуется этан С 2 Н 6:
С 2 Н 4 + Н 2 = С 2 Н 6 .
Взаимодействием оксида углерода(II) и водорода в промышленности получают метанол:
2Н 2 + СО = СН 3 ОН.
В соединениях, в которых атом водорода соединен с атомом более электроотрицательного элемента Э (Э = F, Cl, O, N), между молекулами образуются водородные связи (см. ВОДОРОДНАЯ СВЯЗЬ) (два атома Э одного и того же или двух разных элементов связаны между собой через атом Н: Э"... Н... Э"", причем все три атома расположены на одной прямой). Такие связи существуют между молекулами воды, аммиака, метанола и др. и приводят к заметному возрастанию температур кипения этих веществ, увеличению теплоты испарения и т. д.
Применение
Водород используют при синтезе аммиака NH 3 , хлороводорода HCl, метанола СН 3 ОН, при гидрокрекинге (крекинге в атмосфере водорода) природных углеводородов, как восстановитель при получении некоторых металлов. Гидрированием (см. ГИДРИРОВАНИЕ) природных растительных масел получают твердый жир - маргарин. Жидкий водород находит применение как ракетное топливо, а также как хладагент. Смесь кислорода с водородом используют при сварке.
Одно время высказывалось предположение, что в недалеком будущем основным источником получения энергии станет реакция горения водорода, и водородная энергетика вытеснит традиционные источники получения энергии (уголь, нефть и др.). При этом предполагалось, что для получения водорода в больших масштабах можно будет использовать электролиз воды. Электролиз воды - довольно энергоемкий процесс, и в настоящее время получать водород электролизом в промышленных масштабах невыгодно. Но ожидалось, что электролиз будет основан на использовании среднетемпературной (500-600 °C) теплоты, которая в больших количествах возникает при работе атомных электростанций. Эта теплота имеет ограниченное применение, и возможности получения с ее помощью водорода позволили бы решить как проблему экологии (при сгорании водорода на воздухе количество образующихся экологически вредных веществ минимально), так и проблему утилизации среднетемпературной теплоты. Однако после Чернобыльской катастрофы развитие атомной энергетики повсеместно свертывается, так что указанный источник энергии становится недоступным. Поэтому перспективы широкого использования водорода как источника энергии пока сдвигаются по меньшей мере до середины 21-го века.
Особенности обращения
Водород не ядовит, но при обращении с ним нужно постоянно учитывать его высокую пожаро- и взрывоопасность, причем взрывоопасность водорода повышена из-за высокой способности газа к диффузии даже через некоторые твердые материалы. Перед началом любых операций по нагреванию в атмосфере водорода следует убедиться в его чистоте (при поджигании водорода в перевернутой вверх дном пробирке звук должен быть глухой, а не лающий).
Биологическая роль
Биологическое значение водорода определяется тем, что он входит в состав молекул воды и всех важнейших групп природных соединений, в том числе белков, нуклеиновых кислот, липидов, углеводов. Примерно 10 % массы живых организмов приходится на водород. Способность водорода образовывать водородную связь играет решающую роль в поддержании пространственной четвертичной структуры белков, а также в осуществлении принципа комплементарности (см. КОМПЛЕМЕНТАРНОСТЬ) в построении и функциях нуклеиновых кислот (то есть в хранении и реализации генетической информации), вообще в осуществлении «узнавания» на молекулярном уровне. Водород (ион Н +) принимает участие в важнейших динамических процессах и реакциях в организме - в биологическом окислении, обеспечивающим живые клетки энергией, в фотосинтезе у растений, в реакциях биосинтеза, в азотфиксации и бактериальном фотосинтезе, в поддержании кислотно-щелочного равновесия и гомеостаза (см. ГОМЕОСТАЗ) , в процессах мембранного транспорта. Таким образом, наряду с кислородом и углеродом водород образует структурную и функциональную основы явлений жизни.


Энциклопедический словарь . 2009 .

Синонимы :

Смотреть что такое "водород" в других словарях:

    Таблица нуклидов Общие сведения Название, символ Водород 4, 4H Нейтронов 3 Протонов 1 Свойства нуклида Атомная масса 4,027810(110) … Википедия

    Таблица нуклидов Общие сведения Название, символ Водород 5, 5H Нейтронов 4 Протонов 1 Свойства нуклида Атомная масса 5,035310(110) … Википедия

    Таблица нуклидов Общие сведения Название, символ Водород 6, 6H Нейтронов 5 Протонов 1 Свойства нуклида Атомная масса 6,044940(280) … Википедия

    Таблица нуклидов Общие сведения Название, символ Водород 7, 7H Нейтронов 6 Протонов 1 Свойства нуклида Атомная масса 7,052750(1080) … Википедия



Последние материалы раздела:

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...

Пробный ЕГЭ по русскому языку
Пробный ЕГЭ по русскому языку

Здравствуйте! Уточните, пожалуйста, как верно оформлять подобные предложения с оборотом «Как пишет...» (двоеточие/запятая, кавычки/без,...