Прохождение электрического тока через газы называется. Прохождение электрического тока через газ

Первый тип искажений сравнительно легко устраним, поскольку в технологии CDMA предусмотрены возможности многопользовательского детектирования и сложения разнесенных сигналов с помощью Rake-приемника (см. «Сети», 2000, б№ 8, с. 20 и б№ 9, с. 22). С помехами от внешних источников борются при помощи расширения спектра передаваемого сигнала. Теоретически, увеличение базы сигнала (B) позволяет уменьшить помеху до сколь угодно малого уровня.

Системам на базе CDMA присуще одно важное свойство: способность эффективно бороться с помехами, особенно узкополосными. Именно благодаря этому технология CDMA долгие годы применялась преимущественно в военных системах, обычно работающих в сложной помеховой обстановке и условиях радиоподавления.

Методы борьбы с помехами принципиально отличаются от используемых при устранении многолучевых искажений. Структура мешающих многолучевых сигналов заведомо известна, и это во многом облегчает задачу; структура внешних помех не известна заранее, а следовательно, полностью их подавить практически невозможно. И хотя сегодня существует множество способов устранения отдельных видов помех, в целом задача борьбы с ними еще не решена. Кроме того, нет универсального метода, который был бы одинаково эффективен при подавлении различных помех (см. ).

В настоящее время можно выделить несколько основных способов борьбы с помехами:

  • увеличение энергетического потенциала радиолинии (мощности передатчика, коэффициента усиления антенны);
  • снижение уровня собственных шумов приемника;
  • снижение уровня внешних помех на входе приемника за счет их компенсации;
  • применение совместной обработки помехи и сигнала, основанной на определении различий между полезным сигналом и помехой;
  • повышение отношения сигнал/помеха за счет использования помехозащитных методов модуляции и кодирования.

Развитие технических решений, обеспечивающих защиту от помех, идет в направлении комплексного применения указанных выше и других методов, однако реализация таких решений требует определенного усложнения аппаратуры, а значит – увеличения ее стоимости. Поэтому на практике не стремятся создавать устройства с предельно достижимой (потенциальной) помехоустойчивостью. Чаще всего конечный продукт представляет собой компромиссный вариант, оптимизированный по критерию «стоимость – эффективность». Сопоставление реальной и потенциальной помехоустойчивости позволяет судить об эффективности того или иного метода доступа, а также целесообразности его дальнейшего совершенствования.

Основным показателем качества передачи информации в условиях помех, по которому сравнивают различные методы цифровой модуляции и кодирования информации, является безразмерная величина – отношение сигнал/шум, определяемое как h 2 =E b /N о (где E b – энергия на один бит информации, а N o – спектральная плотность мощности шума).

Как известно, пропускная способность CDMA-каналов ограничена уровнем взаимных помех активных абонентов. Это означает, что существует обратно пропорциональная зависимость между числом активных абонентов системы и отношением сигнал/шум. Чем больше абонентов работает в системе, тем меньше значение данного отношения и, соответственно, «запас» помехозащищенности. Безусловно, существует пороговое значение, ниже которого опускаться нельзя и которое определяет предельную дальность связи при заданной мощности передатчика. Скажем, для системы, построенной на базе стандарта cdmaOne, такое значение равно 6–7 дБ, что существенно ниже, чем в других радиосистемах (GSM – 9 дБ, DECT – 12 дБ).

Решающую роль в борьбе с помехами играет выбор структуры сигналов (они должны обладать хорошими взаимокорреляционными свойствами) и оптимального способа приема. Поэтому при планировании структуры сигналов стремятся к тому, чтобы они как можно больше отличались друг от друга, – тогда действующая в системе помеха будет в наименьшей степени влиять на полезный сигнал. Приемник же должен максимально очистить сигнал от искажений, вызванных воздействием помех. Очевидно, что используются различные способы реализации указанных требований, поэтому существующие системы по-разному реагируют на отдельные виды помех.

В случае применения классического метода расширения спектра, основанного на технологии DS-CDMA, помехозащищенность в условиях воздействия шумовых помех с равномерной спектральной плотностью не зависит от типа используемых сигналов, а полностью определяется базой сигнала и отношением сигнал/помеха. Грубо говоря, в системах DS-CDMA в целях подавления помех их мощность «размазывают» по широкой полосе частот.

Если распределение помехи подчиняется нормальному случайному закону с равномерной спектральной плотностью («белый шум»), то различные элементы шумоподобного сигнала (ШПС) «поражаются» в одинаковой степени. Такой вид помех для широкополосных систем особо опасен, причем чем больше мощность помехи, тем сильнее подавляется полезный сигнал.

В наименьшей степени широкополосный сигнал DS-CDMA страдает от узкополосных помех. Одночастотная гармоническая помеха способна исказить сигнал лишь в относительно узкой полосе частот, а полезная информация полностью восстанавливается по «неповрежденным» участкам спектра. Любая сосредоточенная в спектре помеха на выходе корреляционного приемника преобразуется в широкополосную и эффективно подавляется (благодаря тому, что по форме она не соответствует полезному сигналу; см. «Сети», 2000, б№ 5, с. 59, рис. 2). Конечно, в этом случае происходит незначительное снижение отношения сигнал/шум, однако оно настолько мало, что положительный эффект несоизмерим с потерями качества, которые имеют место при использовании других классических методов доступа (TDMA или FDMA).

Таким образом, если помехи имеют распределение, отличное от нормального, то элементы шумоподобного сигнала начинают искажаться по-разному – одни сильнее, а другие слабее. В этой ситуации оптимальный приемник позволит увеличить значение отношения сигнал/помеха. Теоретически доказано, что если известна структура помехи, для нее всегда можно создать такой оптимальный приемник, который обеспечит максимальную величину отношения сигнал/помеха. На практике же все несколько сложнее. Вид помехи не известен заранее, а следовательно, приемник должен «уметь» эффективно бороться с любыми типами помеховых воздействий.

Эффективность работы приемника в условиях помех зависит от выбора методов модуляции, кодирования и схемы приемника. Вопросы кодирования и перемежения символов являются самостоятельными направлениями разработок, поэтому остановимся подробнее лишь на проблемах приема сигналов в условиях помех.

Наиболее эффективно обеспечивает подавление помех так называемый адаптивный приемник. В общем случае он состоит из L каналов (где L равно числу элементов CDMA-сигнала), каждый из которых имеет согласованный фильтр, осуществляющий оптимальный прием одного символа конкретного сигнала (рис.1). Отсчеты принятого сигнала смещаются во времени (за счет создания задержки) таким образом, чтобы совместить их в момент окончания сигнала. Наличие схемы выбора весовых коэффициентов с учетом степени «повреждения» тех или иных элементов ШПС позволяет приемнику адаптивно подстраиваться под помеху, «максимизируя» тем самым величину сигнал/помеха.

С целью подавления импульсных помех на входе приемника используется широкополосный фильтр с полосой пропускания, не меньшей ширины спектра полезного сигнала. Следующий за ним ограничитель предназначен для нейтрализации действия импульсных помех.

Степень помехозащищенности, которую обеспечивает адаптивный приемник, зависит от соотношения числа «пораженных» элементов сигнала и их общего числа. Заметим: если широкополосная помеха одинаковым образом воздействует на все элементы сигнала, то все весовые коэффициенты равны между собой и для приема достаточно одного фильтра, согласованного с сигналом. Таким образом, адаптивный приемник является инвариантным к действию помех, а его эффективность тем выше, чем сильнее спектр мощности помехи отличается от равномерного. Другими словами, любой «провал» в спектре помехи позволяет увеличить значение отношения сигнал/шум за счет изменения весовых коэффициентов сигнала.

Высокая помехозащищенность систем со сложными сигналами обусловлена тем, что сигнал может накапливаться в согласованном фильтре оптимальным образом: его элементы складываются синфазно, а элементы помехи – некогерентно. Вообще говоря, адаптивный приемник способен «извлекать» полезный сигнал из «смеси» шума и помехи, во много раз превосходящей его по мощности, а предел помехозащищенности обычно ограничен собственными шумами приемника.

Однако в прямом и обратном каналах связи помехоустойчивость сигнала DS-CDMA различна. Наиболее сложная ситуация возникает в обратном канале, когда на вход приемника базовой станции (БС) помимо собственных шумов приемника и внутрисистемных помех от активных абонентов (помех многостанционного доступа) действуют еще и внешние помехи (см. врезку ).

Чтобы проиллюстрировать вклад, который вносят активные абоненты других сот в общий помеховый фон, обратимся к рис. 2. Здесь видно, как убывают взаимные помехи в зависимости от удаленности от какой-либо соты (при анализе подразумевалось, что все соты имеют одинаковые размеры, а абоненты равномерно размещены по территории, обслуживаемой сетью). Вклад соседних сот в общий помеховый фон обычно составляет около 36%. Столь высокий уровень обусловлен тем, что на практике имеет место частичное перекрытие диаграмм направленности антенн БС. Суммарный вклад от сот, не являющихся «соседями» данной (т.е. расположенных от нее через одну и далее), не превышает 4%. Наиболее высокий уровень взаимных помех (60%) создают абоненты, одновременно работающие в соте.

В прямом канале взаимные помехи создаются соседними базовыми станциями, а суммарная мощность этих помех пропорциональна числу БС. Считается, что благодаря синхронизации и выбору соответствующей структуры сигналов БС воздействие взаимных помех может быть сведено к нулю.

На отношение сигнал/шум для прямого канала влияет способ регулировки мощности передатчиков БС. При неавтоматической регулировке мощность передатчика БС не зависит от местоположения абонента мобильной станции. Наихудшая ситуация возникает, когда абонент находится на границе трех сот, т.е. когда уровни принимаемых от различных станций сигналов примерно одинаковы.

Подход к подавлению помех в системах FH-CDMA (рис. 3), использующих псевдослучайную перестройку частоты, несколько иной, чем в системах DS-CDMA. Напомним: в системах на базе FH-CDMA каждый информационный символ передается в виде комбинации из N частот, и на каждой из этих частот излучается свой шумоподобный сигнал. Кроме полезного сигнала конкретного пользователя (синий цвет), по системе передаются сигналы от других абонентов (красный цвет), а кроме того, на нее воздействуют узкополосная помеха fп (горизонтальная линия) и импульсная помеха в момент tп (вертикальная линия). Поскольку элемент полезного сигнала FH-CDMA занимает в каждый момент лишь сравнительно небольшую часть спектра, такой метод обеспечивает эффективное подавление как узкополосных, так и импульсных помех.

Помехи от абонентов собственной или соседних сот создают наибольший ущерб, если структура их сигналов одна и та же, а законы перестройки частоты различны. В этом случае возможно наложение сигналов от разных пользователей, что приводит к «поражению» отдельных частотных составляющих сигнала FH-CDMA. Степень помехозащищенности такой системы определяется отношением числа «непораженных» участков спектра к их общему числу. Очевидно, что чем шире полоса частот и больше набор используемых частот, тем меньше вероятность их совпадения и выше степень защищенности от помех.

Методы борьбы с помехами, основанные на структурных различиях сигнала и помехи
Селекция Характерные различия сигнала и помехи Методы подавления помех
Частотная Спектры смещены по частоте Фильтрация
Пространственная Разные направления приема Использование адаптивных антенн
По поляризации Разная поляризация (горизонтальная или вертикальная) Применение поляризационного фильтра
Фазовая Разные фазо-частотные характеристики Использование систем с фазовой автоподстройкой частоты
Временная Разные моменты появления сигнала и помехи Блокирование приемника на время действия мощных импульсных помех, ограничение входного сигнала по уровню (после полосового фильтра)

Классификация помех

Помехи весьма разнообразны по своему происхождению, типу и способу воздействия на систему, приемник и антенну (см. рисунок).

По происхождению они подразделяются на естественные (атмосферные, космические) и искусственные (индустриальные, от работающих передатчиков и др.). Помехи, создаваемые с помощью специальных устройств, относят к преднамеренным , а остальные виды считаются непреднамеренными . Первые из них получили широкое применение в военной технике (в зависимости от соотношения полос передатчиков помех и приемника радиостанции такие помехи подразделяются на заградительные, прицельные и др.).

Среди помех естественного происхождения наиболее опасны атмосферные, обусловленные электрическими процессами, энергия которых сосредоточена главным образом в области длинных и средних волн. Сильные помехи создаются также при работе промышленного и медицинского оборудования (их принято относить к индивидуальным). В настоящее время действуют жесткие нормы, ограничивающие уровень индустриальных помех, особенно если их источники расположены в больших городах или пригородах.

В зависимости от типа различают, скажем, аддитивные и мультипликативные помехи. Помеха считается аддитивной , если ее мешающее действие не зависит от наличия сигнала, и мультипликативной , если она возникает только при наличии сигнала. Примером аддитивной помехи является флуктуационной шум в радиоканале, образующийся в результате одновременной работы большого числа источников помех. Изменение коэффициента передачи при многолучевом распространении сигнала – результат воздействия мультипликативной помехи.

По соотношению ширины спектров помех и сигнала различают узкополосные и широкополосные помехи. Естественно, что одна и та же помеха по отношению к одному сигналу может быть узкополосной, а по отношению к другому – широкополосной.

Помехозащищенность системы зависит от так называемой восприимчивости к помехам ее основных элементов (антенны, приемника и др.). При этом обычно говорят о способе воздействия помехи на какой-либо элемент системы. Например, восприимчивость приемника обусловлена частотой и видом помехи. Наибольший ущерб наносят внутриканальные помехи (попадающие в рабочую полосу приемника), методы борьбы с которыми выбираются в зависимости от применяемых способов доступа и воздействия на сигнал. Помехи по соседнему каналу возникают вследствие нестабильности гетеродинов, недостаточной «чистоты» радиоволны и наличия других нежелательных излучений (на гармониках и субгармониках). Восприимчивость направленной антенны в значительной степени связана с направлением прихода сигнала (по главному, заднему или боковому лепестку).

Основные виды помех

Аддитивная (additive interference). Любая помеха, мешающее действие которой проявляется независимо от присутствия или отсутствия сигнала. При действии аддитивной помехи результирующий сигнал на входе приемника может быть представлен в виде суммы нескольких независимых составляющих – сигнальной и нескольких помеховых.

Атмосферные. 1. atmospheric noise. Помехи, обусловленные электрическими процессами в атмосфере (в основном грозовыми разрядами). Различают два вида атмосферных помех – импульсные (ближние грозы) и флуктуационный шум (дальние грозы). 2. precipitation interference. Помехи, возникающие при выпадении осадков в виде дождя, снега и т.п.

Внутриканальная (cochannel interference). Помеха, приводящая к снижению уровня полезного сигнала при воздействии мешающих сигналов иных станций, которые работают на той же или близкой частоте. В сотовых и транкинговых системах внутриканальные помехи образуются за счет влияния других зон, в которых используются те же рабочие частоты.

Внутрисотовая (intra-cell interferece). Помеха, обусловленная мешающим действием передатчиков абонентских станций, которые работают в зоне действия той же базовой станции.

Следящая (follow me interference). Преднамеренная помеха, предназначенная для подавления систем с быстрой перестройкой рабочей частоты.

Гармоническая (harmonic interference). Помеха, возникающая вследствие нежелательного излучения на частоте гармоники сигнала.

Дезинформирующая (spoof jamming). Преднамеренная помеха, при воздействии которой система остается работоспособной, но не обеспечивает передачи полезной информации.

Заградительная (barrage jamming, full-band jamming). Помехи, излучаемые в полосе частот, которая значительно шире полосы частот подавляемой станции. В качестве такой помехи может использоваться шум с равномерным спектром или сканируемая по частоте помеха.

Имитационная (smart jamming). Помеха, имеющая одинаковую с полезным сигналом структуру, что затрудняет ее обнаружение.

Импульсная (pulse or burst interference). Помеха малой длительности, которая в общем случае состоит из большого числа импульсов, (случайно распределяющихся по времени и амплитуде). К импульсным также относятся помехи от переходных процессов.

Индустриальные (man-made noise, man-made interference). Помехи, которые обусловлены работой различных электрических установок (медицинских, промышленных), а также систем зажигания автомобилей. Спектр побочных излучений обычно имеет импульсный характер, что связано с резкими изменениями тока в связи с контактными явлениями в электрических цепях.

Интермодуляционные (intermodulation interference). 1. Помехи, возникающие в приемнике, причиной которых может стать наличие более одного мешающего сигнала с интенсивностью, достаточной для проявления нелинейных свойств приемного тракта, или сложение мешающих сигналов с гармониками гетеродина. 2. Помехи, возникающие в передатчике при попадании на его вход мощных сигналов от близко расположенных передающих станций.

Космические (cosmic interference). Помехи, связанные с электромагнитными процессами, происходящими на Солнце, звездах и других внеземных обюектах.

Многочастотная (multitone interference). Помеха, состоящая из нескольких гармонических сигналов, обычно равномерного спектра.

Мультипликативная (multiplicative interference). Помеха, мешающее действие которой проявляется только при наличии сигнала.

От соседней зоны (adjacent cell interference). Помеха от передатчиков, расположенных в соседней зоне.

По боковому лепестку (sidelobe interference). Помеха, приходящая по любому направлению, кроме главного и заднего лепесков диаграммы направленности антенны.

По главному лепестку (main lobe interference). Помеха, поступающая по главному лепестку диаграммы направленности антенны.

По заднему лепестку (back-lobe interference). Любая помеха, приходящая по направлению, противоположному направлению главного лепестка диаграммы направленности антенны.

По зеркальному каналу (image interference). Помеха, попадающая в полосу побочного канала приема, который отстоит от несущей на величину первой промежуточной частоты.

По соседнему каналу (adjacent channel interference). Помеха от несущих частот других каналов, отстоящих от рабочего канала на шаг сетки частот (обычно 25 или 12,5 кГц). В англоязычной литературе этот термин обычно применяется с уточнениями, конкретизирующими источник помех: next-channel interference (помеха от последующего) и neighboring-channel interference (помеха от соседнего).

Преднамеренная (jamming). Радиопомеха, создаваемая специальными передатчиками для подавления работы средств связи и навигации.

Прицельная (spot jamming). Сосредоточенная преднамеренная помеха на несущей частоте полезного сигнала.

Ретранслируемая (repeat-back jamming). Преднамеренная помеха, образуемая путем переретрансляции исходного полезного сигнала с задержкой.

С расширенным спектром (spread spectrum). Помеха с равномерной спектральной плотностью мощности.

Сосредоточенная (spot). Помеха, мощность которой сосредоточена в очень узкой полосе частот – меньшей, чем спектр полезного сигнала, или соизмеримой с ним.

Структурная. Помеха, подобная по структуре полезным сигналам (т.е. состоящая из тех же элементов), но отличающаяся от них параметрами модуляции. К структурным помехам относятся внутрисистемные помехи имитационные и ретранслируемые.

Узкополосная (narrow-band interference). Помеха, спектр которой значительно уже ширины спектра полезного сигнала.

Флуктуационная (fluctuation noise, fluctuation interference). Помеха, которая представляет собой случайный нормально распределенный шумовой сигнал (Гауссовский шум).

Частично-заградительная (partial-band jamming). Заградительная помеха с частичным перекрытием рабочего диапазона частот подавляемой радиостанции.

3. Модулированные сигналы. Теория передачи сигналов

3. Модулированные сигналы

3.1. Аналитическое представление модулированных колебаний

Модулированные сигналы различаются по виду переносчика (несущей) и по его модулированным параметрам. В качестве переносчиков в настоящее время широко используются гармонические колебания, периодическая последовательность импульсов и узкополосный случайный процесс. Каждый из этих переносчиков характеризуется определенным числом параметров. Параметры, изменяющиеся во времени под действием передаваемого сообщения, называются информационными, так как в их изменениях заложена передаваемая информация. Параметры, которые остаются неизменными, являются постоянными признаками сигнала; они могут быть использованы на приеме для отличения сигнала от помех. Во многих случаях модулированный сигнал можно представить как произведение двух функций

где - функция, представляющая несущее колебание (переносчик), а - модуляционная функция, выражающая воздействие передаваемого сообщения u (t ) на несущую f (t ). Когда для представления несущей выбирается аналитический сигнал (2.98), то для каждой модуляционной функции M (t ) существует комплексный модулированный сигнал s (t ). При аналитическом представлении сигнала его действительная и мнимая части соответствуют реально существующему модулированному сигналу, а его модуль определяет огибающую. В случае, когда несущей является гармоническое колебание , модуляционная функция выражает воздействие видеосигнала u (t ) на амплитуду (частоту или фазу) несущей.

Спектр модулированного колебания (3.1) согласно теореме о спектре произведения определяется сверткой

(3.2)

Отсюда следует, что процесс модуляции приводит к сложному преобразованию спектра сигнала. Если несущая представляет собой узкополосное колебание, то модуляция приводит к расширению спектра и переносу его в область около несущей частоты (рис. 3.1 а). Если несущая - чистая синусоида, то имеет место простое смещение спектра (рис. 3.1 б). Если несущая записывается в форме аналитического сигнала, спектр которого существует только для положительных частот, то частотное преобразование относится только к положительным частотам, как показано на рис. 3.1.

Рис. 3.1. Смещение спектра при модуляции: общий случай аналитической несущей (а), случай гармонической несущей (б)

3.2. Основные виды аналоговой модуляции

К основным видам аналоговой модуляции относятся амплитудная модуляция (AM), фазовая модуляция (ФМ) и частотная модуляция (ЧМ). Разновидностями AM являются балансная (БМ) и однополосная (ОМ) модуляции.

Непосредственная передача. Наиболее простым сигналом для передачи непрерывного сообщения u (t ) является сигнал, пропорциональный u (t ):

s (t )= Au (t ), (3.3)

где А - некоторая постоянная. Такой сигнал соответствует форме (3.1), если в ней положить f (t )= A и М [ u (t )]= u (t ). Примером такой непосредственной передачи сообщений является обычная телефонная связь по проводам.

Амплитудная модуляция. Для этого вида модуляции: f (t )=,

где т - коэффициент модуляции.

Модулированный сигнал запишется

Это выражение даёт представление реального AM сигнала

Спектр сигнала в общем случае определяется как преобразование Фурье от s (t ):

Учитывая, что и

где - спектр передаваемого сообщения. Отсюда видно, что при AM происходит перенос спектра сообщения на частоту (рис. 3.16). Ширина спектра сигнала F при AM в два раза шире спектра сообщения Fm :

u (t )=,

Из этого выражения следует, что амплитуда модулированного сигнала изменяется от до , а мощность сигнала соответственно от до

Где мощность несущего колебания. Средняя мощность AM сигнала равна:

При m=l и Pcp =1,5 PH ; отношение средней мощности к максимальной равно 0,375. "Эти соотношения указывают на существенный недостаток амплитудной модуляции - плохое использование мощности передатчика.

Балансная модуляция (БМ). Кроме обычной AM применяется передача AM без несущей - балансная модуляция. Для этого вида модуляции:

f (t )=, (3.7)

Спектр сигнала при БМ

Здесь имеются только две боковые полосы - несущая отсутствует.

При однополосной модуляции (ОМ) передается только одна боковая полоса. Для этого вида модуляции при передаче верхней боковой полосы:

f (t )=, (3.10)

Спектр сигнала ОМ

(3.12)

Действительно, если разложить функции u (t ) и (t ) в ряд Фурье:

и учесть, что cosx; и sinx являются парой преобразования Гильберта, по получим

Такое представление является аналитическим для всех >0. Замена модуляционной функции [ u (t )] на сопряженную ей *[ u (t )]= u (t )- i (t ) дает форму сигнала s (t ), соответствующую нижней боковой полосе.

Системы БМ и ОМ позволяют сократить бесполезный расход энергии на составляющую несущей частоты, а при ОМ дополнительно вдвое сократить ширину спектра передаваемого сигнала. Однако реализация указанных преимуществ требует более сложной аппаратуры.

Угловая модуляция. В случае угловой модуляции (ЧМ и ФМ) модуляционная функция имеет вид

При синусоидальной несущей f (t )= модулированный сигнал будет иметь следующее выражение:

Реальный сигнал

Это обычное представление сигнала с угловой модуляцией. Согласно (3.15) полная фаза высокочастотного колебания равна:

(3.16)

а мгновенная частота колебания изменяется по закону производной от , т. е.

(3.17)

Наоборот, при изменении частоты по закону ω(t ) (3.17) фаза колебания ψ(t) будет изменяться по закону интеграла от ω(t ):

(3.18)

В случае фазовой модуляции . Тогда на основании (3.15) и (3.16) имеем:

(З.19) (3.20)

При частотной модуляции по закону передаваемого сообщения изменяется частота несущего колебания

(3.21)

где- амплитуда частотного отклонения (девиация частоты). Полная фаза колебания при этом будет равна:

Тогда выражение ЧМ сигнала запишется в виде

При модуляции одним тоном, когда и (t )= cosΩt , выражения сигнала при ФМ и ЧМ по форме имеют одинаковый вид:

где т - индекс модуляции: при ФМ при ЧМ

Для определения спектра сигнала заменим в (3.24) косинус суммы двух углов по известным формулам из тригонометрии

Здесь для упрощения записи мы положим =0. Из теории бесселевых функций известны следующие соотношения:

где - бесселева функция первого рода k - г o порядка от аргумента т. После подстановки (3.26) и (3.27) в (3.25) получаем

Таким образом, оказывается, что даже при синусоидальных ЧМ и ФМ получается теоретически безграничный спектр. Он состоит из несущей ω0 и двух боковых полос . Амплитуда несущей А010(т) при ЧМ и ФМ. в отличие от AM, зависит от модулирующего колебания. При некоторых значениях т она может быть вообще равна нулю (т =2, 3; 5,4). Амплитуда боковых частот равна . Однако практически ширина спектра ЧМ и ФМ сигналов ограничена.

Рис. 3.2. Спектр сигнала с угловой модуляцией

На рис. 3.2 приведен спектр сигнала с угловой модуляцией одним тоном при m=5. Как видим, амплитуды боковых частот быстро убывают с увеличением номера гармоники k . При k > m составляющие спектра малы и ими можно пренебречь. Практически ширина спектра сигнала при угловой модуляции равна F=2(m+l)Fm, где F т = частота модулирующего колебания.

Различие между ЧМ и ФМ проявляется только при изменении частоты модуляции Ω. При ЧМ т=, поэтому при m >>1 полоса практически не зависит от Fm . При ФМ b

при m>>1 ширина спектра будет равна F =2 ΔφfmFm т. е. она зависит от модулирующей частоты Fm . В этом и состоит различие в спектрах ЧМ и ФМ.

В случае малого индекса модуляции спектр ЧМ и ФМ сигналов, так же как и в случае AM, имеет только три составляющие:

Это непосредственно следует из (3.28), если учесть, что при m << l sin (msinΩt ) msinΩt , а cos (msinΩt ) 1.

Сравнение (3.6) и (3.29) показывает, что различие спектров сигналов при AM и угловой модуляции заключается только в сдвиге фазы колебания нижней боковой частоты на 180° относительно его положения при AM. Это различие существенно и иллюстрируется векторными диаграммами, изображенными на рис. 3.3.

Рис. 3.3. Векторные диаграммы: AM сигнала (а), ЧМ сигнала (ш<1) (б)

Однополосная угловая модуляция. Если функция - аналитическая:

то сигнал

также является аналитической функцией при . Он не содержит отрицательных частот, хотя и имеет бесконечный спектр в области положительных частот:

Выражение (3.30) определяет новый модулированный сигнал. Этот сигнал представляет собой вариант сигнала однополосной угловой модуляции. Для доказательства этого рассмотрим случай частотной модуляции одним тоном u (t ) = sinΩt . Для этого случая функция φ(t ) и ее преобразование Гильберта принимают вид:

Где индекс модуляции. Модулирующая функция при этом преобразуется к виду

, а модулированный сигнал

Отсюда видно, что спектр модулированного сигнала состоит из одной боковой полосы частот. Сигнал однополосной ЧМ можно получить из обычного ФМ сигнала путем преобразования Гильберта (например, посредством фазового сдвига на ) и модуляции амплитуды по экспоненциальному закону. Тогда ограничение такого сигнала в приемнике восстановит нижнюю боковую полосу частот и позволит применить для детектирования обычный дискриминатор.

3.3. Сигналы при дискретной модуляции

При дискретной модуляции закодированное сообщение u (t ), представляющее собой последовательность кодовых символов {}, преобразовывается в последовательность элементов сигнала {} . Последние отличаются от кодовых символов лишь электрическим представлением. В частном случае дискретная модуляция состоит в воздействии кодовых символов i } на переносчик f (t ). Такая дискретная модуляция аналогична непрерывной.

Посредством модуляции один из параметров переносчика изменяется по закону, определяемому кодом. При непосредственной передаче переносчиком может быть постоянный ток, изменяющимися параметрами которого являются величина и направление. Обычно же в качестве переносчика, как и при непрерывной модуляции, используется переменный ток (гармоническое колебание). В этом случае можно получить амплитудную (AM), частотную (ЧМ) и фазовую (ФМ) модуляции. Дискретную модуляцию часто называют манипуляцией, а устройство, осуществляющее дискретную модуляцию (дискретный модулятор), называют манипулятором или генератором сигналов.

На рис. 3.4 приведены графики сигналов при различных видах манипуляции. При AM символу 1 соответствует передача несущего колебания в течение времени (посылка), символу 0 - отсутствие колебания (пауза). При ЧМ передача несущего колебания с частотой соответствует символу 1, а передача колебания соответствует 0. При ФМ меняется фаза несущей на 180° при каждом переходе от 1 к 0 и от 0 к 1.

Рис. 3.4. Сигналы при различных видах дискретной модуляции

Наконец, в настоящее время применяется относительная фазовая модуляция (ОФМ). В отличие от ФМ, в системе ОФМ фаза несущего колебания изменяется на 180° при передаче символов 1 и остается неизменной при передаче символов 0.

При ОФМ манипуляция каждой данной посылки осуществляется относительно предыдущей. Очевидно, таким способом можно манипулировать (изменять) любой параметр несущего колебания: при изменении частоты получим относительную частотную манипуляцию (ОЧМ), при изменении амплитуды относительную амплитудную манипуляцию (ОАМ). Дельта-модуляция, о которой мы упоминали в § 1.6, также является одним из видов относительной манипуляции.

Рассмотрим спектры сигналов при некоторых видах дискретной модуляции. Будем полагать, что модуляция производится двоичным сообщением u (t ), представляющим собой периодическую последовательность прямоугольных импульсов с периодом .

Амплитудная манипуляция. Сигнал AM можно записать в виде

где периодическая функция u (t ) на интервале равна:

(3.33)

Представим u (t ) рядом Фурье

(3.34)

Тогда сигнал AM запишется в виде

(3.35)

Рис. 3.5. Спектр сигнала при амплитудной манипуляции

Спектр сигнала AM, построенный по ф-лам (3.35), показан на рис. 3.5. Он состоит из несущего колебания с амплитудой и двух боковых полос, спектральные составляющие которых имеют амплитуды

(3.36)

Огибающая спектра дискретного сигнала AM выражается формулой

(3.37)

т. е. представляет собой смещенный на частоту спектр одиночного импульсного сигнала u (t ).

Фазовая манипуляция. Сигнал ФМ можно записать в виде

Периодическая функция, определяющая закон изменения фазы на интервале , выражается формулой

(3.39)

Подстановка (3.39) в выражение (3.38) дает

Представим u (t ) рядом Фурье

Тогда сигнал ФМ запишется в виде

(3.40)

Рис. 3.6. Спектры сигналов при фазовой манипуляции

Спектр сигнала ФМ для различных значений девиаций фазы , построенной на основании ф-лы (3.40), показан на рис. 3.6. Он состоит из несущего колебания и двух боковых полос. Амплитуда несущего колебания зависит от : и при =- обращается в 0. Амплитуды спектральных составляющихв боковых полосах также зависят от . При увеличении от 0 до , как видно из рис. 3.6, амплитуда несущего колебания убывает до нуля, а амплитуды боковых частот увеличиваются.

Когда =- вся энергия сигнала ФМ содержится только в боковых полосах. Так же, как и при AM, огибающая дискретного спектра боковых частот представляет собой смещенный на частоту спектр одиночного импульсного сигнала u (t ), умноженный нa sin:

(3.41)

Аналогично определяется спектр сигнала при частотной манипуляция.

3.4. Сигналы при импульсной модуляции

В системах связи с импульсной модуляцией переносчиком Информации служит периодическая последовательность импульсов одинаковой формы

(3.42)

где U (t ) - нормированная функция, характеризующая форму импульса; A 0 - амплитуда импульса; - начало переднего фронта k -го импульса ; - период следования импульсов; - начало отсчета последовательности; - длительность k -го импульса, отсчитываемая на некотором заданном уровне.

3.7. Сигналы при различных видах импульсной модуляции

При модуляции один из параметров последовательности изменяется в соответствии с передаваемым сообщением (рис. 3.7). Так, при амплитудно-импульсной модуляции (АИМ) изменяется амплитуда импульса А:

(3.43)

Рис. 3.8. Параметры периодической последовательности прямоугольных импульсов

При широтно-импульсной модуляции (ШИМ) изменяется длительность импульса

(3.44)

где - максимальное отклонение фронта импульсов в одну сторону.

При фазовой импульсной модуляции (ФИМ) изменяется сдвиг

импульсов относительно тактовых точек .

При частотно-импульсной модуляции (ЧИМ) в соответствии с

передаваемым сообщением изменяется частота следования импульсов.

Так же, как и при ФИМ, импульсы сдвигаются относительно тактовых точек, но в другой закономерности. Различие между ФИМ и ЧИМ аналогично различию между ФМ и ЧМ синусоидального переносчика.

Периодическую последовательность прямоугольных импульсов

(рис. 3.8) можно записать в следующем виде:

Такую последовательность импульсов можно представить рядом Фурье. В соответствии с выражениями (2.67) и (2.68) имеем

,где ,

В нашем случае

(3.47)

(3.48)

где

Спектр амплитуд периодической последовательности прямоугольных импульсов приведен на рис. 3.9. Амплитуды спектральных компонент определяются значениями модуля спектральной плотности || (3.47) на гармониках частоты повторения . Форма огибающей частотного спектра периодической последовательности определяется формой отдельного импульса. С увеличением периода повторения интервал частот между соседними спектральными компонентами сокращается, их число растет, а амплитуда каждой компоненты уменьшается при сохранении постоянного соотношения между ними. При неограниченном увеличении периодическая последовательность вырождается в одиночный импульс, а линейчатый спектр становится сплошным.

Рис. 3.9. Спектр периодической последовательности прямоугольных импульсов

Спектр периодической последовательности радиоимпульсов получается из спектра последовательности видеоимпульсов переносом шкалы частот на несущую частоту и дополнением полученного спектра его зеркальным отображением.

При модуляции параметры, входящие в выражения (3.46) и (3.48), являются функциями времени:. Модулированная последовательность будет представлять теперь уже непериодическую функцию, деформированную относительно исходной:

или согласно (3.48)

Полученная формула определяет частотный спектр деформированной последовательности импульсов. Для получения спектров сигналов при различных видах модуляции в ф-лу (3.50) необходимо подставить соответствующее выражение модулированного параметра.

Для примера найдем спектр при АИМ. При модуляции одним тоном u (t )= sinΩ (t ) и A = A 0 (1+ msinΩt ); остальные параметры последовательности неизменны:

После подстановки этих значений в (3.50) и несложных тригонометрических преобразований для частотного спектра АИМ сигнала получаем

На рис. 3.10 приведен график спектра АИМ сигнала. Сравнение его с рис. 3.9 показывает, что при АИМ модулируется по амплитуде каждая составляющая спектра немодулированной последовательности импульсов как изолированная «несущая». В спектре содержится низкочастотное модулирующее сообщение u (t ) с частотой Ω, следовательно, демодуляция при АИМ может быть осуществлена с помощью фильтра нижних частот, пропускающего низкочастотное колебание u (t ).

Аналогично определяется спектр и для других видов импульсной модуляции. Для вычисления спектра при ФИМ в (3.50) необходимо подставить выражение (3.45), определяющее изменение положения импульса в соответствии с передаваемым сообщением, а при ШИМ - выражение (3.44), определяющее изменение длительности импульса.

При импульсно-кодовой модуляции (ИКМ) передача отдельных значений сигнала сводится к передаче определенных групп импульсов. Эти группы передаются друг за другом через относительно большие промежутки времени по сравнению с длительностью отдельных импульсов. Каждая кодовая группа импульсов представляет собой регулярный непериодический сигнал, спектр которого может быть вычислен на основании преобразований Фурье обычным образом.

Рис. 3.10. Спектр АИМ сигнала

Ширина спектра последовательности импульсов практически не зависит от частоты повторения и определяется, главным образом, шириной спектра одного импульса. При наличии модуляции любого вида спектр расширяется незначительно за счет боковых частот крайних составляющих спектра немодулированных импульсов. Поэтому рабочая полоса частот, занимаемая импульсными сигналами, практически не зависит от вида модуляции и определяется длительностью и формой импульса.

3.5. Энергетический спектр модулированных сигналов

До сих пор мы рассматривали модуляцию несущего колебания детерминированным процессом u (t ), который отображает определенное сообщение или отдельную его реализацию. Совокупность же возможных сообщений представляет собой некоторый случайный процесс. Так, при передаче речи или музыки статистические свойства передаваемых сообщений очень близки к свойствам нормального случайного процесса. Важнейшими характеристиками колебания, модулированного случайным процессом, являются функция корреляции и энергетический спектр.

Следует подчеркнуть, что модулированный сигнал является нестационарным случайным процессом даже тогда, когда модулирующие процессы (сообщения) стационарны. Энергетический спектр нестационарного случайного процесса определяется посредством двукратного усреднения - по множеству и по времени. Сначала определяется усредненная по времени корреляционная функция, а затем обратным преобразованием Фурье - искомый энергетический спектр.

Рассмотрим случай, когда передаваемое сообщение u (t ) представляет собой стационарный процесс с u (t )=0, а переносчик - гармоническое колебание .

При амплитудной модуляции

s (t ) = А0 cos ω 0 t ,

где m - среднеквадратическое значение коэффициента модуляции. Функция корреляции модулированного сигнала

где Bu (t ) - функция корреляции передаваемого сообщения u (t ). Как видим, функция B (t , τ) зависит от времени, что указывает на нестационарность модулированного сигнала. После усреднения по времени получаем

Применяя к В (τ) преобразование Фурье (2.84), находим энергетический спектр сигнала при AM

Таким образом, спектр модулированного по амплитуде гармонического колебания случайным процессом состоит из несущего колебания с частотой и смещенного на спектра передаваемого сообщения u (t ).

Сигнал при угловой модуляции (ЧМ и ФМ) можно записать в общем виде

s (t ) = А0 cos ,

При ФМ , а при ЧМ.Здесь и - среднеквадратические значения девиации соответственно фазы и частоты.

Функция корреляции модулированного сигнала

При усреднении по времени первое слагаемое обращается в нуль. Второе слагаемое не зависит от времени t поэтому

Обозначим разность и по известной формуле представим косинус суммы двух углов в виде

Средние по множеству значения косинуса и синуса можно найти, если известен закон распределения вероятностей сообщения u (t ). Если u (t ) подчиняется нормальному закону, то , являющееся линейным преобразованием от u (t ), также будет иметь нормальное распределение с нулевым средним значением и дисперсией . Легко убедиться, что в этом случае:

Таким образом, усредненная по времени функция корреляции сигнала при угловой модуляции

(3.54)

Дисперсию процесса можно выразить через функцию корреляции или энергетический спектр сообщения u (t ). Действительно.

где - функция корреляции процесса . При , поэтому ; при ЧМ , где , поэтому . Далее можно определить энергетический спектр модулированного сигнала путем преобразования Фурье (2.81) от функции (3.54).

3.6. Модуляция шумовой несущей

В качестве переносчика можно использовать не только периодические колебания, но и узкополосный случайный процесс. Такие переносчики также находят практическое применение. Например, в оптических системах связи, в которых используется некогерентное излучение, сигнал, по существу, представляет собой узкополосный гауссов шум.

Согласно (2.36) узкополосный случайный процесс можно представить как квазигармоническое колебание

с медленно изменяющимися огибающей и фазой . При амплитудной модуляции в соответствии с передаваемым сообщением изменяется огибающая U (t ), при фазовой модуляции - фаза и при частотной - мгновенная частота .

Рассмотрим амплитудную модуляцию шумовой несущей. Выражение для модулированной несущей в этом случае можно записать в виде

y (t ) = f (t ), (3.57)

где f (t ) - переносчик, u (t ) - модулирующая функция (видеосигнал), m - коэффициент модуляции.

Предполагается, что модулирующий процесс u (t ) также представляет собой стационарный нормальный процесс со средним значением, равным нулю u (t ) = 0. Процессы f (t ) и u (t ) независимы. При этих ограничениях функция корреляции модулированной по амплитуде шумовой несущей будет

Теперь находим энергетический спектр

Первый интеграл дает энергетический спектр шумовой несущей . Для второго интеграла на основании теоремы о спектре произведения имеем

Окончательно спектр модулированной несущей будет равен:

Таким образом, спектр модулированной по амплитуде шумовой несущей получается суперпозицией спектра несущей и свертки этого спектра со спектром передаваемого сообщения, сдвинутого в область высоких частот на величину .Аналогично определяются функция корреляции и энергетический спектр при ФМ и ЧМ.

Применение «шумовых» сигналов позволяет ослабить влияние замираний в каналах с многолучевым распространением радиоволн. Поясним это на простейшем примере. Пусть на вход приемника поступают сигналы двух лучей и сдвигом на τ . время т. Мощность результирующего сигнала, определяемая за достаточно большое время Т,

где - функция корреляции сигнала, Р0 - его средняя мощность. Функция корреляции шума быстро убывает с увеличением т и тем быстрее, чем шире его спектр. Следовательно, при достаточно большой ширине спектра можно считать 0 и , т. е. средняя мощность принятого сигнала, несмотря на замирания, остается примерно постоянной.

3.7. Шумоподобные сигналы

Применение в качестве переносчика реализаций реального шума связано с определенными трудностями, которые возникают при формировании и приеме таких сигналов. Поэтому на практике нашли применение шумоподобные сигналы. Эти сигналы не являются случайными. Они формируются по определенному алгоритму. Однако их статистические свойства близки к свойствам шума: энергетический спектр почти равномерный, а функция корреляции имеет узкий основной пик и небольшие боковые выбросы. Шумоподобные и шумовые сигналы относятся к типу широкополосных сигналов (TF >>1).

В настоящее время известны методы формирования шумоподобных сигналов, которые при большой базе 2TF позволяют независимо воспроизводить их на приемном и передающем концах и отвечают требованиям синхронизации этих сигналов.

Широкое применение находят дискретные сигналы, которые строятся следующим образом. Информационная посылка длительностью Т разбивается на N бинарных элементов длительностью (рис. 3.11). Такое разбиение позволяет получить сигнал длительностью Т с полосой - и значением базы 2 TF . Последовательности бинарных элементов образуют коды, которые выбираются так, чтобы обеспечить заданные свойства сигнала. С помощью модуляции или гетеродинирования формируется высокочастотный сигнал, который передается по каналу. Часто при этом используется модуляция фазы на два положения: 0 и π

Функция корреляции дискретных сигналов при достаточно большом значении числа элементов N имеет главный максимум, сосредоточенный в области , и боковые лепестки, имеющие сравнительно малый уровень (рис. 3.11). Эта функция сильно напоминает функцию автокорреляции отрезка шума с полосой F . Отсюда и произошло название шумоподобные сигналы.

В системах связи, в которых используются шумоподобные (составные) сигналы, каждый элемент сообщения передается не одним, а несколькими элементами сигнала, несущими (повторяющими) одну и ту же информацию. Число N может достигать нескольких сотен и даже тысяч. Как будет показано в дальнейшем, это позволяет реализовать накопление сигнала, обеспечивающее высокую помехоустойчивость даже в том случае, когда уровень сигнала ниже уровня помех.

Рис. 3.11. Принцип построения сложного широкополосного сигнала

Обширный класс дискретных сигналов строится на основе линейных рекуррентных последовательностей. Эти сигналы имеют хорошие корреляционные свойства и сравнительно несложную практическую реализацию. Структура сигналов имеет случайный характер, хотя способ их формирования вполне регулярен. Непрерывные ФМ сигналы, построенные на основе рекуррентных последовательностей, могут иметь почти идеальную автокорреляционную функцию.

Среди линейных рекуррентных последовательностей особое место занимают псевдослучайные М -последовательности Хаффмена. Они представляют собой совокупность N периодически повторяющихся символов , каждый из которых может принимать одно из двух значений: +1 или -1. Это значение определяется взятым с противоположным знаком произведением значений двух или большего числа (но всегда четного) предыдущих сигналов

и . Почти каждому целому числу п соответствует несколько чисел k , при которых по правилу (3.60) образуется последовательность.

Из выражения (3.63) следует, что число N является максимальным периодом бесконечной последовательности Хаффмена. Могут образоваться также последовательности меньшего периода. Максимальное число различных последовательностей максимального периода для любого п равно:

(3.64)

где - функция Эйлера.

Бинарные псевдослучайные последовательности Хаффмена обладают рядом замечательных свойств. Нормированная функция автокорреляции в непрерывном режиме работы имеет главный максимум, равный единице, и одинаковые по величине боковые лепестки, равные . Функция взаимной корреляции для различных последовательностей равна -1/М. В импульсном режиме работы уровень боковых лепестков не превышает величины . Различные последовательности при заданном п отличаются как порядком чередования символов +1 и -1, так и максимальным значением боковых лепестков. При этом можно указать последовательность, у которой максимальный уровень боковых лепестков будет наименьшим среди возможных последовательностей для заданного п. Генерирование псевдослучайных последовательностей Хаффмена сравнительно просто осуществляется с помощью регистров сдвига.

Кроме сигналов Хаффмена, практическое применение находят и другие виды дискретных сигналов. Можно указать сигналы ПэлиПлоткина, последовательность символов Лежандра, коды Баркера, многофазные коды Фрэнка . Возможны, наконец, различные варианты составных сигналов.

В радиолокации широко применяются сигналы с линейным изменением частоты внутри импульса (ЛЧМ). Объясняется это тем,. что сигналы ЛЧМ имеют хорошие корреляционные свойства и прием их легко может быть осуществлен с помощью согласованных фильтров.

Шумоподобный сигнал может подвергаться всем известным способам модуляции. При амплитудной модуляции изменяются амплитуды всех его элементов. При частотной модуляции варианты сигнала отличаются средней частотой, при фазовой - разностью фаз между элементами двух посылок.

Специфическим видом модуляции, свойственным только широкополосным системам связи, является структурная модуляция или модуляция по форме сигнала. В этом случае в качестве вариантов сигнала используются колебания, построенные из одинаковых элементов, но с разным взаимным расположением этих элементов. Например, двоичную передачу можно осуществить с помощью сигналов вида:

Аналогично строятся многопозиционные широкополосные системы со структурной модуляцией. В этом случае используется ансамбль шумополобных сигналов . При этом, конечно, различие между этими сигналами должно быть достаточным для их разделения на приеме. С этой точки зрения большой интерес представляют противоположные и ортогональные сигналы.

Вопросы для повторения

1. Изобразите векторные диаграммы AM и ЧМ сигналов.

2. Определите среднюю мощность AM сигнала.

3. При каком виде модуляции ширина спектра сигнала минимальна? Чему она равна? Чему равна ширина спектра ЧМ сигнала?

4. Перечислите основные виды дискретной модуляции. Поясните принцип ОФМ.

5. Докажите, что при спектр сигнала при фазовой манипуляции ничем не отличается от спектра сигнала при балансной модуляции.

6. Назовите основные виды импульсной модуляций. Поясните их принцип.

7. Чем в основном определяется ширина спектра сигнала при импульсной модуляции?

8. Поясните принцип модуляции шумовой несущей.

9. Изобразите графически смещение спектра при шумовой и гармонической несущих.

10. Поясните принцип построения дискретных шумоподобных сигналов. Приведите примеры.

11. Является ли дискретная псевдослучайная последовательность случайным процессом? В чем ее сходство с шумом?

12. Как осуществляется модуляция шумоподобных сигналов?

Фильтрация сигналов на фоне помех.

1. Задачи и методы фильтрации

Электрическим фильтром называется пассивный четырехполюсник пропускающий электрические сигналы некоторой полосы частот без существенного ослабления или с усилением, а колебания вне этой полосы частот - с большим ослаблением. Такие устройства применяются для выделения полезных сигналов на фоне помех. Задача фильтрации формулируется следующим образом.

Если на вход линейного фильтра поступает смесь сигнала и помехи

то проблема состоит в том, как наилучшим образом выделить сигнал их этой смеси, т.е. как создать оптимальный фильтр. Известными считаются статические характеристики (т.е. спектр или корреляционная функция)

функции х(t), представляющей собой смесь сигнала и помехи. Искомой является периодическая функция оптимального фильтра.

Задача об оптимальной фильтрации решается по-разному в зависимости от того смысла, который вкладывается в понятие оптимальности. Рассмотрим три наиболее важных случаи оптимальной фильтрации.

1. Форма сигнала известна. От фильтра требуется только сохранение полученного сообщения, заключенного в сигнале, т.е. сохранение неискаженным помехой информационного параметра сигнала и не требуется сохранение формы. Такая задача может быть поставлена при фильтрации сигналов, форма которых известна на приемной стороне (например, обнаружение сигнала в радиотелеграфии и радиолокации). Фильтр при этом называют оптимальным, если в некоторый момент времени t 0 на его выходе обеспечивается максимальное отношение сигнала к среднеквадратическому значению напряжения шума. Такой фильтр может быть интегратором, поскольку речь идет о типовом значении полезного сигнла. При этом он должен лучше пропускать те частоты, на которых больше интенсивность спектральных составляющих сигнала и меньше интенсивность помех.

Для передаточной функции только оптимального фильтра теория дает следующие выражения:

(2)

где а - некоторая постоянная;

- величина, комплексно сопряженная амплитудному спектру сигнала;

Спектр мощности помехи.

В случае помехи с равномерным спектром частная характеристика оптимального фильтра с точностью до постоянного множителя совпадает с амплитудным спектром сигнал:

Отсюда специфическое название подобных оптимальных фильтров - согласованные фильтры (т.е. согласованные с сигналом).

Например, при приеме сигнала в виде передаточной повторяющихся импульсов, спектр каждого из которых состоит из отдельных узких полос (см. рис.), фильтр должен пропускать лишь эти полосы.

Рассматриваемый сигнал пройдет через такой фильтр без искажений, а мощность помехи уменьшится, т.к. она будет складываться из мощностей лишь тех спектральных составляющих помехи, которые попадут в полосу прозрачности фильтра. Такой фильтр для приема последовательностей импульсов получил название гребенчатого фильтра. Его применение приводит к тем большему увеличению превышения сигнала над помехой, чем уже полоса прозрачности фильтра. В свою очередь полосы прозрачности могут быть сделаны тем более узкими, чем больше характер последовательности приближается к периодическому закону (в этом случае полосы спектра превращается в линии). Но приближение к периодическому сигналу, т.е. достаточно многократное его повторение, эквивалентное увеличению длительности сигнала. Таким образом, согласованная фильтрация повышает помехоустойчивость как бы за счет увеличения длительности полезного сигнала.

2. Форма сигнала неизвестна, а от фильтра требуется ее сохранения. Например, фильтрация после детектора должна обеспечивать наилучшее воспроизведение на фоне шума не одного или нескольких параметров сигнала, а всего сигнала S(t). В этом случае в качестве критерия оптимальности (точности воспроизведения сигнала) удобно принять среднеквадратичнную ошибку, т.е. средний квадрат уклонения воспроизведенного сигнала от периодического. если сигнал и помеха являются независимыми и стационарными случайными процессами, то частотная характеристика такого оптимального фильтра, обеспечивающего минимальную среднеквадратичную ошибку, определяется спектрами мощности сигналом Р С  и помехи G П .

(4)

Фильтр ослабляет те спектральные составляющие, которые сильней поражены помехой, и для которых больше отношение G П / Р С  А на тех частотах, где помеха отсутствует G П 

3. Выделение длительного периодического сигнала из его смеси с помехой может быть осуществлено путем исследования функции корреляции этой смеси. Корреляционный фильтр, осуществляющий такое исследование, содержит блок переключения и блок усреднения (интегратор).

При взаимокорреляционной фильтрации, когда фильтр, располагая образцом сигнала, определяет функцию взаимной корреляции между принятой смесью X(t) и образцом сигнала S(t) (в данном случае речь идет только о констатации факта наличия сигнала):

Если сигнал и помеха некоррелированы, то и напряжения будет свидетельствовать о наличие сигнала в смеси.

Автокорреляционная фильтра используется при отсутствии определенных сведений о форме сигнала. Фильтр в этом случае определяет автокорреляционную функцию смеси:

При отсутствии корреляции между сигналом и помехой последние два слагаемых исчезнут. Что касается оставшихся двух слагаемых, то первое из них может носить черты периодичности, т.к. является автокорреляционной функцией сигнала близкого к периодическому, а второе обращается в ноль, если сдвиг больше интервала корреляции помехи  П. Таким образом, при достаточно большом сдвиге  и времени усреднения Т наличие напряжения K C . C () на выходе коррелятора свидетельствует о наличии периодического сигнала в смеси.

Однако реальные сигналы связи не являются периодическими и ограничены некоторой длительностью  с. Следовательно, при  с автокорреляционная функция сигнала становится равной нулю (см. рис.). С другой стороны, интервал корреляции помехи  П возрастает тем больше, чем большему ограничению подвергается спектр помехи в фильтре, поскольку помеха приобретает характер периодичности. При оптимальной фильтрации до коррелометра  П может превысить  с и корреляционная фильтрация не даст никакого эффекта.

Таким образом, автокорреляционная фильтрация эффективна только в том случае, если  с > П, т.е. при широкой полосе пропускания фильтровых цепей и достаточно длительных сигналов. Повышение помехоустойчивости сигнала по длительности над помехой.

2. Согласованная фильтрация заданного сигнала

2.1. Методика анализа .

Для задачи обнаружения сигнала в шумах наибольшее распространение получил критерий максимума отношения сигнал-шум (помеха) на выходе фильтра. Фильтры, отвечающие этому критерию, называются согласованными.

Требования к фильтру, максимизирующему отношение сигнал-помеха, можно сформулировать следующим образом. Пусть на вход фильтра подается аддитивная смесь сигнала. S(t) и шума Сигнал полностью известен. Это означает, что заданы его форма и положение на оси времени. Шум представляет собой вероятностный процесс с заданными статистическими характеристиками. Требуется синтезировать фильтр, обеспечивающий получение на выходе наибольшего возможного отношения пикового значения сигнала к среднеквадратичному значению шума. При этом не ставится условие сохранения формы сигнала, т.к. для обнаружения его в шумах форма значения не имеет.

Для уяснения сути согласованной фильтрации сначала рассмотрим наиболее простой случай, когда на входе фильтра с равномерной АЧХ имеется лишь один полезный сигнал S(t) с известным спектром . Требуется найти ФЧХ фильтра, при которой обеспечивается максимализация типа сигнала на выходе фильтра. Такая постановка задачи равносильна задаче максимизации пика сигнала при заданной энергии входного сигнала, поскольку спектральная плотность S() полностью определяет его энергию и не меняется фильтром, а любое изменение фазовых соотношений в спектре тем более не меняет энергии сигнала. Равенство S вх (ω)= S вых (ω) означает, что , т.е. ≠ К(ω).

Представим выходной сигнал в виде:

(4)

где - передаточная функция (5) четырехполюсника с искомой ФЧХ и равномерной АЧХ К 0 =соnst.

Таким образом

(6)

Основываясь на очевидном неравенстве

(7)

и учитывая, что , можно составить следующее неравенство:

(8)

Это неравенство определяет верхний предел мгновенного значения колебания S ВЫХ (t) при заданном спектре входного сигнала. Максимизация пика выходного колебания получается при обращении неравенства (8) в равенство, а для этого необходимо, как это следует из сопоставления выражения (6) и (8), обеспечить определенное соотношение между фазовой характеристикой фильтра  к () и фазовой характеристикой спектра  s () входного сигнала.

Допустим, что выходной сигнал достигает максимума в момент t 0 (пока еще неопределенный). Тогда выражение (6) дает

а условие обращения неравенства (8) в равенство сводится к следующему:

Это соотношение называют условием компенсации начальных фаз в спектре сигнала, поскольку первое слагаемое в правой части (10) компенсирует фазовую характеристику  s () входного спектра S(j). В результате прохождения сигнала через фильтр с фазовой характеристикой  к () сложение всех компонентов спектра, скорреëированных по фазе, образует пик выходного сигнала в момент t=t 0 .

Соотношение (11) показывает, что только при линейной фазовой характеристике S вых имеет пик, т.к. cosnw 1 (t-t 0)=1 при t=0

Связь между фазовой характеристикой  s (), компенсирующей ее характеристикой [- s ()] и полной фазовой характеристикой фильтра  к ()=-[ s ()+wt 0 ] видна из следующего рисунка. После прохождения через фильтр спектр выходного сигнала будет иметь фазовую характеристику.

Нелинейность фазовой характеристики φ s означает, что гармоники задерживаются по-разному и следовательно не могут образовать max в момент t 0 . При линейной фазовой характеристике в момент t 0 все гармоники имеют одинаковую фазу, поскольку гармоническая функция Cosnw 1 (t-t 0), при t=t 0 , всегда обращается в единицу.

Поскольку для образования пика требуется использование всей энергии сигнала, а это возможно не ранее окончания действия входного сигнала, задержка t 0 не может быть меньше, чем полная длительность сигнала.

Введем теперь помеху на входе фильтра. При равномерном энергетическом спектре помехи (белый шум) W()=W 0 =const - фильтр с равномерной АЧХ неприменим, т.к. мощность помехи на выходе достигает очень большой величины.

Прохождение электрического тока через газ

Электрический ток в газах обладает по сравнению с то­ком в металлических проводниках особенностями:

1) носителями электрических зарядов в газе являются элементарные заряженные частицы - электроны и ионы. Электрический ток в газах представляет собой направлен­ное движение, как электронов, так и ионов под действием приложенного градиента потенциала;

2) атомы и молекулы в газе находятся на значительном расстоянии друг от друга, во много раз превышающем раз­меры молекулы, в результате чего силы взаимодействия между ними незначительны и свободные заряды практичес­ки отсутствуют. Для того чтобы газ стал проводником, его необхо­димо ионизировать, т. е. создать в нем ионы и свободные электроны.

В теории газового разряда процесс первона­чальной ионизации газового промежутка под действием приложенного напряжения называют пробоем газового про­межутка . Прохождение электрического тока через газ на­зывают разрядом .

Напряжение пробоя при данном расстоянии между элек­тродами зависит от рода газа и его давления. При переменном напряжении явление пробоя осложняется побочными процессами. Например, с ростом частоты напряжение пробоя снижается.

Физические процессы, происходящие в момент пробоя, можно описать следующим образом. В данном объеме газа результате внешних природных ионизирующих факторов всегда присутствуют в небольшом количестве отдельные свободные заряженные частицы, которые при появлении электрического поля начинают двигаться вдоль силовых линий. Скорость движения заряженных частиц в газе зависит от их заряда и массы, также напряженности поля. Если частица встретит на пути том или молекулу газа, то произойдет соударение. В зависимости от кинетической энергии, которой обладает частица моменту соударения, и свойств встреченного атома его результатом будут изменения скорости атома (упругое соударение) либо его возбуждение или даже ионизация (неупругое соударение). При возбуждении происходит рост внутренней энергии, атома за счет кинетической энергии частицы. Этот избыток энергии освобождается через небольшой промежуток времени в виде фотона. При ионизации происходит освобождение электрона из числа электронов внешней орбиты атома или молекулы. Освобожденный электрон под действием поля придет в движение и в свою очередь может ионизировать встреченные им атомы или молекулы. Процесс освобождения заряженных частиц при достаточной напряженности приложенного поля развивается лавинообразно. Внешняя цепь, с помощью которой было приложено вызвавшее пробой напряжение, окажется замкнутой, и в ней установится электрический ток, значение которого определяется прежде всего параметрами этой внешней цепи.

Презентация на тему: Электрический ток в различных средах

Выполнила Житина Карина

Ученица 8 а класса.

Электрический ток может протекать в пяти различных средах:

Металлах

Вакууме

Полупроводниках

Жидкостях

Электрический ток в металлах:

Электрический ток в металлах – это упорядоченное движение электронов под действием электрического поля. Опыты показывают, что при протекании тока по металлическому проводнику не происходит переноса вещества, следовательно, ионы металла не принимают участия в переносе электрического заряда.

Опыты Толмена и Стюарта являются доказательством того, что металлы обладают электронной проводимостью

Катушка с большим числом витков тонкой проволоки приводилась в быстрое вращение вокруг своей оси. Концы катушки с помощью гибких проводов были присоединены к чувствительному баллистическому гальванометру Г . Раскрученная катушка резко тормозилась, и в цепи возникал кратковременных ток, обусловленный инерцией электронов.

Вывод:1.носителями заряда в металлах являются электроны;

2. процесс образования носителей заряда – обобществление валентных электронов;

3.сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению проводника – выполняется закон Ома;

4. техническое применение электрического тока в металлах: обмотки двигателей, трансформаторов, генераторов, проводка внутри зданий, сети электропередачи, силовые кабели.

Электрический ток в вакууме

- Вакуум - сильно разреженный газ, в котором средняя длина свободного пробега частицы больше размера сосуда, то есть молекула пролетает от одной стенки сосуда до другой без соударения с другими молекулами. В результате в вакууме нет свободных носителей заряда, и электрический ток не возникает. Для создания носителей заряда в вакууме используют явление термоэлектронной эмиссии.

ТЕРМОЭЛЕКТРОННАЯ ЭМИССИЯ – это явление «испарения» электронов с поверхности нагретого металла.

В вакуум вносят металлическую спираль, покрытую оксидом металла, нагревают её электрическим током (цепь накала) и с поверхности спирали испаряются электроны, движением которых можно управлять при помощи электрического поля.

На слайде показано включение двухэлектродной лампы

Такая лампа называется вакуумный диод

Эта электронная лампа носит название вакуумный ТРИОД.

Она имеет третий электрод –сетку, знак потенциала на которой управляет потоком электронов.

Выводы:1. носители заряда – электроны;

2. процесс образования носителей заряда – термоэлектронная эмиссия;

3.закон Ома не выполняется;

4.техническое применение – вакуумные лампы (диод, триод), электронно – лучевая трубка.

Электрический ток в полупроводниках

При нагревании или освещении некоторые электроны приобретают возможность свободно перемещаться внутри кристалла, так что при приложении электрического поля возникает направленное перемещение электронов.

Полупроводники представляют собой нечто среднее между проводниками и изоляторами.

- Полупроводники - твердые вещества, проводимость которых зависит от внешних условий (в основном от нагревания и от освещения).

С понижением температуры сопротивление металлов падает. У полупроводников, напротив, с понижением температуры сопротивление возрастает и вблизи абсолютного нуля они практически становятся изоляторами.

Зависимость удельного сопротивления ρ чистого полупроводника от абсолютной температуры T .

Собственная проводимость полупроводников

Атомы германия имеют четыре слабо связанных электрона на внешней оболочке. Их называют валентными электронами . В кристаллической решетке каждый атом окружен четырьмя ближайшими соседями. Связь между атомами в кристалле германия является ковалентной , т. е. осуществляется парами валентных электронов. Каждый валентный электрон принадлежит двум атомам.Валентные электроны в кристалле германия гораздо сильнее связаны с атомами, чем в металлах; поэтому концентрация электронов проводимости при комнатной температуре в полупроводниках на много порядков меньше, чем у металлов. Вблизи абсолютного нуля температуры в кристалле германия все электроны заняты в образовании связей. Такой кристалл электрического тока не проводит.

Образование электронно-дырочной пары

При повышении температуры или увеличении освещенности некоторая часть валентных электронов может получить энергию, достаточную для разрыва ковалентных связей. Тогда в кристалле возникнут свободные электроны (электроны проводимости). Одновременно в местах разрыва связей образуются вакансии, которые не заняты электронами. Эти вакансии получили название «дырок ».

Примесная проводимость полупроводников

Проводимость полупроводников при наличии примесей называется примесной проводимостью. Различают два типа примесной проводимостиэлектронную и дырочную проводимости.

Электронная и дырочная проводимости.

Если примесь имеет валентность большую, чем чистый полупроводник, то появляются свободные электроны. Проводимость –электронная, примесь донорная, полупроводник n – типа.

Если примесь имеет валентность меньшую, чем чистый полупроводник, то появляются разрывы связей – дырки. Проводимость – дырочная, примесь акцепторная, полупроводник p – типа.

Выводы:1. носители заряда – электроны и дырки;

2. процесс образования носителей заряда – нагревание, освещение или внедрение примесей;

3.закон Ома не выполняется;

4.техническое применение – электроника.

Электрический ток в жидкостях

- Электролитами принято называть проводящие среды, в которых протекание электрического тока сопровождается переносом вещества. Носителями свободных зарядов в электролитах являются положительно и отрицательно заряженные ионы. Электролитами являются водные растворы неорганических кислот, солей и щелочей.

Сопротивление электролитов падает с ростом температуры, так как с ростом температуры растёт количество ионов.

- График зависимости сопротивления электролита от температуры.

Явление электролиза

Это выделение на электродах веществ, входящих в электролиты;
Положительно заряженные ионы (анионы) под действием электрического поля стремятся к отрицательному катоду, а отрицательно заряженные ионы (катионы) - к положительному аноду.
На аноде отрицательные ионы отдают лишние электроны (окислительная реакция)
На катоде положительные ионы получают недостающие электроны (восстановительная).

Законы электролиза Фарадея.

Законы электролиза определяют массу вещества, выделяемого при электролизе на катоде или аноде за всё время прохождения электрического тока через электролит.

K - электрохимический эквивалент вещества,
численно равный массе вещества, выделившегося на электроде при прохождении через электролит заряда в 1 Кл.

Вывод:1. носители заряда – положительные и отрицательные ионы;

- 2. процесс образования носителей заряда – электролитическая диссоциация;

- 3 .электролиты подчиняются закону Ома;

- 4.Применение электролиза :
получение цветных металлов (очистка от примесей - рафинирование); гальваностегия - получение покрытий на металле (никелирование, хромирование, золочение, серебрение и т.д.);
гальванопластика - получение отслаиваемых покрытий (рельефных копий).

Электрический ток в газах

Зарядим конденсатор и подключим его обкладки к электрометру. Заряд на пластинах конденсатора держится сколь угодно долго, не наблюдается перехода заряда с одной пластины конденсатора на другую. Следовательно воздух между пластинами конденсатора не проводит ток.

В обычных условиях отсутствует проводимость электрического тока любыми газами. Нагреем теперь воздух в промежутке между пластинами конденсатора, внеся в него зажженную горелку. Электрометр укажет появление тока, следовательно при высокой температуре часть нейтральных молекул газа распадается на положительные и отрицательные ионы. Такое явление называется ионизацией газа.

Прохождение электрического тока через газ называется разрядом.

Разряд, существующий при действии внешнего ионизатора, - несамостоятельный .

Если действие внешнего ионизатора продолжается, то через определенное время в газе устанавливается внутренняя ионизация (ионизация электронным ударом) и разряд становится самостоятельным .

Виды самостоятельного разряда:

ИСКРОВОЙ

КОРОННЫЙ

Искровой разряд

При достаточно большой напряженности поля (около 3 МВ/м) между электродами появляется электрическая искра, имеющая вид ярко светящегося извилистого канала, соединяющего оба электрода. Газ вблизи искры нагревается до высокой температуры и внезапно расширяется, отчего возникают звуковые волны, и мы слышим характерный треск.

Молния. Красивое и небезопасное явление природы – молния – представляет собой искровой разряд в атмосфере.

Уже в середине 18-го века высказывалось предположение, что грозовые облака несут в себе большие электрические заряды и что молния есть гигантская искра, ничем, кроме размеров, не отличающаяся от искры между шарами электрической машины. На это указывал, например, русский физик и химик Михаил Васильевич Ломоносов (1711-1765), наряду с другими научными вопросами занимавшийся атмосферным электричеством.

Электрическая дуга (дуговой разряд)

В 1802 году русский физик В.В. Петров (1761-1834) установил, что если присоединить к полюсам большой электрической батареи два кусочка древесного угля и, приведя угли в соприкосновение, слегка их раздвинуть, то между концами углей образуется яркое пламя, а сами концы углей раскалятся добела, испуская ослепительный свет.



Последние материалы раздела:

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...