С какой целью и как проводится подрезание десны под коронку? С какой целью проводятся измерения? Смотреть что такое "опыт" в других словарях.


Теги: ,

Получить объективную информацию об отношении сотрудников к различным явлениям внутри компании и к руководству порою бывает очень не просто. Часто в этом помогает простой метод – анкетирование.

Особенности анкетирования

Анкетирование – это один из методов обратной связи с сотрудниками компании. Он представляет собой некий опрос при помощи специального бланка-анкеты.

Процедура «вопрос-ответ» строго регламентирована, что позволяет сосредоточиться исключительно на намеченном предмете исследования.

Среди основных достоинств анкетирования стоит назвать:

  • Минимум трудозатрат при его подготовке, проведении и обработке полученных данных
  • Минимум затрат при охвате большого количества респондентов за раз
  • Гарантированная анонимность и как следствие большая вероятность достоверности полученной информации
  • Возможность разъяснения респонденту непонятно сформулированного для него вопроса
  • Возможность проведения исследования и получения результатов в течение короткого периода времени

Виды анкетирования

Анкетирование делится на несколько видов:

  • Сплошное или выборочное
  • Именное или анонимное
  • Очное или заочное

При сплошном анкетировании опрашиваются все сотрудники компании. Оно оправдано в тех случаях, когда необходимо узнать мнение сотрудников по стратегическим вопросам. Например, об их лояльности к руководству или к организации в целом.

Выборочное анкетирование проводится для получения обратной связи по какому-либо вопросу. Например, об испытанных трудностях в период адаптации в компании. При этом опрашивается лишь определенная группа сотрудников, или конкретный отдел, или конкретное подразделение.

Во время именного анкетирования каждый работник вписывает в бланк анкеты свои личные данные, в частности, фамилию, имя и отчество. При этом он тщательно обдумывает ответы на поставленные вопросы. С одной стороны, это несомненный плюс данного вида анкетирования. С другой, существует большая доля вероятности получения недостоверных ответов. А это уже существенный минус.

Анонимное анкетирование дает больше открытых и правдивых высказываний, но и увеличивает число поспешных и необдуманных ответов.

Очное анкетирование проводится в присутствии представителя от его организатора в определенное время и в определенном месте.

При заочном анкетировании бланки раздаются заранее или рассылаются по почте. Заполнить их можно в любое время в течение отведенного срока.

Выбор цели анкетирования, респондентов и содержание анкетирования

Каждая анкета вначале должна содержать обращение к респонденту с объяснениями целей анкетирования и описанием того, как надо отвечать на вопросы, а в конце благодарность за сотрудничество и предоставленную информацию.

Перед проведением анкетирования необходимо ответить на три вопроса:

  • С какой целью опрашиваем?
  • Кого опрашиваем?
  • О чем спрашиваем?

Цель проведения анкетирования формулируется индивидуально в каждом конкретном случае. Это может быть:

  • Оценка сотрудниками какого-либо события в компании
  • Сбор мнений работников по конкретному вопросу или об определенной проблеме с целью дальнейшего корректирования действий руководства и пр.

В зависимости от поставленной цели отбираются респонденты (все сотрудники компании или часть, рабочие, служащие или руководство, новички или старожилы и т.д.).

Особое внимание необходимо уделить объему анкеты. По мнению специалистов вопросов должно быть не больше 15 и не меньше 5. В этом случае реально получить самую объективную картину о предмете исследования. А сотрудникам не придется надолго отвлекаться от своих основных обязанностей.

  • Открытыми — ответ формулируется респондентом самостоятельно
  • Закрытыми – ответ выбирается из числа предложенных
  • Прямыми. Например, «Знаете ли вы …?», «Считаете ли вы …?», «Ваше мнение о …?» и т.д.
  • Косвенными. Например, «Существует мнение, что … . А как думаете вы?»

Порядок проведения анкетирования

Порядок проведения анкетирования всегда одинаков. Это:

  1. Определение цели анкетирования
  2. Выбор вида анкетирования, группы респондентов
  3. Составление анкеты
  4. Оповещение выбранной группы сотрудников, их мотивация
  5. Раздача анкет, заполнение и сбор
  6. Анализ полученных данных
  7. Составление отчета для руководства
  8. Оповещение сотрудников о результатах анкетирования

Анкетирование – это нужно и важно!

Налаженная обратная связь с сотрудниками – это важная составляющая успеха деятельности любой компании. Ведь принять какое-либо управленческое решение, убедиться в его своевременности или правильности порою очень непросто без достоверной информации.

Вопросы.

1. С какой целью и как проводился опыт с двумя маятниками, изображенными на рисунке 64, а?

Цель опыта: Демонстрация явления резонанса. Ход опыта: 1) колебания маятника 1, через нить передаются маятнику 2, длина нити которого неизменна, вызывая его колебания; 2) при уменьшении длины нити маятника 1 частота его колебаний начнет приближаться к собственной частоте маятника 2; 3) при этом амплитуда вынужденных колебаний маятника 2 будет возрастать; 4) в момент, когда частота вынуждающей силы маятника 1 совпадет с частотой собственных колебаний маятника 2 (одинаковая длина нитей маятников) маятники будут колебаться в одинаковых фазах; 5) при дальнейшем уменьшении длины нити маятника 1 частота колебаний маятника 2 будет уменьшаться.

2. В чем заключается явление, называемое резонансом?

Явление резонанса заключается в том, что при совпадении частоты вынуждающей силы с собственной частотой системы амплитуда вынужденных колебаний достигает своего максимального значения.

3. Какой из маятников, изображенных на рисунке 64, б) колеблется в резонанс с маятником 3? По каким признакам вы это определили?

В резонанс колеблется маятник 1, т.к. его длина нити равна длине нити маятника 3.

4. К каким колебаниям - свободным или вынужденным - применимо понятие резонанса?

Понятие резонанса применимо к вынужденным колебаниям.

5. Приведите примеры, показывающие, что в одних случаях резонанс может быть полезным явлением, а в других - вредным.

Вредное проявление резонанса можно увидеть на примере разрушения мостов, высотных сооружений, затопления пароходов на волнах. Положительное явление резонанса проявляется например при настройке музыкальных инструментов с помощью камертона, в радиоэлектронике.

Упражнения.

1. Маятник 3 (см.рис. 64, б) совершает свободные колебания.
а) Какие колебания - свободные или вынужденные - будут совершать при этом маятники 1, 2 и 4?
б) Благодаря чему возникает вынуждающая сила, действующая на маятники 1, 2 и 4?
в) Каковы собственные частоты маятников 1, 2 и 4 по сравнению с частотой колебаний маятника 3?
г) Почему маятник 1 колеблется в резонанс с маятником 3, а маятники 2 и 4 - нет?

а) маятники 1, 2 и 4 будут совершать вынужденные колебания, т.к. они колеблются под действием шнура; б) вынуждающая сила возникает благодаря колебанию маятника; в) частота маятника 1 равна частоте маятника 3, частота маятника 2 больше частоты маятника 3, частота маятника 4 меньше частоты маятника 3; г) т.к их длины одинаковы, то их собственные частоты совпадают и они колеблются в резонансе.

2. Вода, которую мальчик несет в ведре, начинает сильно расплескиваться. Мальчик меняет темп ходьбы (или просто "сбивает ногу"), и расплескивание прекращается. Почему так происходит?

Вода начинает расплескиваться когда частота шагов мальчика совпадает с собственной частотой колебаний ведра с водой в руках мальчика. Если частоты не совпадают, то ведро перестает сильно раскачиваться.

3. Собственная частота качелей равна 0,5 Гц. Через какие промежутки времени нужно подталкивать их, чтобы раскачать как можно сильнее, действуя относительно небольшой силой?

Приведём исторический факт, имеющий непосредственное отношение к теме данного параграфа.

В 1908 г. в Петербурге сильно раскачался и в результате этого обрушился так называемый Египетский мост через реку Фонтанку, когда по нему проходил маршевым шагом (т. е. «в ногу») кавалерийский эскадрон.

Почему именно в описанном случае вынужденные колебания моста достигли такой большой амплитуды? Можно ли было предотвратить аварию?

Для ответа на эти вопросы рассмотрим, как зависит амплитуда вынужденных колебаний от частоты изменения вынуждающей силы.

На рисунке 68, а изображены два маятника, висящие на общем шнуре. Длина маятника 2 неизменна, этой длине соответствует определённая частота свободных колебаний (т. е. собственная частота маятника). Длину маятника 1 можно менять, подтягивая свободные концы нитей. При изменении длины маятника 1 соответственно меняется его собственная частота.

Рис. 68. Демонстрации зависимости амплитуды вынужденных колебаний маятников от частоты изменения вынуждающей силы

Если отклонить маятник 1 от положения равновесия и предоставить его самому себе, то он будет совершать свободные колебания. Это вызовет колебания шнура, в результате чего на маятник 2 через его точки подвеса будет действовать вынуждающая сила, периодически меняющаяся по модулю и направлению с такой же частотой, с какой колеблется маятнике. Под действием этой силы маятник 2 начнёт совершать вынужденные колебания.

Если постепенно уменьшать длину маятника 2, то частота его колебаний, а значит, и частота изменения вынуждающей силы, действующей на маятник 2, будет увеличиваться, приближаясь к собственной частоте маятника 2. При этом амплитуда установившихся вынужденных колебаний маятника 2 будет возрастать. Она достигнет наибольшего значения, когда длины маятников сравняются, т. е. когда частота v вынуждающей силы совпадёт с собственной частотой v 0 маятника 2. Маятники будут колебаться в одинаковых фазах.

Египетский мост, построенный заново в 1954-1956 гг.

Дальнейшее уменьшение длины маятника 1 приведёт к тому, что частота вынуждающей силы станет больше собственной частоты маятника 2. При этом амплитуда его колебаний начнёт уменьшаться.

На основании этого опыта можно сделать следующий вывод: амплитуда установившихся вынужденных колебаний достигает своего наибольшего значения при условии, что частота v вынуждающей силы равна собственной частоте v 0 колебательной системы. В этом заключается явление, называемое резонансом .

Резонанс можно пронаблюдать также на опыте, показанном на рисунке 68, б. На нём изображены четыре маятника, подвешенные к общему шнуру. Маятники 1 и 3 имеют одинаковую длину. Под действием свободных колебаний маятника 3 остальные маятники совершают вынужденные колебания. При этом амплитуда колебаний маятника 1 значительно больше амплитуд маятников 2 и 4. В данном случае маятник 1 колеблется в резонанс с маятником 3.

Почему амплитуда установившихся колебаний, вызванных вынуждающей силой, достигает наибольшего значения именно при совпадении частоты изменения этой силы с собственной частотой колебательной системы? Дело в том, что в этом случае направление вынуждающей силы в любой момент времени совпадает с направлением движения колеблющегося тела. Таким образом создаются наиболее благоприятные условия для пополнения энергии колебательной системы за счёт работы вынуждающей силы. Например, чтобы посильнее раскачать качели, мы подталкиваем их таким образом, чтобы направление действующей силы совпадало с направлением движения качелей.

Следует помнить, что понятие резонанса применимо только к вынужденным колебаниям.

Вернёмся теперь к случаю с обрушенным мостом. Очевидно, мост раскачался до большой амплитуды потому, что частота периодически действующей на него вынуждающей силы (ударов копыт идущих «в ногу» лошадей) случайно совпала с собственной частотой этого моста. Аварию можно было бы предотвратить, если бы перед входом на мост была отдана команда идти не «в ногу».

Резонанс играет большую роль в самых разнообразных явлениях, причём в одних - полезную, в других - вредную. Его необходимо учитывать, в частности, в тех случаях, когда с помощью наименьшей периодической силы нужно получить определённый размах вынужденных колебаний. Например, тяжёлый язык большого колокола можно раскачать, действуя сравнительно небольшой силой с частотой, равной собственной частоте языка. Но мы не достигнем желаемого результата, действуя не в резонанс, даже прикладывая большую силу.

Примерами вредного проявления резонанса могут служить слишком сильное раскачивание железнодорожного вагона при случайном совпадении его собственной частоты колебаний на рессорах с частотой ударов колёс на стыках рельсов, сильное раскачивание пароходов на волнах и многие другие явления.

В тех случаях, когда резонанс может нанести ущерб, принимают меры к тому, чтобы не допустить его возникновения. Например, многие заводские станки, отдельные части которых совершают периодические движения, устанавливают на массивном фундаменте, препятствующем возникновению колебаний всего станка.

Вопросы

  1. С какой целью и как проводился опыт с двумя маятниками, изображённый на рисунке 68, а?
  2. В чём заключается явление, называемое резонансом?
  3. Какой из маятников, изображённых на рисунке 68, б, колеблется в резонанс с маятником 3? По каким признакам вы это определили?
  4. К каким колебаниям - свободным или вынужденным - применимо понятие резонанса?
  5. Приведите примеры, показывающие, что в одних случаях резонанс может быть полезным явлением, а в других - вредным.

Упражнение 26

  1. Маятник 3 (см. рис. 68, б) совершает свободные колебания.
    1. Какие колебания - свободные или вынужденные - будут совершать при этом маятники 1,2 и 41
    2. Каковы собственные частоты маятников 1, 2 и 4 по сравнению с частотой колебаний маятника 3?
  2. Вода, которую мальчик несёт в ведре, начинает сильно расплёскиваться. Мальчик меняет темп ходьбы (или просто «сбивает ногу»), и расплёскивание прекращается. Почему так происходит?
  3. Собственная частота качелей равна 0,5 Гц. Через какие промежутки времени нужно подталкивать их, чтобы раскачать как можно сильнее, действуя относительно небольшой силой?
Достучаться до небес [Научный взгляд на устройство Вселенной] Рэндалл Лиза

С КАКОЙ ЦЕЛЬЮ ПРОВОДЯТСЯ ИЗМЕРЕНИЯ?

Измерения не могут быть идеальными. В научных исследованиях - как и при принятии любого решения - нам приходится определять для себя приемлемый уровень неопределенности. Только в этом случае можно двигаться вперед. К примеру, если вы принимаете лекарство и надеетесь, что оно облегчит вам сильную головную боль, то вам, возможно, достаточно знать, что это лекарство помогает обычному человеку в 75% случаев. С другой стороны, если изменение стиля питания ненамного снизит ваши и без того невысокие шансы заболеть чем?нибудь сердечно–сосудистым (к примеру, с 5 до 4,9%), этого может оказаться недостаточно, чтобы убедить вас отказаться от любимых пирожных.

В политике точка принятия решения еще менее определенна. Как правило, общество смутно представляет, насколько хорошо нужно изучить вопрос, прежде чем менять законы или накладывать ограничения. Необходимые расчеты здесь осложнены множеством факторов. Как говорилось в предыдущей главе, из?за неоднозначности целей и методов провести сколько?нибудь достоверный анализ «затраты - прибыли» очень сложно, а иногда вообще невозможно.

Колумнист The New York Times Николас Кристоф, ратуя за осторожность в обращении с потенциально опасными химическими веществами типа бисфенол–А (ВРА) в пище или пищевой упаковке, писал: «Исследования ВРА уже несколько десятков лет бьют тревогу, а данные до сих пор сложны и неоднозначны. Такова жизнь: в реальном мире законодательные меры, как правило, приходится принимать на основании неоднозначных и спорных данных».

Ничто из сказанного не означает, что нам не следует, определяя политический курс, стремиться к количественной оценке затрат и выгод. Однако ясно, что нам нужно четко понимать, что означает каждая оценка, как сильно она может меняться в зависимости от начальных предположений или целей, а также что при расчетах было и что не было принято во внимание. Анализ «затраты - выгоды» может быть полезен, но может и дать ложное ощущение конкретности, надежности и безопасности, которое зачастую приводит к опрометчивым решениям.

К счастью для нас, физики, как правило, ставят перед собой вопросы попроще, чем те, что приходится решать публичным политикам. Имея дело с чистым знанием, которое в ближайшее время не предполагается использовать на практике, думаешь совершенно о другом. Измерения в мире элементарных частиц тоже намного проще, по крайней мере теоретически. Все электроны по природе своей одинаковы. Проводя измерения, приходится думать о статистической и системной погрешности, зато о неоднородности популяции можно спокойно забыть. Поведение одного электрона дает нам достоверную информацию о поведении всех электронов. Тем не менее представления о статистической и системной погрешности применимы и здесь.

Однако даже в «простых» физических системах необходимо заранее решить, какая точность нам необходима, ведь идеальных измерений не бывает. На практике вопрос сводится к тому, сколько раз экспериментатор должен повторить измерение и насколько прецизионный измерительный прибор при этом использовать. Решение за ним. Приемлемый уровень неопределенности определяется задаваемыми вопросами. Разные цели предполагают разные уровни прецизионности и точности.

К примеру, атомные часы измеряют время с точностью до одной десятитриллионной, но такое точное представление о времени мало кому нужно. Исключение - эксперименты по проверке теории гравитации Эйнштейна: в них лишней прецизионности и точности быть не может. До сих пор все тесты показывают, что эта теория работает, но измерения непрерывно совершенствуются. При более высокой точности могут проявиться невиданные до сих пор отклонения, представляющие новые физические эффекты, которые невозможно было заметить в ходе прежних, менее точных экспериментов. Если это произойдет, то замеченные отклонения позволят нам заглянуть в царство новых физических явлений. Если нет, придется сделать вывод о том, что теория Эйнштейна даже точнее, чем было установлено ранее. Мы будем знать, что ее можно уверенно применять в более широком диапазоне энергий и расстояний, к тому же с большей точностью.

Если же нам нужно «всего лишь» доставить человека на Луну, то мы, естественно, не обойдемся без знания физических законов, достаточного, чтобы не промахнуться, но привлекать общую теорию относительности не обязательно, и уж тем более не требуется принимать во внимание еще более мелкие потенциальные эффекты, представляющие возможные отклонения от нее.

Из книги Новейшая книга фактов. Том 3 [Физика, химия и техника. История и археология. Разное] автора Кондрашов Анатолий Павлович

Из книги Движение. Теплота автора Китайгородский Александр Исаакович

Из книги Достучаться до небес [Научный взгляд на устройство Вселенной] автора Рэндалл Лиза

Из книги Новый ум короля [О компьютерах, мышлении и законах физики] автора Пенроуз Роджер

Из книги автора

Из книги автора

Из книги автора

Из книги автора

Из книги автора

Из книги автора

Из книги автора

Из книги автора

Из книги автора

Измерения g на службе разведки Речь идет не о военной разведке. Там знание ускорения силы тяжести ни к чему. Речь идет о геологической разведке, цель которой – найти залежи полезных ископаемых под землей, не роя ям, не копая шахт.Существует несколько методов очень точного

Из книги автора

ИЗМЕРЕНИЯ И БАК Вероятностная природа квантовой механики не подразумевает, что мы, по сути, ничего не знаем. Более того, зачастую все обстоит как раз наоборот. Нам известно достаточно много. К примеру, магнитный момент электрона - это его неотъемлемая характеристика,

Из книги автора

ДОПОЛНИТЕЛЬНЫЕ ИЗМЕРЕНИЯ Ни суперсимметрия, ни техницвет не дают нам идеального решения проблемы иерархии. Суперсимметричные теории не предлагают нам экспериментально непротиворечивых механизмов нарушения суперсимметрии, а создать на основе техницветной силы

Каждый раз, когда вы проводите научный эксперимент, следует составлять лабораторный отчет с описанием целей исследования, ожидаемых результатов, последовательности действий и полученных результатов с их объяснением. Зачастую лабораторные отчеты составляют в стандартном формате - сначала приводят аннотацию и введение, затем следует перечисление используемых материалов и экспериментальных методик, описание и обсуждение полученных результатов, а в конце выводы. Такой формат позволяет читателю найти ответы на основные вопросы: с какой целью проводился эксперимент, каких результатов ожидал экспериментатор, как проходил эксперимент, что произошло в процессе эксперимента, и о чем говорят полученные результаты. В данной статье описан стандартный формат лабораторного отчета.

Шаги

Часть 1

Аннотация и введение

    Начните с аннотации. Она представляет собой предельно краткое изложение содержания отчета и обычно содержит не более 200 слов. Аннотация поможет читателю быстро ознакомиться с результатами эксперимента и их значением. Аннотация должна иметь такую же структуру, что и сам отчет. Она позволит читателю быстро ознакомиться с целью, полученными результатами и значением проведенного эксперимента.

    • Цель аннотации заключается в том, чтобы обеспечить читателя краткой информацией об эксперименте, по которой он сможет судить о том, стоит ли изучать весь отчет. Аннотация позволит читателю определить, интересно ли ему данное исследование.
    • Опишите одним предложением цель исследования и его значимость. Затем очень кратко перечислите использованные материалы и методы. Посвятите 1–2 предложения изложению результатов эксперимента. После аннотации можно привести список ключевых слов, которые часто используются в отчете.
  1. Напишите введение. Начните с краткого обзора относящихся к теме литературных источников и экспериментов. Затем подытожьте теоретические основы и текущее состояние дел в данном направлении. Дальше укажите на проблему и вопросы, которым посвящено ваше исследование. Кратко опишите свою работу и то, какие проблемы и вопросы в ней рассматриваются. Наконец, вкратце объясните проведенный вами эксперимент, но не вдавайтесь в детали, которые будут изложены в дальнейшем при описании использованных материалов и методов, а также в ходе анализа полученных результатов.

  2. Решите, какими должны быть ожидаемые результаты. Грамотное и четкое объяснение ожидаемых результатов называется гипотезой. Гипотеза должна быть приведена в последней части введения.

    • Гипотеза научного исследования должна представлять собой краткое заявление, в котором описанная во введении проблема представлена в виде проверяемого тезиса.
    • Гипотезы нужны ученым для того, чтобы правильно планировать и проводить эксперименты.
    • Гипотезу никогда не доказывают, а лишь «проверяют» или «поддерживают» экспериментом.
  3. Корректно сформулируйте гипотезу . Следует начать с общего заявления об ожидаемых результатах и на его основе сформулировать проверяемое утверждение. Затем разверните и конкретизируйте идею. Наконец, более подробно объясните свой замысел и сделайте так, чтобы вашу гипотезу можно было проверить.

    • Например, можно начать с утверждения: «Удобрения влияют на то, насколько высоким вырастет растение». Эту идею можно сформулировать в виде четкой гипотезы: «Если растения удобрять, они вырастают быстрее и выше». Чтобы сделать данную гипотезу проверяемой, можно добавить экспериментальные подробности: «Те растения, которые удобряют раствором с 1 миллилитром удобрения, растут быстрее, чем аналогичные растения без удобрения, поскольку получают больше питательных веществ».

    Часть 2

    Экспериментальная методика
    1. Посвятите отдельный раздел объяснению эксперимента. Этот раздел часто называется «Материалы и методы» или «Экспериментальная процедура». Его цель заключается в том, чтобы сообщить читателю, как именно вы проводили свой эксперимент. Опишите все использованные материалы и конкретные методы, которые вы применяли в своей работе.

      • В этом разделе следует дать ясную и исчерпывающую информацию об экспериментальной процедуре, чтобы на ее основании другие в случае необходимости могли повторить ваш эксперимент.
      • Данный раздел является чрезвычайно важным документальным описанием ваших методов анализа.
    2. Опишите все материалы, которые необходимы для проведения эксперимента. Это может быть простое перечисление или несколько абзацев текста. Опишите использованное в работе экспериментальное оборудование, его тип и марку. Часто бывает полезно привести схему той или иной установки. Помимо прочего, объясните, что вы использовали в качестве исследуемых материалов или объектов.

      • Например, если вы проверяете влияние удобрений на рост растений, следует указать марку использованного удобрения, вид изученных растений и марку семян.
      • Не забудьте указать количество всех использованных в эксперименте объектов.
    3. Подробно опишите экспериментальную процедуру. Последовательно и подробно изложите все этапы эксперимента. Шаг за шагом опишите, как именно вы проводили эксперимент. Включите описание всех проведенных измерений и того, как и когда они осуществлялись. Если вы предпринимали меры для того, чтобы увеличить точность и достоверность эксперимента, опишите их. Например, это могли быть какие-то дополнительные способы контроля, ограничения или меры предосторожности.

      • Помните о том, что все эксперименты должны включать заданные параметры и переменные величины. Опишите их в данном разделе.
      • Если вы использовали уже описанный в литературе экспериментальный метод, не забудьте привести ссылку на оригинальный источник.
      • Помните, что цель данного раздела заключается в том, чтобы дать читателю полную и точную информацию о том, как вы проводили свой эксперимент. Не опускайте деталей.

    Часть 3

    Результаты
    1. Посвятите отдельный раздел изложению полученных результатов. Это основная часть вашего отчета. В данном разделе следует описать результаты, полученные качественными и количественными методами анализа. Если вы приводите графики, диаграммы и другие рисунки, не забудьте описать их в тексте. Все рисунки должны иметь свой номер и подпись. Если вы проводили статистические исследования, приведите их результаты.

      • Например, если вы проверяли влияние удобрений на рост растений, желательно привести график, на котором сопоставляются средние скорости роста растений с удобрением и без него.
      • Следует также описать полученные результаты в тексте, например: «Растения, которые поливали раствором с 1 миллилитром удобрения, в среднем вырастали на 4 сантиметра выше, чем те, которым не давали удобрение».
      • Последовательно описывайте полученные результаты. Расскажите читателю, почему тот или иной результат важен для решения данной проблемы. Это позволит ему без особых усилий следить за вашей логикой изложения.
      • Сравните полученные результаты с первоначальной гипотезой. Напишите, подтвердил или нет эксперимент вашу гипотезу.
      • Количественные данные выражаются в числовой форме, например в виде процентов или статистических данных. Качественные данные отвечают на более широкие вопросы и выражаются в виде суждений авторов исследования.


Последние материалы раздела:

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...