Фундаментальные основы нанотехнологий. Материалы лекций «Фундаментальные основы нанотехнологий

С наступлением нового тысячелетия началась эра нанотехнологии. Стремительное развитие компьютерной техники, с одной стороны, будет стимулировать исследования в области нанотехнологий, с другой стороны, облегчит конструирование наномашин. Таким образом, нанотехнология будет быстро развиваться в течение последующих десятилетий.

Многие источники, в первую очередь англоязычные, первое упоминание методов, которые впоследствии будут названы нанотехнологией, связывают с известным выступлением Ричарда Фейнмана “Там внизу много места”, сделанным им в 1959 году в Калифорнийском технологическом институте на ежегодной встрече Американского физического общества. Ричард Фейнман предложил, что возможно механически перемещать одиночные атомы при помощи манипулятора соответствующего размера, по крайней мере, такой процесс не противоречил бы известным на сегодняшний день физическим законам.

Впервые термин “нанотехнология” употребил Норио Танигути в 1974 году. Он назвал этим термином производство изделий размером несколько нанометров. В 1980-х годах этот термин использовал Эрик К. Дрекслер в своих книгах “Машины создания: грядет эра нанотехнологии” и “Nanosystems: Molekular Machinery, Manufacturing, and Computation”. Центральное место в его исследованиях играли математические расчеты, с помощью которых можно было проанализировать работу устройства размерами в несколько нанометров.

Фактически американцы ввели в обиход термин - нанотехнологии, обобщивший уже ведущиеся в то время широким фронтом научные исследования, вызванные появлением соответствующего инструментария, в частности, сканирующих зондовых микроскопов.

Невольно новый термин оказался и удачным пиаровским ходом, ибо он не формулирует конкретной задачи, а предлагает с применением единого инструментария решения широкого спектра задач в самых разных областях человеческой деятельности.

Нанотехнология и, в особенности, молекулярная технология - новые области, очень мало исследованные. Развитие современной электроники идет по пути уменьшения размеров устройств. С другой стороны, классические методы производства подходят к своему естественному экономическому и технологическому барьеру, когда размер устройства уменьшается не намного, зато экономические затраты возрастают экспоненциально. Нанотехнология - следующий логический шаг развития электроники и других наукоемких производств.

Как показывает обзор литературы, нанотехнологии рассматриваются сегодня и как область исследований, и как направление технологического развития. С одной стороны, это отражает современные тенденции взаимосвязи науки и технологии, а с другой - порождает серьезную терминологическую путаницу. Противоречия начинаются уже в попытках обозначить область исследований в целом и дать определение понятия «нанотехнологии». Так, некоторые авторы выделяют «нанонауку» (nanoscience), занимающуюся познанием свойств наноразмерных объектов и анализом их влияния на свойства материалов, и «нанотехнологию» (nanotechnology), имеющую своей целью развитие этих свойств для производства структур, устройств и систем с характеристиками, заданными на молекулярном уровне. Иногда такое разделение имеет под собой сугубо методическую основу, когда речь идет об анализе научных публикаций (и тогда говорится о «нанонауке») либо патентов (в этом случае используется понятие «нанотехнологии»). На практике же провести различие между нанонаукой и нанотехнологией оказывается практически невозможным, поэтому во избежание путаницы отдельные исследователи предлагают ограничиться только одним термином - «нанотехнологии», объединив в нем обе составляющие. Принимая такой подход, важно предложить согласованное определение нанотехнологий, которое, в частности, призвано обозначить общие границы рассматриваемой области, исключив из нее лишнее.

Заметим, что, несмотря на наличие различных определений нанотехнологий, единого согласованного варианта, причем такого, который образовывал бы основания для построения соответствующих классификаций, пока не существует.

На международном уровне из всего многообразия подходов, встречающихся в научных публикациях, аналитических обзорах и политических документах разных стран, выделяются пять определений, пользующихся наибольшим влиянием (табл. 1).

Таблица 1 - Общие определения нанотехнологий

Определение

VII Рамочная программа ЕС (2007-2013)

Получение новых знаний о феноменах, свойства которых зависят от интерфейса и размера; управление свойствами материалов на наноуровне для получения новых возможностей их практического применения; интеграция технологий на наноуровне; способность к самосборке; наномоторы; машины и системы; методы и инструменты для описания и манипулирования на наноуровне; химические технологии нанометровой точности для производства базовых материалов и компонентов; эффект в отношении безопасности человека, здравоохранения и охраны окружающей среды; метрология, мониторинг и считывание, номенклатура и стандарты; исследование новых концепций и подходов для практического применения в различных отраслях, включая интеграцию и конвергенцию с новыми технологиями.

Рабочий план Международной организации по стандартизации (ISO) от 23/04/2007

1) Понимание механизмов управления материей и процессами на наношкале (как правило, но не исключительно, менее 100 нанометров по одному или нескольким измерениям), где феномены, связанные со столь малыми размерами, обычно открывают новые возможности практического применения.

2) Использование свойств материалов, проявляющихся на наношкале и отличных от свойств отдельных атомов, молекул и объемных веществ, для создания улучшенных материалов, устройств и систем, основанных на этих новых свойствах.

Европейское патентное ведомство (EPO)

Термин «нанотехнология» покрывает объекты, контролируемый геометрический размер хотя бы одного из функциональных компонентов которых в одном или нескольких измерениях не превышает 100 нанометров, сохраняя присущие им на этом уровне физические, химические, биологические эффекты. Он покрывает также оборудование и методы контролируемого анализа, манипуляции, обработки, производства или измерения с точностью менее 100 нанометров.

США: Национальная нанотехнологическая инициатива (2001- н.в.)

Нанотехнология - это понимание и управление материей на уровне примерно от 1 до 100 нанометров, когда уникальные явления создают возможности для необычного применения. Нанотехнология охватывает естественные, технические науки и технологию нанометровой шкалы, включая получение изображений, измерение, моделирование и манипулирование материей на этом уровне.

Япония: Второй общий план по науке и технологиям (2001-2005)

Нанотехнология - междисциплинарная область науки и техники, включающая информационные технологии, науки об окружающей среде, о жизни, материалах и др. Она служит для управления и использования атомов и молекул размером порядка нанометра (1/1.000.000.000), что дает возможность обнаруживать новые функции благодаря уникальным свойствам материалов, проявляющимся на наноуровне. В результате появляется возможность создания технологических инноваций в различных областях.

Все эти определения были идентифицированы Рабочей группой по нанотехнологиям (РГН) Организации экономического сотрудничества и развития (ОЭСР) в качестве базы для создания унифицированной методологической рамки, необходимой для организации гармонизированной в международном масштабе системы сбора и анализа статистической информации о сфере нанотехнологий. Отметим, что предлагаемые теми или иными международными либо национальными организациями определения носят характер рабочих, отражая специфику тех конкретных программ и проектов, применительно к которым они и сформулированы, и различаются в зависимости от сферы их применения, решаемых задач и уровня полномочий этих организаций. К примеру, в определении нанотехнологий в VII Рамочной программе ЕС подчеркивается их научно-технологическая составляющая; подходы, принятые Европейским и Японским патентными ведомствами, нацелены на работу в сфере охраны интеллектуальной собственности, а формулировка из Национальной нанотехнологической инициативы США охватывает естественные, технические науки и технологии. Тем не менее не следует забывать, что состав приведенного набора определений продиктован, прежде всего, их политической операциональностью (ориентацией на принятие политических решений) и принадлежностью к странам (регионам) с максимальными объемами государственного финансирования научно-технологической сферы (ЕС, США, Япония). Список дополняют так называемое «рамочное» определение ISO, составляющее основу документов РГН, и определение Европейского патентного ведомства (EPO) - пока еще единственного источника международно-сопоставимой информации о нанотехнологиях. Указанные определения объединяет ряд общих черт, относительно которых следует сделать несколько дополнительных замечаний.

Во-первых, каждое из приведенных определений обращает внимание на масштаб рассматриваемого явления. Как правило, указывается диапазон от 1 до 100 нм, внутри которого могут быть зафиксированы уникальные молекулярные процессы.

Во-вторых, подчеркивается принципиальная возможность управления процессами, происходящими, как правило, в границах обозначенного диапазона. Это позволяет отличить нанотехнологии от природных явлений подобного рода («случайных» нанотехнологий), а также обеспечить возможность придания создаваемым материалам и устройствам уникальных характеристик и функциональных возможностей, достижение которых в рамках предшествующей технологической волны было невозможно. В свою очередь это означает, что в средне- и долгосрочной перспективе нанотехнологии могут не только содействовать развитию существующих рынков, но и способствовать возникновению новых рынков (продуктов или услуг), способов организации производства, видов экономических и социальных отношений.

В-третьих, характерной особенностью определений является их экономико-статистическая операциональность. Нанотехнологии представлены как явление, поддающееся количественной оценке, - это техники, инструменты, материалы, устройства, системы. Это делает их важным элементом цепочек создания стоимости, однако вопросы оценки вклада нанотехнологий в стоимость конечного продукта и пределов диверсификации существующих секторов производства при их применении требуют дополнительного рассмотрения.

В то же время обращают на себя внимание некоторые различия в указанных определениях. Прежде всего они касаются степени конвергентности и целевого назначения нанотехнологий. Так, в европейском варианте отмечается как интеграция различных технологий в границах наношкалы, так и их конвергенция с другими технологиями; выделяются отдельные сферы их применения. Японская версия подчеркивает инновационную природу нанотехнологии. К тому же европейское и японское определения со всей очевидностью отражают распространенное убеждение, что использование схожих «строительных элементов» (например, атомов и молекул) и инструментов анализа (микроскопы, компьютеры высокой мощности и др.) в различных научных дисциплинах может привести в будущем к синтезу информационных, био- и нанотехнологий.

Интересно также, что среди приведенных определений встречаются не только общие (базовые), но и так называемые «списочные», в том числе принятое в VII Рамочной программе ЕС. Обычно они формируются путем перечисления научно-технологических областей (направлений), которые относятся к соответствующей сфере. Как показывает случай с биотехнологиями, использование общего и списочного определений способствует эффективному решению различных задач в области статистики, анализа, научно-технической и инновационной политики. Так, базовые определения хорошо подходят для научных дискуссий, достижения консенсуса по общим вопросам, принятия рамочных политических решений. Списочные определения позволяют наладить коммуникацию с технологическими и производственными областями, где новые технологии могут иметь прикладное значение (например, для исследования рынков и компаний), а также обеспечить создание более строгой системы отбора и экспертизы проектов. В конечном итоге это позволяет повысить точность и достоверность получаемой информации.

В официальной российской практике вплоть до последнего времени действовали два различных базовых определения нанотехнологий, которые представлены, соответственно, в «Концепции развития в Российской Федерации работ в области нанотехнологий на период до 2010 года» и «Программе развития наноиндустрии в Российской Федерации до 2015 года» (табл. 2).

Таблица 2 - Российские определения нанотехнологий

Документ

Определение

Концепция развития в Российской Федерации работ в области нанотехнологий на период до 2010 года

Нанотехнологии - это совокупность методов и приемов, обеспечивающих возможность контролируемым образом создавать и модифицировать объекты, включающие компоненты с размерами менее 100 нм, имеющие принципиально новые качества и позволяющие осуществлять их интеграцию в полноценно функционирующие системы большего масштаба; в более широком смысле этот термин охватывает также методы диагностики, характерологии и исследований таких объектов.

Программа развития наноиндустрии в Российской Федерации до 2015 года

Нанотехнологии - технологии, направленные на создание и эффективное практическое использование нанообъектов и наносистем с заданными свойствами и характеристиками.

Первая из этих двух версий фокусируется на изучении и создании объектов определенного (наноразмерного) масштаба, вторая - предлагает рассматривать процессы создания и использования нанотехнологий. В обоих случаях отсутствуют указания на особенности, связанные с уникальностью явлений и происходящие в пределах наношкалы. Кроме того, определение, представленное в Программе развития наноиндустрии, не несет новой информации о характеризуемом явлении и формулируется исходя из свойств и признаков одного порядка. Это делает его максимально абстрактным и лишает какого бы то ни было уровня операциональности.

С целью преодоления отмеченных выше проблем и выработки такого определения нанотехнологий, которое позволило бы отразить их специфический характер и могло бы быть использовано в сфере статистического наблюдения, а также научно-технологической и инновационной политики, нами была предпринята попытка синтеза эффективных элементов различных существующих подходов. Результатом соответствующих методических усилий стала новая версия базового определения нанотехнологий, которая прошла обсуждение в целом ряде представительных аудиторий, включая специализированные экспертные совещания и фокус-группы, рабочую группу Научно-координационного совета ФЦП «Исследования и разработки по приоритетным направлениям развития научно-технологического комплекса России на 2007-2012 годы» по направлению «Индустрия наносистем и материалов», редколлегию журнала «Российские нанотехнологии», первый и второй Международные форумы по нанотехнологиям и т.п. Финальный вариант предлагаемого определения выглядит следующим образом…

Под нанотехнологиями предлагается понимать совокупность приемов и методов, применяемых при изучении, проектировании и производстве наноструктур, устройств и систем, включающих целенаправленный контроль и модификацию формы, размера, взаимодействия и интеграции составляющих их наномасштабных элементов (около 1-100 нм), наличие которых приводит к улучшению либо к появлению дополнительных эксплуатационных и/или потребительских характеристик и свойств получаемых продуктов.

Данное определение учитывает комплексный научно-технологический характер рассматриваемого явления, указывает на специфическую размерность и управляемость основных процессов, подчеркивает их определяющее влияние на свойства создаваемых продуктов и отношение к рыночной новизне. Оно может быть использовано для целей проведения научно-технической экспертизы, формулирования критериев отбора и оценки отдельных проектов, связанных с нанотехнологиями, организации статистического наблюдения в этой сфере.

Предложенное определение было рассмотрено правлением Государственной корпорации «Роснанотех» в сентябре 2009 г. и принято в качестве рабочего.

Как уже было отмечено выше, междисциплинарный характер нанотехнологий обусловливает целесообразность дополнения базового их определения списочным, которое охватывало бы научно-технологические направления, объединенные общим понятием «нанотехнологии». В ходе работы были выделены семь таких крупных направлений, которые составляют списочное определение и образуют основу проекта классификации направлений нанотехнологий.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

КОНТРОЛЬНАЯ РАБОТА

на тему: «Основы нанотехнологий»

1. Перечислите области, в которых применяются нанотехнологии. Приведите примеры получаемых материалов

Нанотекстиль

Нанотекстиль занимает одно из ведущих мест в мировом производстве нанопродукции после наноэлектроники, нанофармацевтики и нанокосметики.

Объем производства ~ 50 млрд.DS (2006 г.)

Прирост ~ 10% в год

Лидер США ~ 40%

РФ закупает на ~ 1,5 млрд.DS (технический, гигиена, спорт)

Гигиенический текстиль

(памперсы, белье больничное)

200 млн. чел. - потребители (дети, пожилые) памперсов. Население планеты стареет, рынок памперсов расширяется.

Гигиенический текстиль = нанотехнология: Нановолокна (суперсорбенты), наносеребро?, наноотдушки, etc.

Химические волокна

Нановолокна по диаметру < 100 нм.

Самая распространенная технология получения нанотонких волокон - электропрядение, когда на выходе из фильеры раствор или расплав полимера попадает в зону действия электрического поля. В электрическом поле происходит утонение вытекающей струи полимера до наноразмеров, как это показано на схеме:

Обычные химические волокна с включением наночастиц различной химической природы и формы (углерод-фуллерены, металлы, оксиды металлов, алюмосиликаты и др.), наполненные наночастицами волокна - это композитные волокна с новыми свойствами.

От природы наночастиц зависят новые свойства: электропроводность, механическая прочность, антимикробность, способность окрашиваться, etc

Защитный текстиль

Точного определения, что такое защитный текстиль нет ни в зарубежной, ни в отечественной литературе. Попробуем дать свое (может быть откорректировано):

«Текстильный материал и изделие из него, что защищает человека и окружающую среду (нерукотворная и рукотворная)».

Сложность определения связана с тем, что защитный текстиль частично попадает в технический, когда защищает технику, и в спортивный и в медицинский и в косметический, в геотекстиль.

Сам текстиль и изделия из него также требуют в условиях эксплуатации и хранения защиты от термо-, хемо-, механо-, био-, фото- и радиационной деструкции. Защита материала и изделий от этих воздействий не означает автоматическую защиту от них человека. И все же часто эти функции сочетаются, например, придавая материалу огнезащищенность, мы защищаем от огня и человека! Защищая материал от микроорганизмов, защищаем и человека!

Актуальность проблемы разработки технологий и производства защитного текстиля заключается в том, что миллионы людей на планете, объекты природы и техники нуждаются в защите от специфических условий труда людей и эксплуатации техники.

Условия работы людей многих профессий вредно воздействует на организм человека, что требует защиты с помощью изделий из текстиля. Работа в промышленности, в силовых структурах, в госпиталях, на электро-, гидро- и атомных электростанциях сопряжена с определенными и специфическими рисками. Каждая профессия выдвигает свои специфические требования к защите.

Основные защитные функции, свойства текстиля и изделий из него:

Перегрева

Переохлаждения

Химическая защита от жидких и газообразных отравляющих веществ

От вредных микроорганизмов

Баллистическая защита

От радиации

От УФ-излучения

От клещей, кровососущих

Большинство из этих свойств в настоящее время придается текстилю с использованием нановолокон, нанопрепаратов и других различных приемов нанотехнологий.

Медицинский текстиль и нанотехнология

Медицинский текстиль иногда относят к техническому текстилю, что не верно. Это конечно - нетехнический текстиль. Медтекстиль - это гуманитарное, социальное использование текстиля. В этой сфере нанотехнологии нашли применение обогнав (годовой рост 5%) все остальные виды текстиля, и тому имеются причины, которые обусловливают чрезвычайно динамичное развитие производства медтекстиля:

Рост население планеты, особенно в развивающихся странах. В мире - 6,5 млрд. человек, в Китае - 1 млрд. 200 млн. человек, в Индии - 900 млн. человек.

Изменение демографической структуры, увеличение доли пожилого населения.

Повышение уровня и качества жизни.

Повышение рисков, связанных с ухудшением экологии (увеличение заболеваний сердца, рака, СПИДа, гепатита), природные катаклизмы, теракты и др.

Большинство последних достижений в области медтекстиля связано с нано-, био- и информационными технологиями, полимерной химией и физики.

Медтекстиль охватывает очень широкий ассортимент изделий и по их назначению их можно классифицировать следующим образом:

Перевязочные материалы (традиционные для защиты ран, современные лечебные).

Имплантаты (биологически разлагаемые и не разлагаемые новые материалы, сухожилия, связки, кожа, контактные линзы, роговая оболочка, кости, суставы, сосуды, сердечные клапаны). Это не значит, что текстиль целиком формирует имплантат, он может входить в него составной частью.

Устройства, заменяющие органы (искусственные почка, печень, легкие и т.д.), где текстиль, волокна входят в конструкцию.

Защитная одежда (хирургические маски, шапочки, бахилы, постельное и нательное белье, одеяла, занавеси). Всем этим материалам придаются антимикробные, антивирусные свойства, а одежде хирурга также водоотталкивающие свойства (задержка физиологических жидкостей пациента во время операции).

Сенсорный текстиль и одежда для мониторинга на расстоянии основных параметров организма пациента (это используется и для слежения за тренировкой спортсменов, за армейским персоналом при выполнении заданий, связанных со сверхусилиями). Миниатюрные датчики, инкорпорируемые в текстиль одежды, отслеживают динамику изменения электрокардиограммы, дыхательных функций, пульса, температуры кожи, уровень кислорода в крови и положение тела в пространстве. Все эти показатели записываются на специальные портативные устройства (размер мобильного телефона) и передаются на центральный сервер больницы и далее лечащему врачу, принимающему решение в случае нештатной ситуации.

Косметический текстиль

Косметический текстиль значительно менее разнообразен по ассортименту по сравнению с медтекстилем. Основной группой, видом косметического текстиля являются косметические маски на текстильной основе. Они выполняют роль омолаживания кожи, задерживают ее старение, сглаживают морщины, в случае проблемной кожи (сыпь, угри, пигментация и т.д.) маски оказывают лечебное действие.

Косметические маски содержат косметические препараты различной природы (экстракты растений, витамины, биологически активные вещества, лекарства, наночастицы серебра).

Способы введения этих препаратов в маски различные: пропитка, использование технологии аппретирования и печати.

В любом случае задача, как и в случае лечебных повязок, состоит в создании маски - депо косметических или лекарственных средств.

Отечественная фирма «Тексаль» разработала технологию и выпускает косметические маски на текстильной основе под торговым названием «Тексаль». За основу взята описанная выше технология «Колетекс», только для масок подобраны специальные текстильные материалы, полимерные композиции и вводимые в них косметические средства и лекарства.

Интересное направление в производстве косметического и медицинского текстиля является использование специальных органических молекул - контейнеров косметических средств и лекарств.

В качестве таких молекулярных контейнеров (слайд 70) используют циклические производные декстрина - циклодекстрин. Циклодекстрины различного строения (число членов цикла) имеют внутреннюю гидрофобную полость (5085 нм) и внешнюю гидрофильную (множество гидроксилов) поверхность. Если в полость циклодекстрина поместить лекарства или косметические средства, а сам циклодекстрин ввести в текстильный материал и зафиксировать его в нем, то формируется депо - лекарства или депо - косметического средства.

Спортивный нанотекстиль

Спортивный текстиль сегодня широко использует приемы и методы нанотехнологии:

Спортивная одежда, создающая комфорт в пододежном пространстве (влажность, температура).

Диагностическая сенсорная одежда, следящая в режиме on-line за состоянием организма спортсмена.

Сверхпрочный спортинвентарь нового поколения.

нанотехнология текстиль риск экологический

2. Потенциальные риски, связанные с развитием нанотехнологий

В настоящее большое количество пассивных наноструктур (первое поколение) находят применение в косметике, изготовление красок и смазочных материалов. Эксперты выделяют следующие характеристики рисков: токсичность, экотоксичность, энергозаивисимость, воспламеняемость, способность накапливаться в клетках. Особые риски «открытого» характера, возникают при производстве, транспортировке и хранении отходов. Итак, исследователи обращают внимание на следующие сферы, в которых возникают риски, связанные с пассивными наноструктурами:

В сфере человеческого здоровья: - наноструктуры могут быть токсичными и наносить вред некоторым органам человека, таким как печень и через нервную систему проникать в мозг; - некоторые наноматериалы могут взаимодействовать с железом и другими металлами, что увеличивает их токсичность; - в настоящее время нет достаточного материала, позволяющего оценить опасность наноматериалов в зависимости от степени их концентрации в клетках.

Экологические риски. Наноструктуры могут нанести определенный вред окружающей среде, принимая во внимание что: - могут абсорбировать другие загрязняющие вещества (пестициды, кадмий); - в виду малых размеров, существуют риски, связанные с трудностями обнаружения вредных веществ. - Риски здоровью человека и окружающей среде. Разворачивающаяся дискуссия между европейскими и американскими экспертами по поводу того, какую роль должны играть нанотехнологии в жизни человека, ставит новые вопросы перед лицами, принимающими политические решения: нанотехнологии делают человека лучше, или делают его сильнее? Как относиться к имплантатам, контролирующим не только поведение человеческого тела, но и его мозг? Как относиться к предстоящему (в связи с использованием продуктов, произведенных с применением нанотехнологий) изменению качества жизни человека, а значит и новому пониманию термина «human security».

Политические риски и риски в сфере безопасности: - использование соответствующих технологий в криминальных и террористических целях; несправедливое и неравное распределение рисков, связанных с развитием нанотехнологий между странами и регионами (традиционный конфликт Север-Юг). Особую озабоченность экспертов вызывают риски, возникающие с появлением второго и третьего поколения наноструктур. Речь идет о перспективе появления активных наноструктур и целых наносистем.

Риски структурного характера. Речь идет о том, что современное общество очень медленно реагирует на быстро появляющиеся новые технологии и продукты, произведенные с их применением. Запаздывает с разработкой норм и процедур, регламентирующих применением подобной продукции. В условиях глобализации велика вероятность бесконтрольного доступа к продукции военного характера, произведенной с использованием нанотехнологий. Слабо изучен экономический эффект от массового применения нанотехнологий. С развитием био- и нанотехнологий будет формироваться новая культура, кардинальным образом поменяются некоторые традиционные этические нормы и принципы. Проблемы идентичности, толерантного отношения к «нано-био», иное наполнение понятия «частная жизнь» и т.п.

Размещено на Allbest.ru

...

Подобные документы

    Понятие нанотехнологий. Нанотехнология как научно-техническое направление. История развития нанотехнологий. Современный уровень развития нанотехнологий. Применение нанотехнологий в различных отраслях. Наноэлектроника и нанофотоника. Наноэнергетика.

    дипломная работа , добавлен 30.06.2008

    Развитие нанотехнологий в XXI веке. Нанотехнологии в современной медицине. Эффект лотоса, примеры использования его уникального свойства. Интересное в нанотехнологиях, виды нанопродукции. Сущность нанотехнологий, достижения в этой отрасли науки.

    реферат , добавлен 09.11.2010

    Понятие нанотехнологий и области их применения: микроэлектроника, энергетика, строительство, химическая промышленность, научные исследования. Особенности использования нанотехнологий в медицине, парфюмерно-косметической и пищевой промышленностях.

    презентация , добавлен 27.02.2012

    Использование нанотехнологий в пищевой промышленности. Создание новых пищевых продуктов и контроль за их безопасностью. Метод крупномасштабного фракционирования пищевого сырья. Продукты с использованием нанотехнологий и классификация наноматериалов.

    презентация , добавлен 12.12.2013

    Нанотехнология - высокотехнологичная отрасль, направленная на изучение и работу с атомами и молекулами. История развития нанотехнологий, особенности и свойства наноструктур. Применение нанотехнологий в автомобильной промышленности: проблемы и перспективы.

    контрольная работа , добавлен 03.03.2011

    Нанотехнологии и переход к водородной энергетике, разработка и изготовление наномашин. Основной вклад нанотехнологий в "чистое" производство водорода. Развитие новой области знаний о поведении наноразмерных систем с ионной и смешанной проводимостью.

    курсовая работа , добавлен 16.11.2009

    Режимы работы сканирующего туннельного микроскопа. Углеродные нанотрубки, супрамолекулярная химия. Разработки химиков Уральского государственного университета в области нанотехнологий. Испытание лабораторного среднетемпературного топливного элемента.

    презентация , добавлен 24.10.2013

    Лидерство стран в области нанотехнологий. Перспективы использования новых технологий в областях энергетики, вычислительной техники, химической и биомолекулярной технологии, в оптике и электронике, медицине. Примеры научных достижений и разработок.

    презентация , добавлен 14.04.2011

    История развития нанотехнологий; их значение в медицине, науке, экономике, информационном окружении. Схематическое изображение и направления применения однослойной углеродной нанотрубки. Создание нанотехнологических центров в Российской Федерации.

    презентация , добавлен 23.09.2013

    Материальная основа и функции технического сервиса пути его развития. Современное состояние предприятий ТС, направления их реформирования. Виды и применение наноматериалов и нанотехнологий при изготовлении, восстановлении и упрочнении деталей машин.

Рассмотрены история развития представлений о наноматериалах и нанотехнологиях, современное состояние и перспективы развития. Дан обзор основ классификации наноматериалов и типов их структур, а также особенности свойств и основные направления использования наноматериалов. Дан подробный обзор основных технологий получения наноматериалов (нанопорошки, объемные материалы, пленочные технологии).

Предназначено для студентов старших курсов, магистров и аспирантов, обучающихся по направлению машиностроение и специальностям: «Оборудование и технология сварочного производства», «Технология машиностроения», «Материаловедение в машиностроении». Может быть полезно также для научных работников, преподавателей и инженерно-технических работников, специализирующихся в области наук о сварке материалов и родственных технологий.

ОПРЕДЕЛЕНИЯ И КЛАССИФИКАЦИЯ НАНОТЕХНОЛОГИЙ

В последнее время не только в кругах обывателей, но и ученых сложилось странное, «мягко говоря», отношение к нанотехнологиям, оно даже не критичное, а скорее всего, насмешливо-скептическое. Представляется, что связано это в первую очередь с «нанопургой», которую интенсивно раздувают, не разобравшись, средства массовой информации. В настоящей работе мы по мере возможностей постараемся освятить некоторые вопросы, связанные с развитием нанотехнологий.

Нанотехнологии, нанотехника, наноуровень, наноструктурирование и т. д - все эти термины вошли недавно в нашу жизнь. Давайте разберемся, о чем же идет речь?
Термин «нанотехнологии» впервые появился в литературе в 1974 году в работе Н. Танигучи (Япония) . В самом общем смысле нанотехнологии включают создание и использование материалов, устройств и технических систем, функционирование которых определяется наноструктурой, то есть её упорядоченными фрагментами размером от 1 до 100 им.
Нанотехнологии рассматриваются сегодня как область исследовании, и как направление технологического развития, что порождает серьезную терминологическую путаницу.

Проблема единства понятий и стандартов в области нанотехнологий неоднократно обсуждалась в зарубежной и отечественной литературе. Вопрос этот имеет ключевое значение для выработки единого подхода к пониманию сущности и особенностей развития нанотехнологии.

Несмотря на наличие различных определений нанотехнологии. единого согласованного варианта, причем такого, который образовывал бы основания для построения соответствующих классификаций, пока не существует.

ПРЕДИСЛОВИЕ
ВВЕДЕНИЕ
1. ОПРЕДЕЛЕНИЯ И КЛАССИФИКАЦИЯ НАНОТЕХНОЛОГИЙ
2. ПОНЯТИЕ О НАНОМАТЕРИАЛАХ. ОСНОВЫ КЛАССИФИКАЦИИ И ТИПЫ СТРУКТУР НАНОМАТЕРИАЛОВ
2.1. Терминология
2.2. Основы классификации на но материалов
2.3. Основные типы структур наноматериалов
3. ОСОБЕННОСТИ СВОЙСТВ НАНОМАТЕРИАЛОВ И ОСНОВНЫЕ НАПРАВЛЕНИЯ ИХ ИСПОЛЬЗОВАНИЯ
3.1. Физические причины специфики наноматериалов
3.2. Основные области применения наноматериалов и возможные ограничения
4. ОСНОВНЫЕ ТЕХНОЛОГИИ ПОЛУЧЕНИЯ НАНОМАТЕРИАЛОВ
4.1. Методы порошковой металлургии
4.1.1. Методы получения нанопорошков
4.1.2. Методы формования изделий из нанопорошков
4.2. Методы с использованием аморфизации
4.3. Методы с использованием интенсивной пластической деформации
4.4. Методы с использованием технологий обработки поверхности
4.4.1. Технологии, основанные на физических процессах
4.4.2. Технологии, основанные на химических процессах
5. ФУЛЛЕРЕНЫ, ФУЛЛЕРИТЫ, НАНОТРУБКИ
6. КВАНТОВЫЕ ТОЧКИ, НАНОПРОВОЛОКИ И НАНОВОЛОКНА
7. ОСНОВНЫЕ МЕТОДЫ ИССЛЕДОВАНИЯ НАНОМАТЕРИАЛОВ
7.1. Электронная микроскопия
7.2. Спектральные методы исследования
7.3. Сканирующие зондовые методы исследования.
СПИСОК ЛИТЕРАТУРЫ
ОГЛАВЛЕНИЕ

Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Физические основы нанотехнологий, учебное пособие, Смирнов А.Н., Абабков Н.В., 2012 - fileskachat.com, быстрое и бесплатное скачивание.

В настоящее время нанотехнологии - это весьма обширная область исследований, включающая в себя целый ряд направлений физики, химии, биологии, электроники, медицины и других наук.

Эра «нано» наступит в середине века

Однако, несмотря на значительные достижения, энтузиазм исследователей, все увеличивающееся финансирование этой области и довольно короткие сроки современного промышленного освоения научных разработок в развитых странах (10–15 лет), вряд ли можно рассчитывать, что эра нанотехнологий наступит раньше середины текущего века. Хотя отдельные разработки достаточно широкого использования, несомненно, будут появляться и уже имеются на рынке.

Если мы посмотрим на современный рынок нанопродукции, то увидим, что более 90% его занимают нанопорошки (начали применяться еще в 50-х годах прошлого века, правда, до нанобума они назывались ультрадисперсными), нанокатализаторы и нанопористые материалы (фильтры). Однако наиболее заманчивые и многообещающие приложения нанотехнологий, о которых обычно и идет речь, когда говорят о выдающихся перспективах этой области, находятся еще в стадии фундаментальных исследований.

Имеется в виду развитие и широкое использование нанотехнологий (хотя этого понятия тогда еще не было) в духе знаменитой фейнмановской лекции «Внизу полным-полно места: приглашение в новый мир физики» (декабрь 1959 г.).

Как правильно «уложить» атомы

Элементарными кирпичиками для строительства любого вещества являются атомы и молекулы. «Изделие» с размерами наномасштаба может быть «собрано» из них, если уложить нужные атомы в правильном порядке. При этом, на наш взгляд, не так уж важна конкретная технология такой сборки (это может быть эпитаксиальное выращивание, самоорганизация, химические или биохимические реакции и пр.). Решающим здесь является умение конструировать «наноизделия» с определенными свойствами или функциями, обладание технологиями, которые позволяют с атомной точностью изготовить это «изделие», а также методами комплексной диагностики, включая контроль в процессе изготовления (in situ). И управление на его основе технологическим процессом.

Нанотехнологии такого уровня пока имеются, в основном, лишь в отдельных научных лабораториях. Они базируются на новейших результатах фундаментальных исследований. Более того, последние играют здесь ключевую роль. Исследования физико-химических процессов в нанотехнологиях, разработка методов конструирования, диагностики и исследования наноструктур, наноматериалов и наноустройств, изучение их свойств и новых явлений, возникающих на наноуровне, - по большей части являются и еще долгое время будут оставаться предметом фундаментальных или ориентированных фундаментальных исследований.

Поэтому, если мы хотим в области нанотехнологий и наноиндустрии двигаться в ногу с развитыми странами, то первостепенное внимание должны сосредоточить на фундаментальных исследованиях. Они должны иметь оснащение и выполняться на самом современном уровне. В противном случае мы рискуем не только оказаться на обочине длинной нанотехнологической дороги, но и в скором времени перестанем на должном уровне понимать мировые достижения в этой области.

Сказанное, однако, не означает, что усилия по организации производства и освоению рынка для продвинутых в практическом плане разработок должны быть ослаблены.

Будущие нанотехнологи: требования

Следует отметить еще одну важную проблему, которую придется решать для успешного развития наноиндустрии. Дело в том, что при переходе к системам нанометровoго масштаба начинают отчетливо проявляться квантовые эффекты. В результате возникает принципиально новая ситуация, когда квантовые явления (размерное квантование, туннелирование, интерференция электронных состояний и др.) играют ключевую роль в физических процессах в таких объектах и в функционировании приборов на их основе.

Проявляются они и в технологических процессах, в химических реакциях, поскольку межатомное взаимодействие имеет квантовый характер. Таким образом, от будущих нанотехнологов (а профессия эта должна стать массовой при развитии наноиндустрии) потребуется умение мыслить квантовомеханическими категориями, существенно отличающимися от обычных классических представлений. Это означает, что существенной перестройки потребует инженерное образование - его будут осваивать с упором на фундаментальные дисциплины.

Заблуждения от нанотехнологий

Фундаментальные исследования и их материальное обеспечение имеют принципиальное значение для развития нанотехнологий и наноиндустрии. Сейчас часто высказывается мнение, что в области нанотехнологий у нас одинаковые стартовые позиции с передовыми странами. Это - опасное заблуждение! Хотя мы и располагаем высококвалифицированными кадрами и занимаем передовые позиции на ряде направлений, необеспеченность современным технологическим, диагностическим и исследовательским оборудованием не позволяет в достаточной мере реализовать имеющиеся возможности.

В последний раз более или менее массовое обновление парка научного оборудования проводилось около 20 лет назад при реализации Государственной программы СССР «Высокотемпературная сверхпроводимость». К тому же, исследования на Западе на многих направлениях начаты раньше. И ведутся значительно более широким фронтом.

Казалось бы, сейчас не о чем беспокоиться. В последние годы руководство страны, осознавшее жизненную необходимость развития нанотехнологий, предпринимает значительные усилия по организации на государственном уровне работ в этой области. Созданы Правительственный совет по высоким технологиям и Госкорпорация «Роснанотех», выделяются значительные финансовые средства. Однако складывается впечатление, что роль фундаментальных исследований в развитии нанотехнологий государственными органами недооценивается.

Минобрнауки фундаментальные исследования практически не финансирует. Фундаментальные исследования в области нанотехнологий ведутся за счет средств соответствующих ведомств. Центральное место в развитии фундаментальных исследований в нашей стране традиционно принадлежит Российской академии наук.

В 2008 г. по программам фундаментальных исследований Президиума и Отделений РАН финансирование нанотехнологических проектов составляло всего около 100 млн рублей (не считая базового финансирования на зарплату и коммунальные платежи). Финансирование также осуществлялось по проектам Российского фонда фундаментальных исследований (РФФИ) и международным проектам. Анализ показывает, что такое финансирование почти на два порядка меньше, чем требуется для того, чтобы обеспечить современный уровень фундаментальных исследований и их развитие, необходимое для становления отечественной наноиндустрии. Для справки: только в Федеральном бюджете США 2007 года на работы, выполняемые в рамках «Национальной нанотехнологической инициативы», выделено около 1,3 млрд долл. Из них 401 млн долл. (около 31 %) - на фундаментальные исследования явлений и процессов на наномасштабах, 250 млн долл. (20 %) - на работы по наноматериалам, 164 млн долл. (13 %) - на приобретение исследовательского оборудования.

Национальная программа фундаментальных исследований

Такое положение дел представляется совершенно недопустимым. На наш взгляд, должна быть создана Национальная программа фундаментальных исследований в области нанотехнологий с целевым финансированием из федерального бюджета, сопоставимым с финансированием соответствующих программ в развитых странах, и соответствующими капитальными вложениями. Только в этом случае мы сможем рассчитывать на успешное и конкурентоспособное развитие отечественной наноиндустрии.

К настоящему времени Комиссией РАН по нанотехнологиям разработана программа фундаментальных исследований Российской академии наук «Нанотехнологии», которая одобрена Общим собранием РАН. К разработке программы, помимо членов Комиссии, были привлечены ученые, активно работающие в области нанотехнологий. Рассмотрены около тысячи предложений, полученных из более 100 институтов РАН. Анализ полученных предложений показывает, что в РАН работы в области нанотехнологий охватывают широкий круг проблем. И их уровень, в целом, достаточно высок.

Разделы программы «Нанотехнологии»

Выбор основных направлений исследований при формировании программы основывался на современных достижениях и тенденциях развития мировой науки, значимости ожидаемых результатов и перспектив практического использования. А также с учетом задела, имеющегося в российских научных организациях. Программа включает в себя шесть таких разделов: «Физика наноструктур», «Наноэлектроника», «Наноматериалы», «Нанобиотехнологии», «Нанодиагностика» и «Образование».

К выполнению Программы фундаментальных исследований РАН предполагается привлечь в качестве соисполнителей около 60 неакадемических организаций, предприятий и вузов. По существу, разработанная Программа может служить основой Национальной программы фундаментальных исследовании в области нанотехнологий.

Экспертные оценки объемов финансирования, необходимого для успешной реализации Программы фундаментальных исследований РАН «Нанотехнологии», показывают, что на выполнение научно-исследовательских и опытно-конструкторских работ требуется около 12–13 млрд. руб. в год (или около 90 млрд. руб. на весь срок выполнения Программы по 2015 год). Требуемый объем капитальных вложений оценивается в 55 млрд. руб. Для Национальной программы эти суммы должны быть скорректированы.

ЦКП проблемы не решают

Следует подчеркнуть, что необходимым современным оборудованием должна быть обеспечена каждая эффективно работающая научная группа, выполняющая один из проектов программы, поскольку его использование для конкретных исследований часто имеет специфический характер. Центры коллективного пользования здесь проблему не решают, хотя они и полезны для выполнения более или менее стандартных измерений (например, для диагностики и тестирования). Или для работы на уникальных сверхдорогостоящих установках, созданных в единичных экземплярах.

Обычным же оборудованием исследователи, как принято и у нас, и в мировой практике, должны пользоваться на своем рабочем месте, хотя современное оборудование, как правило, стоит дорого. Другое дело, что оно должно использоваться максимально эффективно.

Госпрограммы и фундаментальные исследования

В этом году начала действовать весьма нужная Федеральная целевая программа «Развитие инфраструктуры наноиндустрии в РФ на 2008–2010 гг.» Хотя большая часть работ в области нанотехнологий и наноматериалов в нашей стране выполняется в РАН, эта программа разрабатывалась без участия РАН. И РАН не фигурирует в ней как государственный заказчик. Другие же ведомства, где ведутся подобные работы, в этой роли в ней представлены.

Причины, по которым исследовательские организации РАН исключены из инфраструктуры наноиндустрии России (в эту программу включен лишь Институт металлургии РАН), нам не известны. Однако такое решение организаторов программы выглядит, по меньшей мере, странным.

На современном этапе прикладные исследования и разработки часто (хотя и далеко не всегда) являются естественным продолжением фундаментальных исследований. Более того, далеко не всегда можно провести грань между первыми и последними. По образному выражению британского физика Д. Портера, все научные исследования - прикладные, только часть уже нашла приложения, а часть найдет их в будущем.

Разработанная Комиссией РАН по нанотехнологиям программа является, прежде всего, программой фундаментальных исследований. Вместе с тем, она включает в себя и работы прикладного характера, ряд из которых уже в ближайшее время может быть доведен до промышленного использования. В настоящее время Комиссия РАН по нанотехнологиям рассматривает несколько крупных «сквозных» проектов, включающих в себя все стадии работ - от фундаментальных исследований до организации опытного производства.

Для реализации таких проектов предполагается создать распределенные (виртуальные) лаборатории, работа каждой из которых подчинена единой цели и охватывает всю цепочку исследований и разработок по проекту (от фундаментальных исследований до организации производства). При этом научные группы, входящие в такие лаборатории и выполняющие конкретные задачи, продолжают работать в своих организациях. Лаборатории такого рода также предполагается создавать для решения крупных научных задач и выполнения междисциплинарных исследований в рамках Программы РАН «Нанотехнологии».

«Принц-технология» и светодиоды

В заключение - несколько примеров результатов фундаментального и прикладного характера, полученных российскими учеными и разработчиками за последние годы. В области физики наноструктур и наноэлектроники отметим получение листов графена (монослой графита) и исследование его электронных свойств, показавшее, что носители заряда в графене обладают нейтриноподобным электронным спектром (ИПТМ РАН).

Осуществлено первое надежное наблюдение бозе-эйнштейновской конденсации пространственно непрямых экситонов в двухъямных наноструктурах (ИФП РАН), разработка так называемой «принц-технологии» и создание нового класса периодических наноструктур для квантовых приборов (ИФП СО РАН), беспороговых полупроводниковых инжекционных лазеров на квантовых точках, полупроводниковых лазеров рекордной мощности на основе асимметричных гетероструктур и светодиодов белого света (ФТИ им. А. Ф. Иоффе РАН), матричных фотоприемников ИК излучения и микроволновых полевых транзисторов (ИФП СО РАН), широкодиапазонных магниторезистивных сенсоров (ИФМ УрО РАН).

В области наноматериалов можно назвать разработку высокоресурсных углепластиков со специальными свойствами, содержащих функциализированные наночастицы фуллерена и астралена, использование которых в истребителях пятого поколения повысит различные эксплуатационные характеристики на 20-100 % (ВИАМ, ИПХФ РАН, ИНХ СО РАН). Выполнена разработка катализаторов на основе наночастиц золота, нанесенных на оксид алюминия, для решения проблемы «холодного старта» дожигания выхлопных газов автомобильных двигателей (ИК СО РАН).

В области нанобиотехнологий и медицинской диагностики осуществлены разработка и создание гриппозной нановакцины «гриппол» (ИБХ РАН, ГНЦ Институт иммунологии ФМБА, НПО «Петровакс», ГУП «Микроген»), которая за 2004-2007 гг. привита 70-ти млн человек. Разработаны методики получения рентгеновских рефракционных изображений мягких тканей человека (РНЦ «Курчатовский институт»).

Заметим, что в основе многих современных научно-технологических достижений лежат результаты исследований, начатых тридцать или даже более лет назад. Будем надеяться, что государственные органы оценят, наконец, должным образом определяющую роль фундаментальных исследований для развития в стране наноиндустрии. И в этой области мы будем двигаться в ногу с развитыми странами.

Академик Жорес Алферов,
лауреат Нобелевской премии, вице-президент РАН,
председатель Комиссии РАН по нанотехнологиям.

Нанотехнология по своей специфике является междисциплинарной научной областью прикладной техники, занимающейся изучением и созданием новаторских и инновационных методов получения новейших материалов с определенными свойствами, которые в дальнейшем применяются в самых разнообразных отраслях жизнедеятельности современного человека.

Вообще нанотехнология работает со структурами, которые обладают значениями 100 нм и даже меньше, и при этом использует устройства, а также материалы, имеющие вышеуказанные размеры. На сегодняшний день нанотехнология чрезвычайно разнообразна и используется в самых различных исследованиях, начиная от создания новых технических устройств до новейших исследований связанных с изучением молекулярно-атомного уровня.

Фундаментальные основы нанотехнологий.

Метод атомно-силовой микроскопии.

Следует сказать, что одним из основных инструментов, которые используются для работы с микрочастицами, являются микроскопы, ведь без данного прибора нет возможности не только работать с микрочастицами, но и изучать микромир. Увеличение разрешающих особенностей современных микроскопов и получение всё новых и новых знаний об элементарных частицах на сегодняшний день взаимосвязаны друг с другом. На данный момент при помощи такого оборудования как атомно-силовые микроскопы или АСМ и сканирующие электронные микроскопы современные учёные получают возможность не только наблюдать за отдельными атомами, но даже находить способы воздействия на них, например, переметывая атомы по поверхности. При этом современным учёным уже удалось создать так называемые двухмерные наноструктуры на поверхностях при помощи вышеприведённого метода воздействия. Так, например, в исследовательских центрах всем известной компании IBM учёные путём последовательного перемешивания атомов ксенона на поверхности нанокристалов никеля смогли создать логотип компании, состоящий из 35 атомов вещества.

Выполняя указанные действия, связанные со смешиванием веществ, а также по их разъединению и соединению, ученые столкнулись с некоторыми техническими трудностями. Для преодоления которых необходимо создавать условия сверхзвукового вакуума (10?11 тор), для этого необходимо охладить подножку и микроскоп до сверхнизкой температуры равной от 4 до 10 К, при этом поверхность данной подложки должна быть гладкой и чистой на уровне атомов. Для этого используются специализированные технологии по механико-химической обработке изделий, причём целью данной обработки является создание уменьшения поверхностных диффузий осаждаемых атомов, при помощи чего и производится охлаждение основания.

Наночастицы.

Главной отличительной особенностью новых материалов, которые получаются в процессе использования нанотехнологий , является непредсказуемое получение физикотехнических характеристик приобретаемых данными материалами. Благодаря этому современные учёные получают возможность получать новые квантовые физико-механические характеристики у веществ, в которых видоизменяются электронные структуры, что автоматически меняет и форму проявления данных соединений. Так, например, возможность уменьшить размер частиц далеко не во всех случаях поддаётся определению или проведению замеров с помощью макро или микро измерений. Однако проведение измерений может стать возможным в том случае, если размер частиц находится в диапазоне миллимикронов. Также следует отметить, что определённые физико-механические свойства изменяются в случае изменения размера элементов. На данный момент наличие у наноматериалов необычных механических свойств является предметом исследования у ученых, работающих в области наномеханники. При этом отдельное место в современных нанотехнологиях занимает получение новых веществ при помощи использования различных катализаторов, которые влияют на поведение наноматериалов при взаимодействии их с различными биоматериалами.

Как мы уже говорили ранее, частицы обладающие размерами от 1 до 100 нанометров называются наночастицами, при этом как показали исследования, наночастицы многих материалов обладают высокими абсорционными и каталическими свойствами. Другие материалы позволяют получить уникальные оптические свойства. Так, например, исследователям удалось получить керамические прозрачные материалы, основой для которых стали нанопорошки размером 2-28нм, обладающие более лучшими свойствами, чем, например, крон. Также учёные смогли получить взаимодействие искусственно полученных наночастиц с природными объектами обладающими наноразмером, например с белками, нуклеиновыми кислотами и др. Кроме того очищенные наночастицы благодаря своим уникальным свойствам имеют возможность встраиваться в различные структуры. Такие структуры, содержащие в себе наночастицы, получают ранее небывалые у них свойства и характеристики.

На сегодняшний день все нанообъекты делят на три класса:

К первому классу относятся трёхмерные частицы, которые получаются при взрыве проводников, путём плазменного синтеза или при помощи восстановления тонких плёнок.

Ко второму классу относятся так называемые двумерные объекты, являющиеся плёнками и получаемые при помощи методом молекулярного наслаивания, ALD, CVD и методами ионного наслаивания.

К третьему классу относятся вискеры или одномерные объекты, получаемые методами молекулярного наслаивания или введением различных веществ в цилиндрический микропорт.

Кроме того существуют ещё и нанокомпозиты, которые получаются путём введения наночастиц в специализированные матрицы. На сегодняшний день большое использование получил пока только метод микролитографии, который даёт возможность получать на поверхности матрицы островковые плоские объекты, имеющие размер от 50 нм, и используемые в современной электронике. Также необходимо отметить и методы молекулярного и ионного наслаивания, так как при помощи данных методов возможно получать реальные плёночные покрытия в виде монослоя.

Самоорганизация наночастиц.

Одной из важнейших задач, которая стоит перед нанотехнологией, является то, как заставить атомы и молекулы проводить группировку определённым образом, что позволило бы им саморемонтироваться и саморазвиваться, что в конечном итоге приводило бы к получению новых материалов или устройств. Решением данных задач занимаются учёные химики, работающие в области супрамолекулярной химии. При этом они проводят изучения не отдельных молекул, а взаимодействие между ними, а также то, как они организовываются при том или ином воздействии и имеют ли возможность образовывать новые вещества. Многие учёные считают, что природа по-настоящему обладает подобными системами и в ней протекают такие процессы. Так, например, уже известны биополимеры, которые могут организовываться в особые структуры. Также в качестве подобных примеров приводятся белки, которые благодаря своим свойствам не только могут сворачиваться и получать глобулярную форму, но и образовывать целые комплексы и структуры, которые содержат в себе сразу несколько молекул протеина. Уже сегодня учёные смогли создать метод синтеза, используемый специфические свойства, которыми обладают молекулы ДНК.



Последние материалы раздела:

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...