Геодезия учебное пособие. Учебное пособие по геодезической практике

Пособие подготовлено в соответствии со стандартом и типовой учебной программой по философии нового поколения, отличается краткостью изложения курса. Включает изложение исторических типов философии - от древней до современной. Рассмотрены философские концепции бытия; философской антропологии и философии сознания; проблемы теории познания и философии науки; раскрыты основные понятия и концепции социальной философии.
Адресуется студентам и преподавателям вузов, всем интересующимся философией.

Статус и функции философии в средневековой европейской культуре.
Вся история средневековой христианской мысли большинством медиевистов подразделяется на 2 этапа (периода): патристики и схоластики.

Слово «патристика» от латинского pater - отец. В период от первых веков н.э. примерно до 8 века выдающуюся роль в разработке основ христианской теологии сыграл ряд мыслителей, чьи произведения и были позднее признаны религиозно-философской базой всего христианского учения. Их стали называть Отцами Церкви, а литература, созданная ими, получила общее название патриотической.

В патристике одна из центральных дискуссий - это соотношение христианства с античным наследием, утверждение христианства как господствующей религии и, как следствие, попытки систематизации христианского вероучения. Одной из центральных теоретических тем патристики стало взаимоотношение веры и разума. Хотя вера обладает преимуществом, в рамках патристики существовало несколько на первый взгляд разных подходов при интерпретации взаимоотношений веры и знания. Согласно одному из них вера якобы независима от разума, и в этом смысле возможны по отношению к разуму бессмысленные (абсурдные) утверждения. Выражением данного отношения к этой проблеме стала знаменитая фраза credo quia absurdum (верую, потому что абсурдно), которая приписана была Тертуллиану. Другой подход состоял в том, что вера обладает приоритетом в том смысле, что именно благодаря ей становится возможным мышление, отсюда и новая формула: credo ut intelligam (верую, чтобы понять). Это означает, что без веры люди слепы по отношению к важнейшим аспектам жизни. Августин Аврелий (345-430 гг. н.э.) и его последователи придерживались этого подхода. В вере, по Августину, человек может развивать свои познавательные возможности, знание же подтверждает веру.

Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Философия, Конспект лекций, Яскевич Я.С., 2010 - fileskachat.com, быстрое и бесплатное скачивание.

Скачать djvu
Ниже можно купить эту книгу по лучшей цене со скидкой с доставкой по всей России.

Ядвига Яскевич, Хасан Сабирович Гафаров, Валентин Вязовкин

Основы философии

© Яскевич Я. С., Вязовкин В. С., Гафаров Х. С., 2011

© Яскевич Я. С., Вязовкин В. С., Гафаров Х. С., 2016, с изменениями

© Оформление. УП «Издательство “Вышэйшая школа”», 2016

Введение

В переломные моменты человеческой истории, связанные с крушением кумиров и иллюзий, резко актуализируется поиск философской и теоретической мысли для решения насущных проблем, а также для обоснования новых ориентиров и ценностей. Как строить свои отношения с природой, обществом, друг с другом. Какими знаниями и ценностями при этом руководствоваться? Ответы на эти вопросы дает изучение понятия «мировоззрение». Постигнуть суть мировоззрения, вычленить составляющие его компоненты, исследовать роль философии в нем – значит, понять механизмы формирования новых мировоззренческих оснований. Без новых идей невозможно появление новых социальных отношений и приоритетных ценностей. Прежде чем осуществлять перевороты в социальной жизни, экономике, необходимы радикальные перевороты в сознании людей. Кризис идеалов вызывает необходимость переосмысления традиционных ценностей, поиск новых идеалов, значимых для человека. В периоды, когда распадается связь времен, начинается трагическое, тревожное существование человека, возникает бытие на переломе.

В эти исторически спрессованные моменты не обойтись без философии, недаром предназначение философии передается через образ совы Минервы (Минерва – богиня мудрости у древних римлян, сова – священная птица, сидящая у ее ног). Гегель писал, что сова Минервы начинает свой полет лишь с наступлением сумерек.

Необходимость поиска новых мировоззренческих структур отношения к природе, обществу, общечеловеческим ценностям в XXI столетии отразилась в названии ХХ Всемирного философского конгресса «Пайдея: философия в воспитании человечества». Конгресс проходил в августе 1998 г. в г. Бостоне (США). Греческое слово «пайдея» означает гармоничное развитие, воспитание, возвращение к прошлому.

Какую роль может сыграть философия в воспитании человечества? Почему эта проблема актуализируется в наше время? Просветительная тема конгресса заостряла внимание на необходимости оптимально, критично и вместе с тем рационально оценить происходящее в мире. Заниматься философией, подчеркивали философы мира, – значит верить в разум.

Философы могут сделать многое в воспитании человечества. Как жить в гармонии, существовать в рамках богатства и бедности, восторга и тревоги, как спасти человечество от глобальных проблем? Все философы мира приветствовали в разные времена разум. Почему же сегодня на него часто нападают? Эти вопросы беспокоили философов на ХХ Всемирном философском конгрессе, на XXI, который получил название «Философия лицом к мировым проблемам» и проходил в Стамбуле в 2003 г. Их поднимали и на XXII Всемирном философском конгрессе под названием «Переосмысливая философию сегодня» (Сеул, 2008).

Поиск новых мировоззренческих идей идет на фоне небывалых событий мировой цивилизации. Перед человечеством стоят проблемы , требующие глубокого философского осмысления.

1. Проблема выживаемости в ядерный век . До создания мощного ядерного оружия люди были убеждены, что человечество в целом бессмертно. Можно уничтожить памятники и другие достижения человеческой культуры, но человечество будет существовать. Когда в августе 1945 г. на японские города были сброшены первые атомные бомбы, началась принципиально новая эра мировой истории, ибо обозначилась реальная опасность для дальнейшего существования человечества. С этого момента человечество осознало свою смертность, оно как бы уравнялось в своем статусе с отдельным индивидом – простым смертным, чья земная жизнь ограничена определенными временными рамками. Ядерное оружие, наряду с другими глобальными опасностями, ставит под угрозу выживаемость человечества. Стало ясно, что все другие проблемы имеют смысл лишь постольку, поскольку остается шанс на разрешение основной проблемы – проблемы выживания, сохранения целостности человечества.

2. Проблема экологической выживаемости человечества . Начиная с эпохи Просвещения, быстро развивающаяся техногенная цивилизация поставила человечество на грань жизни и смерти. С возникновением мощного технологического давления на биосферу искусственная среда (среда обитания человека) требует все больше вещества природы для своего воспроизводства.

3. Проблема сохранения целостности личности . Цивилизация взорвала такие традиционные структуры, как передача вечных ценностей от отцов и дедов (ценность труда, живой контроль общества за нравственным поведением человека и т. д.). Постоянные погружения человека в разные социальные отношения, где от него требуется выполнение соответствующих ролей, приводят к постоянным стрессам, к утере целостности личности.

4. Проблема коммуникативного единства человечества , проблема необходимости формирования идеалов открытости, диалога между различными народами и религиями, несилового решения возникающих конфликтов.

М.: Недра, 1986 - 236 с, с ил.Содержит практические указания по проведению и организации работ в студенческих бригадах, сведения о правилах техники безопасности и охране окружающей среды. Рассмотрены основные геодезические приборы и правила работы с ними. Приведены рекомендации по выполнению топографических съемок, разбивочных работ, вертикальной планировки участков. Наиболее полно изложены вопросы выполнения геодезических работ при возведении зданий и сооружений с использованием новейших приборов.Для студентов строительных специальностей вузов.Табл. 46, ил. 62, список лит. - 22 назв.Допущено Министерством высшего и среднего специального образования СССР в качестве учебного пособия для студентов строительных специальностей вузов.

Скриншоты: оглавление

Доп. информация : ---

Мои раздачи литературы по ГЕО-наукам (Геодезия, Картография, Землеустройство, ГИС, ДЗЗ и др.)
Геодезия и Системы спутникового позиционирования


  • Инженерная геодезия : учебное пособие. В 2-х частях. / Е. С. Богомолова, М. Я. Брынь, В. А. Коугия и др.; под ред. В. А. Коугия. - СПб.: Петербургский государственный университет путей сообщения, 2006-2008. - 179 с.

  • Селиханович В.Г., Козлов В.П., Логинова Г.П. Практикум по геодезии : Учебное пособие / Под ред. Селиханович В.Г. 2–е изд., стереотипное. - М.: ООО ИД «Альянс», 2006. - 382 с.

  • Генике А.А., Побединский Г.Г. Глобальные спутниковые системы определения местоположения и их применение в геодезии . Изд. 2-е, перераб. и доп. - М.: Картгеоцентр, 2004. - 355 с.: ил.

  • Руководство пользователя по выполнению работ в системе координат 1995 года (СК-95) . ГКИНП (ГНТА)-06-278-04. - М: ЦНИИГАиК, 2004. - 89 с.

  • Инструкция по нивелированию I, II, III и IV классов . ГКИНП (ГНТА)-03-010-02. - М.: ЦНИИГАиК, 2003. - 135 с.

  • Хаметов Т.И. Геодезическое обеспечение проектирования, строительства и эксплуатации зданий, сооружений : Учеб. пособие. - М.: Изд-во АСВ, 2002. - 200 с.

  • Геодезия : учебное пособие для техникумов / Глинский С.П., Гречанинова Г.И., Данилевич В.М., Гвоздева В.А., Кощеев А.И., Морозов Б.Н. - М.: Картгеоцентр – Геодезиздат, 1995. - 483 с: ил.

  • Лукьянов В.Ф., Новак В.Е. и др. Лабораторный практикум по инженерной геодезии : Учебное пособие для ВУЗов. - М.: «Недра», 1990. - 336 с.

  • Новак В.Е., Лукьянов В.Ф. и др. Курс инженерной геодезии : Учебник для вузов под ред. проф. Новака В.Е. - М.: «Недра», 1989. - 432 с.

  • Лукьянов В.Ф., Новак В.Е., Ладонников В.Г. и др. Учебное пособие по геодезической практике . - М.: «Недра», 1986 - 236 с, с ил.

  • Закатов П.С. Курс высшей геодезии . - Изд. 4, перераб. и доп. - М.: «Недра», 1976. - 511 с.

  • Большаков В.Д., Васютинский И.Ю., Клюшин Е.Б. и др. Методы и приборы высокоточных геодезических измерений в строительстве . / Под ред. Большакова В.Д. - М.: «Недра», 1976, - 335 с.

  • Справочник геодезиста (в двух книгах) / Большаков В.Д., Левчук Г.П., Багратуни Г.В. и др.; под ред. Большакова В.Д., Левчука Г.П. Изд. 2, перераб. и доп. - М: «Недра», 1975. - 1056 с.

  • Голубева 3.С., Калошина О.В, Соколова И.И. Практикум по геодезии . Изд. 3-е, перераб. - М.: «Колос», 1969. - 240 с. с илл. (Учебники и учеб. пособия для высш. с.-х. учеб. заведений).

  • Красовский Ф.Н. Избранные сочинения : в 4-х томах. - М.: Геодезиздат, 1953-1956. - 2001 с.

  • Красовский Ф.Н. Руководство по высшей геодезии : Курс Геодезического факультета Московского Межевого Института. Часть I. - М.: Издание Геодезического Управления В.С.Н.Х. С.С.С.Р. и Московского Межевого Института, 1926. - 479 с.

Фотограмметрия, Топография и Картография

  • Серапинас Б.Б. Математическая картография : Учебник для вузов / Балис Балио Серапинас. - М.: Издательский центр «Академия», 2005. - 336 с.

  • Верещака Т.В. Топографические карты : научные основы содержания. - М.: МАИК «Наука/Интерпериодика», 2002. - 319 с.

  • Математическая основа карт . Глава III из книги: Берлянт А. М. Картография : Учебник для вузов. - М.: Аспект Пресс, 2002. - 336 с.

  • Инструкция по фотограмметрическим работам при создании цифровых топографических карт и планов . ГКИНП (ГНТА)–02-036-02. - М.: ЦНИИГАиК, 2002. - 49 с.

  • Южанинов В.С. Картография с основами топографии : Учебное пособие для вузов. - М.: Высшая школа, 2001. - 302 с.

  • Тикунов В.С. Моделирование в картографии : Учебник. - М.: Изд-во МГУ, 1997. - 405 с.

  • Урмаев М.С. Космическая фотограмметрия : Учебник для вузов. - М.: Недра, 1989. - 279 с: ил.

  • Составление и использование почвенных карт (Под редакцией кандидата сельскохозяйственных наук Кашанского А.Д.). - 2-е изд., перераб. и доп. - М.: Агропромиздат, 1987. - 273 с.: ил. - (Учебники и учебные пособия для студентов высших учебных заведений).

  • Лосяков Н.Н., Скворцов П.А., Каменецкий А.В. и др. Топографическое черчение : Учебник для вузов / Под редакцией кандидата технических наук Лосякова Н.Н. - М.: Недра, 1986. - 325 с., ил.

  • Билич Ю. С., Васмут А. С. Проектирование и составление карт : Учебник для вузов. - М.: Недра, 1984. - 364 с.

Землеустройство и Земельный кадастр

  • Варламов А.А., Гальченко С.А. Земельный кадастр (в 6-ти томах). Том 6. Географические и земельные информационные системы . - М.: КолосС, 2006. - 400 с. - (Учебники и учеб. пособия для студентов высш. учеб. заведений).

  • Единая система технологической документации Государственного земельного кадастра Российской Федерации. Система классификаторов для целей ведения государственного земельного кадастра . Государственный комитет Российской Федерации по земельной политике. - М.: Госкомзем России, 2000 г. - 182 с.

  • Комплексная система управления качеством проектных и изыскательских работ. Стандарты предприятия по оформлению графических материалов . - М.: Росземпроект, 1983 г. - 86 с. (СТП 71.x-82)

  • Инструкция по дешифрированию аэрофотоснимков и фотопланов в масштабах 1:10000 и 1:25000 для целей землеустройства, государственного учета земель и земельного кадастра . - М.: Минсельхоз СССР, ГУ Землепользования и Землеустройства, ВИСХАГИ, 1978. - 143 с.

Географические информационные системы (ГИС)

  • Попов И.В., Чикинев М.А. Эффективное использование ArcObjects . Методическое руководство. - Новосибирск: Изд-во СО РАН, 2003 г. - 160 c.

  • Геоинформатика / Иванников А.Д., Кулагин В.П., Тихонов А.Н., Цветков В.Я. - М.: МАКС Пресс, 2001. - 349 с.

  • Берлянт А.М., Кошкарев А.В. и др. Геоинформатика . Толковый словарь основных терминов. - М.: ГИС-Ассоциация, 1999. - 204 с.

  • ДеМерс Майкл Н. Географические Информационные Системы . Основы.: Пер. с англ. - М: Дата+, 1999. - 507 с.

  • Замай С.С., Якубайлик О.Э. Программное обеспечение и технологии геоинформационных систем : Учебное. пособие. - Красноярск: Краснояр. гос. ун-т, 1998. - 110 с.

Дистанционное зондирование Земли (ДЗЗ)

  • Медведев Е.М., Данилин И.М., Мельников С.Р. Лазерная локация земли и леса : Учебное пособие. - 2-е изд., перераб. и доп. - М.: Геолидар, Геоскосмос; Красноярск: Институт леса им. В.Н. Сукачева СО РАН, 2007. - 230 с.

  • Кашкин В.Б., Сухинин А.И. Дистанционное зондирование Земли из космоса . Цифровая обработка изображений: Учебное пособие. - М.: Логос, 2001. - 264 с.: ил.

  • Гарбук С.В., Гершензон В.Е. Космические системы дистанционного зондирования Земли . - М.: Издательство А и Б, 1997. - 296 с., ил.

  • Виноградов Б.В. Аэрокосмический мониторинг экосистем . - М.: Наука, 1984. - 320 с.

  • Дейвис Ш.М., Ландгребе Д.А., Филлипс Т.Л. и др. Дистанционное зондирование: количественный подход / Под ред. Ф. Свейна и Ш. Дейвис. Пер. с англ. - М.: Недра, 1983. - 415 с.

  • Богомолов Л.А. Дешифрирование аэроснимков . - М.: «Недра», 1976. - 145 с.

  • Миллер В., Миллер К. Аэрофотогеология / Пер. с англ. Воеводы В.М. и Ильина А.В., под ред. Лунгерсгаузена Г.Ф. - М.: МИР, 1964. - 292 с., ил.

Навигация, Ориентирование и Определение местоположения

  • Найман В.С. GPS–навигаторы для путешественников, автомобилистов, яхтсменов = Лучшие GPS–навигаторы / Под научной редакцией Скрылева В.В. - М.: НТ Пресс, 2008. - 400 с.: ил.

  • Яценков В.С. Основы спутниковой навигации . Системы GPS NAVSTAR и ГЛОНАСС. - М: Горячая линия-Телеком, 2005. - 272 с: ил.

  • Громаков Ю.А., Северин А.В., Шевцов В.А. Технологии определения местоположения в GSM и UMTS : Учеб. пособие. - М.: Эко-Трендз, 2005. - 144 с: ил.

  • Соловьев Ю.А. Системы спутниковой навигации . - М.: Эко-Трендз, 2000. - 270 с.

  • Глобальная спутниковая радионавигационная система ГЛОНАСС / Под ред. Харисова В.Н., Перова А.И., Болдина В.А. - М.: ИПРЖР, 1998. - 400 с. : ил.

  • Шебшаевич В.С., Дмитриев П.П., Иванцевич И.В. и др. Сетевые спутниковые радионавигационные системы / Под ред. Шебшаевича В.С. - 2-е изд., перераб. и доп. - М.: Радио и связь, 1993. - 408 с,: ил.

  • Меньчуков А.Е. В мире ориентиров . Изд. 3, доп. - М.: «Мысль», 1966. - 284 с.

- «Говоря СПАСИБО, вы продлеваете жизнь торренту» (Dark_Ambient )

Министерство образования РФ
Сибирская государственная геодезическая академия

Геодезия.
Общий курс

Электронная версия учебного пособия Дьякова Б.Н.

Изложены основные понятия геодезии, способы определения координат точек на плоскости, описаны геодезические измерительные приборы и методы простейших геодезических измерений, рассмотрены теория и методика определения площади участков местности и создания топографических планов.

Предназначено для студентов геодезических и негеодезических специальностей.

Рецензенты полиграфического издания учебного пособия:

Заведующий кафедрой инженерной геодезии

Новосибирской государственной строительной академии,

профессор, д.т.н.

Г.Г. Асташенков

Кафедра кадастра ИКиГИС СГГА, профессор, к.т.н.

Электронная версия учебного пособия разработана и представлена на сайте СГГА в Центре информационных технологий Сибирской государственной геодезической академии (ЦИТ СГГА, г. Новосибирск) под руководством директора ЦИТ проф. Малинина В.В. в течение 2001/2002 учебного года. При подготовке электронной версии учебного пособия были использованы следующие материалы:

Учебное пособие "Геодезия".

В работе над электронной версией учебного пособия принимали участие:

Вшивкова И.А. - сканирование текста, администрирование сайта СГГА;

Малинина И.В. - формирование всех электронных страниц и связей между страницами, корректура;

Малинин В.В. - структура, подбор материалов, дизайн, общее руководство;

студенты оптического и геодезического факультета - черновая подготовка текстовых страниц.

ПРЕДИСЛОВИЕ

1. ОБЩИЕ СВЕДЕНИЯ

1.1. Предмет и задачи геодезии

1.2. Понятие о фигуре Земли

1.3. Определение положения точек земной поверхности

1.3.1. Астрономические координаты

1.3.2. Геодезические координаты

1.3.3. Прямоугольные координаты

1.3.4. Полярные координаты

1.4. Метод проекций

1.4.1. Центральная проекция

1.4.2. Ортогональная проекция

1.4.3. Горизонтальная проекция

1.5. Расчет искажений при замене участка сферы плоскостью

1.5.1. Искажение расстояний

1.5.2. Искажение высот точек

1.6. Понятие о плане, карте, аэроснимке

1.7. Картографическая проекция Гаусса

1.8. Ориентирование линий

1.8.1. Ориентирование по географическому меридиану точки

1.8.2. Ориентирование по осевому меридиану зоны

1.8.3. Ориентирование по магнитному меридиану точки

1.8.4. Румбы линий

1.9. Обработка геодезических измерений

1.9.1. Принципы обработки измерений

1.9.2. Начальные сведения из теории ошибок

1.9.3. Элементы техники вычислений

2. ОПРЕДЕЛЕНИЕ ПРЯМОУГОЛЬНЫХ КООРДИНАТ ТОЧЕК

2.1. Определение координат одной точки

2.1.1. Способы задания прямоугольной системы координат

2.1.2. Три элементарных измерения

2.1.3. Полярная засечка

2.1.5. Обратная геодезическая задача на плоскости

2.1.7. Линейная засечка

2.1.8. Обратная угловая засечка

2.1.9. Комбинированные засечки

2.1.10. Ошибка положения точки

2.2. Определение координат нескольких точек

2.2.1. Задача Ганзена

2.2.2. Линейно-угловой ход

2.2.2.1. Классификация линейно-угловых ходов

2.2.2.2. Вычисление координат пунктов разомкнутого линейно-углового хода

2.2.2.3. Вычисление координат пунктов замкнутого линейно-углового хода

2.2.2.4. Привязка линейно-угловых ходов

2.2.2.5. Понятие о системе линейно-угловых ходов с узловыми точками

2.3. Понятие о триангуляции

2.4. Понятие о трилатерации

2.5. Понятие об автономном определении координат точек

3. КОНСТРУКТИВНЫЕ ЭЛЕМЕНТЫ ГЕОДЕЗИЧЕСКИХ ИЗМЕРИТЕЛЬНЫХ ПРИБОРОВ

3.1. Отсчетные приспособления

3.2. Зрительные трубы

3.3. Уровни

3.4. Понятие о компенсаторах углов наклона

4. ГЕОДЕЗИЧЕСКИЕ ИЗМЕРЕНИЯ

4.1.Измерение горизонтальных и вертикальных углов

4.1.1. Принцип измерения горизонтального угла

4.1.2. Устройство теодолита

4.1.3. Поверки и исследования теодолита

4.1.4. Способы измерения горизонтальных углов

4.2. Измерение вертикальных углов

4.3. Измерение расстояний

4.3.1. Мерные приборы

4.3.2. Оптические дальномеры

4.3.3. Понятие о светодальномерах

4.4. Измерение превышений

4.4.1. Геометрическое нивелирование

4.4.1.1. Влияние кривизны Земли и рефракции на измеряемое превышение

4.4.1.2. Нивелиры: устройство, поверки, исследования

4.4.1.3. Нивелирные рейки

4.4.1.4. Вычисление отметок реперов разомкнутого хода технического нивелирования

4.4.2. Понятие о тригонометрическом нивелировании

4.4.3. Понятие о гидростатическом нивелировании

4.4.4. Понятие о барометрическом нивелировании

5. ТОПОГРАФИЧЕСКИЕ КАРТЫ И ПЛАНЫ

5.1. Масштабы топографических карт

5.2. Разграфка и номенклатура

5.2.1. Разграфка и номенклатура топографических карт

5.2.2. Разграфка и номенклатура крупномасштабных планов

5.3. Координатная сетка

5.4. Условные знаки для топографических карт и планов

5.5. Изображение рельефа на картах и планах

5.6. Решение задач с помощью карт и планов

5.7. Ориентирование карты на местности

5.8. Цифровые топографические карты

6. ИЗМЕРЕНИЕ ПЛОЩАДИ УЧАСТКОВ МЕСТНОСТИ

6.1. Геометрический способ

6.2. Аналитический способ

6.3. Механический способ

6.4. Понятие о редуцировании площади участка

7. ТОПОГРАФИЧЕСКАЯ СЪЕМКА МЕСТНОСТИ

7.1. Геодезические сети

7.1.1. Классификация геодезических сетей

7.1.2. Закрепление геодезических пунктов на местности

7.2. Съемочное обоснование топографических съемок

7.3. Принцип топографической съемки

7.4. Классификация съемок

7.5. Горизонтальная съемка

7.6. Тахеометрическая съемка

7.7. Составление плана участка местности

7.8. Мензульная съемка

7.9. Специальные съемки

СПИСОК ПРИНЯТЫХ ОБОЗНАЧЕНИЙ

Предисловие

За 5 лет, прошедших со дня выхода в свет первого издания, НИИГАиК был преобразован в СГГА - Сибирскую государственную геодезическую академию. Сопутствующий изменению статуса учебного заведения процесс открытия новых и модернизации старых специальностей привел к тому, что геодезия из главной дисциплины превратилась в одну из базовых дисциплин, а для отдельных специальностей - в общетехническую дисциплину; это потребовало переработки всей учебно-методической литературы.

При подготовке второго издания общего курса геодезии автор стремился к тому, чтобы изложение учебного материала стало более компактным, полным и логически обоснованным и чтобы в теоретической части постоянно подчеркивалась геометрическая основа геодезии и рассматривались геометрические методы решения ее задач.

Наиболее существенные отличия второго издания следующие:

значительно сократились разделы "Оптические дальномеры" и "Топографические съемки";

раздел "Определение координат точек на плоскости" изложен с позиций системного подхода,

более подробно раскрыто содержание понятия "ошибка положения точки",

дано понятие об автономном определении местоположения точек и о цифровом картографировании.

Все дополнения прошли неофициальную экспертизу ведущих специалистов СГГА.

По техническим причинам текст рукописи пришлось сократить на 25% - была исключена глава "Точные измерения углов, расстояний, превышений", убраны все числовые примеры от решения обратной геодезической задачи до обработки линейно-углового хода, сокращены некоторые разделы.

Автор выражает благодарность проф. д.т.н. Асташенкову Г.Г. за тщательный просмотр рукописи и ценные замечания, а также проф. Антоновичу К.М., проф. Падве В.А. и доц. Серебрякову О.Н. за консультации и полезные советы.

1. Общие сведения

      Предмет и задачи геодезии

Слово "геодезия" образовано из греческих слов "ge" - земля и "dazomai" - разделяю, делю на части; если перевести его дословно, то получится "землеразделение". Это название соответствовало содержанию геодезии во времена ее зарождения и начального развития. Так, в Египте задолго до нашей эры измерялись размеры земельных участков, строились оросительные системы; все это выполнялось с участием геодезистов.

С развитием человеческого общества, повышением роли науки и техники расширялось содержание геодезии, усложнялись задачи, которые ставила перед ней жизнь.

В настоящее время геодезия - это наука о методах определения фигуры и размеров Земли и изображения ее поверхности на картах и планах, а также о способах проведения различных измерений на поверхности Земли (на суше и акваториях), под землей, в околоземном пространстве и на других планетах.

Известный ученый-геодезист В.В.Витковский так охарактеризовал геодезию: "Геодезия представляет одну из полезнейших отраслей знания; все наше земное существование ограничено пределами Земли, и изучать ее вид и размеры человечеству так же необходимо, как отдельному человеку - ознакомиться с подробностями своего жилья".

Среди многих задач геодезии можно выделить долговременные задачи и задачи на ближайшие годы.

К первым относятся:

определение фигуры, размеров и гравитационного поля Земли,

распространение единой системы координат на территорию отдельного государства, континента и всей земли в целом,

изображение участков поверхности земли на топографических картах и планах,

изучение глобальных смещений блоков земной коры.

Ко вторым в настоящее время относятся:

создание и внедрение ГИС - геоинформационных систем,

создание государственных и локальных кадастров: земельного, водного, лесного, городского и т.д.,

топографо-геодезическое обеспечение делимитации (определения) и демаркации (обозначения) государственной границы России,

разработка и внедрение стандартов в области цифрового картографирования,

создание цифровых и электронных карт и их банков данных,

разработка концепции и государственной программы повсеместного перехода на спутниковые методы автономного определения координат,

создание комплексного национального атласа России и другие.

Эти задачи записаны в Постановлении коллегии Федеральной службы геодезии и картографии России от 20 февраля 1995 года.

Усложнение и развитие геодезии привело к разделению ее на несколько научных дисциплин.

Высшая геодезия изучает фигуру Земли, ее раз меры и гравитацонное поле, обеспечивает распространение принятых систем координат в пределах государства, континента или всей поверхности Земли, занимается исследованием древних и современных движений земной коры, а также изучает фигуру, размеры и гравитационное поле других планет Солнеч ной системы.

Топография ("топос" - место, "графо" - пишу; дословно - описание местности) изучает методы топографической съемки мест ности с целью изображения ее на планах и картах.

Картография изучает методы и процессы создания и использования карт, планов, атласов и другой картографической продукции.

Фотограмметрия (фототопография и аэрофототопо графия) изучает методы создания карт и планов по фото- и аэрофотоснимкам.

Инженерная геодезия изучает методы и средства проведения геодезических работ при изысканиях, проектировании, строительст ве и эксплуатации различных инженерных сооружений.

Маркшейдерия (подземная геодезия) изучает мето ды проведения геодезических работ в подземных горных выработках.

Понятно, что четко обозначенных границ между перечисленными дисциплинами нет. Так, топография включает в себя элементы высшей геодезии и картографии, инженерная геодезия использует разделы практически всех остальных геодезических дисциплин и т.д.

Уже из этого неполного перечня геодезических дисциплин видно, какие разнообразные задачи - и теоретического, и практического характера, - приходится решать геодезистам, чтобы удовлетворить требования государственных и частных учреждений, компаний и фирм. Для государственного планирования и развития производительных сил страны необходимо изучать ее территорию в топографическом отношении. Топографические карта и планы, создаваемые геодезистами, нужны всем, кто работает или передвигается по Земле: геологам, морякам, летчикам, проектировщикам, строителям, земледельцам, лесоводам, туристам, школьникам и т.д. Особенно нужны карты армии: строительство оборонительных сооружений, стрельба по невидимым целям, использование ракетной техники, планирование военных операций, - все это без карт и других геодезических материалов просто невозможно.

Геодезия занимается изучением Земли в содружестве с другими "геонауками", то-есть, науками о Земле. Физические свойства Земли в целом изучает наука "физика Земли", строение верхней оболочки нашей планеты изучают геология и геофизика, строение и характеристики океанов и морей - гидрология, океанография. Атмосфера - воздушная оболочка Земли - и процессы, происходящие в ней, являются предметом изучения метеорологии и климатологии. Растительный мир изучает геоботаника, животный мир - зоология. Кроме этого, есть еще география, геоморфология и другие. Среди всех наук о Земле геодезия занимает свое место: она изучает геометрию Земли в целом и отдельных участков ее поверхности, а также геометрию любых объектов (и естественного, и искусственного происхождения) на поверхности Земли и вблизи нее.

Геодезия, как и другие науки, постоянно впитывает в себя достижения математики, физики, астрономии, радиоэлектроники, автоматики и других фундаментальных и прикладных наук. Изобретение лазера привело к появлению лазерных геодезических приборов - лазерных нивелиров и светодальномеров; кодовые измерительные приборы с автоматической фиксацией отсчетов могли появиться только на определенном уровне развития микроэлектроники и автоматики. Что же касается информатики, то ее достижения вызвали в геодезии подлинную революцию, которая происходит сейчас на наших глазах.

В последние годы строительство так называемых уникальных инженерных сооружений потребовало от геодезии резкого повышения точности измерений. Так, при монтаже оборудования мощных ускорителей прихо дится учитывать десятые и даже сотые доли миллиметра. По результатам геодезических измерений изучают деформации и осадки действующего промышленного оборудования, обнаруживают движение земной коры в сейсмоактивных зонах, наблюдают за уровнями воды в реках, морях и океанах и уровнем грунтовых вод.

Возможность использования искусственных спутников Земли для решения геодезических задач привела к появлению новых разделов геодезии - космической геодезии и геодезии планет. Подтверждаются слова К.Э. Циолковского: "Земля - колыбель человечества, но нельзя вечно жить в колыбели."

      Понятие о фигуре Земли

Фигура Земли как планеты издавна интересовала ученых; для геодезистов же установление ее фигуры и размеров является одной из основных задач.

На вопрос: "Какую форму имеет Земля?" большинство людей отвечает: "Земля имеет форму шара!". Действительно, если не считать гор и океанических впадин, то Землю в первом приближении можно считать шаром. Она вращается вокруг оси и согласно законам физики должна быть сплюснута у полюсов. Во втором приближении Землю принимают за эллипсоид вращения; в некоторых исследованиях ее считают трехосным эллипсоидом.

На поверхности Земли встречаются равнины, котловины, возвышенности и горы разной высоты; если же принять во внимание рельеф дна озер, морей и океанов, то можно сказать, что форма физической поверхности Земли очень сложная. Для ее изучения можно применить широко известный способ моделирования, с которым школьники знакомятся на уроках информатики.

При разработке модели какого-либо объекта или явления учитывают только его главные характеристики, имеющие значение для успешного решения данной конкретной задачи; все другие характе ристики, как несущественные для данной задачи, во внимание не принимаются.

В модели шарообразной Земли поверхность Земли имеет сферическую форму; здесь важен лишь радиус сферы, а все остальное - морские впадины, горы, равнины, - несущественно. В этой модели используется геометрия сферы, теория которой сравнительно проста и очень хорошо разработана.

Модель эллипсоида вращения имеет две характеристики: размеры большой и малой полуосей. В этой модели используется геометрия эллипсоида вращения, которая намного сложнее геометрии сферы, хотя разработана также достаточно подробно.

Если участок поверхности Земли небольшой, то иногда оказывается возможным применить для этого участка модель плоской поверхности; в этой модели применяется геометрия плоскости, которая по сложности (а точнее, по простоте) несравнима с геометрией сферы, а тем более с геометрией эллипсоида.

В одном из учебников по высшей геодезии написано: "Понятие фигуры Земли неоднозначно и имеет различную трактовку в зависи мости от использования получаемых данных". При решении геодези ческих задач можно иногда считать поверхность участка Земли либо частью плоскости, либо частью сферы, либо частью поверхности эл липсоида вращения и т.д.

Какое направление вполне однозначно и очень просто можно определить в любой точке Земли без специальных приборов? Конечно же, направление силы тяжести; стоит подвесить на нить груз, и натянутая нить зафиксирует это направление. Именно это направление является в геодезии основным, так как оно существует объективно и легко и просто обнаруживается. Направления силы тяжести в разных точках Земли непараллельны, они радиальны, то-есть почти совпадают с направлениями радиусов Земли.

Поверхность, всюду перпендикулярная направлениям силы тяжести, называется уровенной поверхностью. Уровенные поверхности можно проводить на разных высотах; все они являются замкнутыми и почти параллельны одна другой.

Уровенная поверхность, совпадающая с невозмущенной поверхностью мирового океана и мысленно продолженная под материки, называется основной уровенной поверхностью или поверхностью геоида.

Если бы Земля была идеальным шаром и состояла из концентрических слоев различной плотности, имеющих постоянную плотность внутри каждого слоя, то все уровенные поверхности имели бы строго сферическую форму, а направления силы тяжести совпадали бы с радиусами сфер. В реальной Земле направления силы тяжести зависят от распределения масс различной плотности внутри Земли, поэтому поверхность геоида имеет сложную форму, не поддающуюся точному математическому описанию, и не может быть определена только из наземных измерений.

В настоящее время при изучении физической поверхности Земли роль вспомогательной поверхности выполняет поверхность квазигеоида, которая может быть точно определена относительно поверхно сти эллипсоида по результатам астрономических, геодезических и гравиметрических измерений. На территории морей и океанов поверхность квазигеоида совпадает с поверхностью геоида, а на суше она отклоняется от него в пределах двух метров /24/ (рис.1.1).

За действительную поверхность Земли принимают на суше ее физическую поверхность, на территории морей и океанов - их невозмущенную поверхность.

Что значит изучить действительную поверхность Земли? Это значит определить положение любой ее точки в принятой системе координат. В геодезии системы координат задают на поверхности эллипсоида вращения, потому что из простых математических поверхностей она ближе всего подходит к поверхности Земли; поверхность этого эллипсоида называется еще поверхностью относимости. Элли псоид вращения принятых размеров, определенным образом ориентированный в теле Земли, на поверхность которого относятся геодезические сети при их вычислении, называется референц-эллипсоидом.

Для территории нашей страны постановлением Совета Министров СССР N 760 от 7 апреля 1946 года принят эллипсоид Красовского:
большая полуось a = 6 378 245 м, малая полуось b = 6 356 863 м, полярное сжатие:

Применяемые в разных странах референц-эллипсоиды могут иметь неодинаковые размеры; существует и общеземной эллипсоид, размеры которого утверждают Международные геодезические организации. Так, в системе WGS-84 (World Geodetic System) эти размеры суть большая полуось a = 6 378 137.0 м, полярное сжатие:

Малая полуось при необходимости вычисляется через a и α.

Для многих задач геодезии поверхностью относимости может служить сфера, которая в математическом отношении еще проще, чем поверхность эллипсоида вращения, а для некоторых задач небольшой участок сферы или эллипсоида можно считать плоским.

        Астрономические координаты

Положение точки на поверхности сферы определяется двумя сферическими координатами - широтой и долготой (рис.1.2: точка O - центр сферы, точка P - северный полюс, точка P" - южный полюс). Проведем линию экватора QQ, полученную от пересечения плоскости экватора и поверхности сферы.

Плоскость меридиана точки A, лежащей на поверхности сферы, проходит через отвесную линию точки A и ось вращения Земли PP". Меридиан точки A - это линия пересечения плоскости меридиана точки A с поверхностью сферы.

Широта точки A - это угол, образованный отвесной линией точки A и плоскостью экватора; этот угол лежит в плоскости меридиана точки.

Широта отсчитывается в обе стороны от экватора (к северу - северная широта, к югу - южная) и изменяется от 0o до 90o.

Долгота точки A - это двугранный угол между плоскостью начального меридиана и плоскостью меридиана точки A. Начальный меридиан проходит через центр главного зала Гринвичской обсерватории, расположенной вблизи Лондона. Долготы изменяются от 0o до 180o, к западу от Гринвича - западные и к востоку - восточные. Все точки одного меридиана имеют одинаковую долготу.

Проведем через точку A плоскость, параллельную плоскости экватора; линия пересечения этой плоскости с поверхностью сферы называется параллелью точки; все точки параллели имеют одинаковую широту.

Проведем плоскость G, касательную к поверхности сферы в точке A; эта плоскость называется плоскостью горизонта точки A. Линия пересечения плоскости горизонта и плоскости меридиана точки называется полуденной линией; направление полуденной линии - с юга на север. Если провести полуденные линии двух точек, лежащих на одной параллели, то они пересекутся в точке на продолжении оси вращения Земли PP" и образуют угол , который называется сближением меридианов этих точек.

Широту и долготу точек местности определяют из астрономических наблюдений, потому они и называются астрономическими координатами.

        Геодезические координаты

На поверхности эллипсоида вращения положение точки определяется геодезическими координатами - геодезической широтой B и геодезической долготой L (рис.1.3).

Геодезическая широта точки - это угол, образованный нормалью к поверхности эллипсоида в этой точке и плоскостью экватора. Геодезическая долгота точки - это двугранный угол между плоскостью начального меридиана и плоскостью меридиана точки.

Плоскость геодезического меридиана проходит через точку A и малую полуось эллипсоида; в этой плоскости лежит нормаль к поверхности эллипсоида в точке A. Геодезическая параллель получается от пересечения поверхности эллипсоида плоскостью, проходящей через точку A и параллельной плоскости экватора.

Различие геодезических и астрономических координат точки A зависит от угла между отвесной линией данной точки и нормалью к поверхности эллипсоида в этой же точке. Этот угол называется уклонением отвесной линии; он обычно не превышает 5". В некоторых районах Земли, называемых аномальными, уклонение отвесной линии достигает нескольких десятков дуговых секунд. При геодезических работах невысокой точности астрономические и геодезические координаты не различают; их общее название - географические координаты - используется довольно часто.

Две координаты - широта и долгота - определяют положение точки на поверхности относимости (сферы или эллипсоида). Для определения положения точки в трехмерном пространстве нужно задать ее третью координату, которой в геодезии является высота. В нашей стране счет высот ведется от уровенной поверхности, соответствующей среднему уровню Балтийского моря; эта система высот называется Балтийской.

        Прямоугольные координаты

Систему плоских прямоугольных координат образуют две взаимноперпендикулярные прямые линии, называемые осями координат; точка их пересечения называется началом или нулем системы координат. Ось абсцисс - OX, ось ординат - OY.

Существуют две системы прямоугольных координат: левая и правая. В геодезии чаще применяется левая система (рис.1.4-а). По ложение точки в прямоугольной системе однозначно определяется двумя координатами X и Y; координата X выражает расстояние точки от оси ОY, координата Y - расстояние от оси OY.

Значения координат бывают положительные (со знаком " + ") и отрицательные (со знаком " - ") в зависимости от того, в какой четверти (квадранте) находится искомая точка (рис.1.4-a).

        Полярные координаты

Систему полярных координат образует направленный прямой луч OX. Начало координат - точка O - называется полюсом системы, линия OX - полярной осью. Положение любой точки в полярной системе определяется двумя координатами: радиусом-вектором r (синоним полярное расстояние S) - расстоянием от полюса до точки, - и полярным углом β при точке O, образованным осью OX и радиусом вектором точки и отсчитываемым от оси OX по ходу часовой стрелки (рис.1.4-б).

Переход от прямоугольных координат к полярным и обратно для случая, когда начала обеих систем находятся в одной точке и оси OX у них совпадают (рис.1.4-в), выполняется по формулам: X = S * Cosβ, Y = S * Sinβ, tgβ = Y/X, .

Эти формулы получаются из решения ΔOBA по известным соотношениям между сторонами и углами прямоугольного треугольника.

ГеодезияДокумент

Типов почв. Пререквизиты: геодезия , экология Содержание курса /дисциплины: Общая схема почвообразовательного процесса. Химический... типов почв. Пререквизиты: геодезия , экология Содержание курса /дисциплины: Общая схема почвообразовательного процесса. ...



Последние материалы раздела:

SA. Парообразование. Испарение, конденсация, кипение. Насыщенные и ненасыщенные пары Испарение и конденсация в природе сообщение
SA. Парообразование. Испарение, конденсация, кипение. Насыщенные и ненасыщенные пары Испарение и конденсация в природе сообщение

Все газы явл. парами какого-либо вещества, поэтому принципиальной разницы между понятиями газ и пар нет. Водяной пар явл. реальным газом и широко...

Программа и учебные пособия для воскресных школ А тех, кто вокруг, не судить за грехи
Программа и учебные пособия для воскресных школ А тех, кто вокруг, не судить за грехи

Учебно-методический комплект "Вертоград" включает Конспекты учителя, Рабочие Тетради и Сборники тестов по следующим предметам:1. ХРАМОВЕДЕНИЕ...

Перемещение Определить величину перемещения тела
Перемещение Определить величину перемещения тела

Когда мы говорим о перемещении, важно помнить, что перемещение зависит от системы отсчета, в которой рассматривается движение. Обратите внимание...