Почему вода испаряется на теле. Что такое испарение и как оно происходит? Испарение и кипение: в чем разница

Как и в любой другой жидкости, есть , энергия которых позволяет им преодолеть межмолекулярное притяжение. Эти молекулы с силой разгоняются и вылетают на поверхность. Поэтому если стакан с водой накрыть бумажной салфеткой, то через некоторое время она станет немного влажной. Но испарение воды в разных условиях протекает с различной интенсивностью. Ключевыми физическими характеристиками, влияющими на скорость протекания данного процесса и его длительность, являются плотность вещества, температура, площадь поверхности, наличие .Чем больше плотность вещества, тем ближе друг к другу расположены молекулы. А значит, им сложнее преодолеть межмолекулярное притяжение, и они в гораздо меньшем количестве вылетают на поверхность. Если поместить две жидкости с разной плотностью (к примеру, воду и метиловый ) в одинаковые условия, то быстрее испарится та, плотность которой меньше. Плотность воды равна 0,99 г/см3, а плотность метилового - 0,79 г/см3. Следовательно, метанол испарится быстрее. Не менее важным фактором, влияющим на скорость испарения воды, является температура. Как уже говорилось, испарение при любой температуре, но с ее увеличением скорость движения молекул растет, и они в большем количестве покидать жидкость. Поэтому горящая вода испаряется быстрее, чем холодная.Интенсивность испарения воды зависит также и от площади ее поверхности. Вода, налитая в бутылку с узким горлышком будет испаряться , т.к. вылетевшие молекулы будут оседать на сужающихся вверху стенках бутылки и скатываться обратно. А молекулы воды, находящейся в блюдце, беспрепятственно будут покидать жидкость.Процесс испарения значительно ускорится, если над поверхностью, с которой происходит испарение, перемещаются воздушные потоки. Дело в том, что помимо выхода молекул из жидкости происходит их возвращение обратно. И чем сильнее циркуляция воздуха, тем меньше молекул, опускаясь, попадут обратно в воду. А значит, объем ее будет стремительно уменьшаться.

Источники:

  • испарение воды

Различные свойства воды на протяжении многих лет интересуют ученых. Вода может находиться в различных состояниях – твёрдом, жидком и газообразном. При обычной средней температуре вода имеет вид жидкости. Ее можно пить, поливать ею растения. Вода может растекаться и занимать определенные поверхности и принимать форму тех сосудов, в которых она находится. Так почему же вода жидкая?

Вода имеет особую структуру, благодаря которой принимает вид жидкости. Она может литься, течь и капать. В кристаллах твердых веществ имеется строго упорядоченная структура. В газообразных веществах структура выражена как полный хаос. Вода же – промежуточная структура между и газообразным веществом. Частицы в структуре воды расположены на небольших расстояниях друг от друга и относительно упорядоченно. Но поскольку частицы со временем удаляются друг от друга, то и порядок структуры быстро исчезает.

Силы межатомного и межмолекулярного воздействия задают между частицами среднее расстояние. Молекулы воды состоят из атомов кислорода и водорода, где атомы кислорода одной молекулы притягиваются к атомам водорода другой молекулы. Образуется водородных связей, которая и придает воде определенные свойства текучести, при этом структура самой воды практически идентична структуре кристалла. С помощью многочисленных опытов то, что вода сама задает себе структуру в свободном объеме.

При соединении воды с твердыми поверхностями, структура воды начинает объединяться со структурой поверхности. Так как структура граничащего слоя воды остается без изменений, то начинают меняться его физико- . Меняется вязкость воды. Появляется возможность растворять вещества с определенной структурой и свойствами. Вода изначально представляет собой прозрачную бесцветную жидкость. Физические свойства воды можно называть аномальными, так как она имеет довольно высокую температуру кипения и замерзания.

У воды имеется поверхностное натяжение. Например, она имеет аномально высокие температуры замерзания и кипения, а также поверхностное натяжение. Удельные испарения и плавления у воды значительно выше, чем у каких-либо других веществ. Удивительная особенность в том, что плотность воды выше, чем плотность льда, что позволяет льду плавать на поверхности воды. Все эти чудесные свойства воды, как жидкости, снова объясняются существованием в ней тех водородных связей, которыми связаны молекулы.

Строение молекулы воды из трех атомов в геометрической проекции тетраэдра приводит к возникновению очень сильного взаимного притяжения молекул воды друг к другу. Всё дело в водородных связях молекул, ведь каждая молекула может образовать четыре абсолютно одинаковые водородные связи с другими молекулами воды. Этот факт и объясняет то, что вода – жидкая.

Не секрет, что пресной воды на

Всем известно, что в мокрой одежде холоднее, чем в сухой, особенно при ветре. Известно также, что, обернув сосуд с водой мокрой тряпкой и выставив его в жаркий день на ветер, мы заметно охладим воду в сосуде. Иногда с этой же целью в жарких странах употребляют специальные сосуды с пористыми стенками, сквозь которые вода медленно просачивается, поддерживая их все время влажными. Эти наблюдения показывают, что испарение вызывает охлаждение жидкости, а вместе с тем и окружающих тел. В этом случае теплота парообразования заимствуется у самой жидкости.

Особенно сильное охлаждение получается, если испарение происходит очень быстро, так что испаряющаяся жидкость не успевает получать теплоту от окружающих тел. Быстрое испарение легко получить у летучих жидкостей. Например, при испарении эфира или хлористого этила легко получается охлаждение ниже (рис. 490). Этим пользуются врачи, когда им нужно заморозить кожу больного, чтобы сделать ее нечувствительной к боли. Охлаждение при испарении можно также наблюдать в следующем опыте. Два стеклянных шарика и соединены изогнутой стеклянной трубкой (криофор, рис. 491). В шариках находятся вода и ее пары, воздух удален. Шарик С помещают в охлаждающую смесь (смесь снега и соли). Тогда вода в шарике замерзает. Причина этого такова. Охлаждение шарика вызывает усиленную конденсацию в нем паров. Вследствие этого вода в шарике испаряется и потому охлаждается. Температура падает настолько сильно, что вода в шарике замерзает.

Рис. 490. Продувая воздух сквозь трубку, т. е. ускоряя испарение эфира, можно заставить воду внизу пробирки замерзнуть

Рис. 491. Когда шарик охлаждается, вода в шарике замерзает

Охлаждение при испарении и выделение теплоты при конденсации паров играют исключительно важную роль в природе, обусловливая умеренность климата приморских стран. Отметим, что испарение пота с кожи человека и животных является способом, при помощи которого организм регулирует температуру тела. Во время жары кожа потеет и испарение пота охлаждает ее.

296.1. Почему в резиновой одежде трудно переносить жару?

296.2. Почему при обмахивании веером легче переносить жару?

296.3. Имеются два одинаковых по форме и размерам стакана, один металлический, а другой фарфоровый. В стаканы наливают одинаковое количество воды и оставляют их надолго в комнате. Одинакова ли температура воды в стаканах?

Вода – одно из самых распространенных и вместе с тем самое удивительное вещество на Земле. Вода находится повсюду: и вокруг нас, и внутри нас. Мировой океан, состоящий из воды, покрывает ¾ поверхности земного шара. Любой живой организм, будь то растение, животное или человек, содержит воду. Человек более чем на 70% состоит из воды. Именно вода – одна из главнейших причин возникновения жизни на Земле. Как и любое вещество, вода может находиться в различных состояниях или, как говорят физики, ‑ агрегатных состояниях вещества: твердом, жидком и газообразном. При этом постоянно происходят переходы из одного состояния в другое – так называемые фазовые переходы. Одним из таких переходов является испарение, обратный процесс называется конденсацией. Давайте попробуем разобраться, как можно использовать это физическое явление, и что нужно знать об этом.

В процессе испарения вода переходит из жидкого состояния в газообразное, при этом образуется водяной пар. Это происходит при любой температуре, когда вода находится в жидком состоянии (0 0 – 100 0 С) . Однако скорость испарения не всегда одинаковая и зависит от ряда факторов: от температуры воды, от площади поверхности воды, от влажности воздуха и от наличия ветра. Чем выше температура воды, тем быстрее двигаются ее молекулы и тем интенсивнее происходит испарение. Чем больше площадь поверхности воды, а испарение происходит исключительно на поверхности, тем больше молекул воды смогут перейти из жидкого состояния в газообразное, что увеличит скорость испарения. Чем больше содержание водяных паров в воздухе, то есть чем выше влажность воздуха, тем менее интенсивно происходит испарение. Кроме того, чем больше скорость удаления молекул водяного пара от поверхности воды, то есть чем больше скорость ветра, тем больше скорость испарения воды. Также следует отметить, что в процессе испарения воду покидают самые быстрые молекулы, поэтому средняя скорость молекул, а, значит, и температура воды уменьшаются.

Учитывая описанные закономерности, важно обратить внимание на следующее. Очень горячий чай пить не безвредно. Однако чтобы его заварить, требуется вода с температурой, близкой к температуре кипения (100 0 С) . При этом вода активно испаряется: над чашкой с чаем хорошо видны поднимающиеся струйки водяного пара. Чтобы быстро охладить чай и сделать чаепитие комфортным, нужно увеличить скорость испарения, и охлаждение чая произойдет существенно быстрее. Первый способ известен всем с детства: если подуть на чай и тем самым удалить молекулы водяного пара и нагретый воздух от поверхности, то скорость испарения и теплопередачи увеличится, и чай быстрее остынет. Второй способ часто использовали в старину: переливали чай из чашки в блюдце и тем самым увеличивали площадь поверхности в несколько раз, пропорционально увеличивая скорость испарения и теплопередачи, благодаря чему чай быстро остывал до комфортной температуры.

Охлаждение воды при испарении хорошо ощущается, когда летом выходишь из открытого водоема после купания. С влажной кожей находиться прохладнее. Поэтому чтобы не переохладиться и не заболеть, нужно обтереться полотенцем, тем самым остановить охлаждение, вызванное испарением воды. Однако это свойство воды – охлаждаться при испарении – иногда полезно использовать для того, чтобы немного понизить высокую температуру заболевшему человеку и тем самым облегчить его самочувствие при помощи компрессов или обтираний.

При конденсации вода из газообразного состояния переходит в жидкое с выделением тепловой энергии. Это важно помнить, находясь вблизи кипящего чайника. Струя водяного пара, выходящая из его носика, имеет высокую температуру (около 100 0 С) . Кроме того, соприкасаясь с кожей человека, водяной пар конденсируется, тем самым увеличивая неблагоприятное термическое воздействие, что может привести к болезненным ожогам.

Также полезно знать, что в воздухе всегда содержится какое-то количество водяных паров. И чем выше температура воздуха, тем больше водяных паров может быть в атмосфере. Поэтому летом при заметном понижении температуры в ночное время часть водяных паров конденсируется и выпадает в виде росы. Если утром пройти босиком по траве, то она будет влажной и холодной на ощупь, так как уже активно испаряется благодаря утреннему солнцу. Похожая ситуация происходит, если зимой войти с улицы в теплое помещение в очках, ‑ очки будут запотевать, так как водяные пары, находящиеся в воздухе, будут конденсироваться на холодной поверхности стекол. Чтобы это предотвратить, можно воспользоваться обычным мылом и нанести на стеклах сетку с шагом около 1 см, а затем растереть мыло мягкой тканью, не спеша и не сильно нажимая. Стекла очков покроются тонкой невидимой пленкой и не будут запотевать.

Водяной пар, находящийся в воздухе, можно с большой точностью считать идеальным газом и рассчитывать параметры его состояния при помощи уравнения Менделеева-Клапейрона. Предположим, что температура воздуха днем при нормальном атмосферном давлении составляет 30 0 С , а влажность воздуха 50% . Найдем, до какой температуры должен охладиться воздух ночью, чтобы выпала роса. При этом будем считать, что содержание (плотность) водяных паров в воздухе не изменялось.

Плотность насыщенного водяного пара при 30 0 С равна 30,4 г/м 3 (табличное значение). Так как влажность воздуха 50%, то плотность водяных паров составляет 0,5·30,4 г/м 3 = 15,2 г/м 3 . Роса выпадет, если при некоторой температуре эта плотность будет равна плотности насыщенного водяного пара. Согласно табличным данным это наступит при температуре примерно 18 0 С . То есть, если ночью температура воздуха опустится ниже 18 0 С , то выпадет роса.

По предложенному методу мы предлагаем вам решить задачу:

В закрытой банке объемом 2 л находится воздух, влажность которого составляет 80% , а температура 25 0 С. Банку поставили в холодильник, внутри которого температура 6 0 С . Какая масса воды выпадет в виде росы после наступления теплового равновесия.



Добавить свою цену в базу

Комментарий

Испарение жидкости происходит при любой температуре и тем быстрее, чем выше температура, больше площадь свободной поверхности испаряющейся жидкости и быстрее удаляются образовавшиеся над жидкостью пары.

При некоторой определенной температуре, зависящей от природы жидкости и давления, под которым она находится, начинается парообразование во всей массе жидкости. Этот процесс называется кипением.

Это процесс интенсивного парообразования не только со свободной поверхности, но и в объеме жидкости. В объеме образуются пузыри, заполненные насыщенным паром. Они поднимаются вверх под действием выталкивающей силы и разрываются на поверхности. Центрами их образования являются мельчайшие пузырьки посторонних газов или частиц различных примесей.

Если пузырек имеет размеры порядка нескольких миллиметров и более, то вторым слагаемым можно пренебречь и, следовательно, для больших пузырьков при неизменном внешнем давлении жидкость закипает, когда давление насыщенного пара в пузырьках становится равным внешнему давлению.

В результате хаотического движения над поверхностью жидкости молекула пара, попадая в сферу действия молекулярных сил, вновь возвращается в жидкость. Этот процесс называется конденсацией.

Испарение и кипение

Испарение и кипение – это два способа перехода жидкости в газ (пар). Сам процесс такого перехода называется парообразованием. То есть испарение и кипение – это способы парообразования. Между этими двумя способами есть существенные отличия.

Испарение происходит только с поверхности жидкости. Оно является результатом того, что молекулы любой жидкости постоянно перемещаются. Причем скорость у молекул разная. Молекулы с достаточно большой скоростью, оказавшись на поверхности, могут преодолеть силу притяжения других молекул и оказаться в воздухе. Молекулы воды, находящиеся по отдельности в воздухе, как раз и образуют пар. Увидеть глазами пар невозможно. То, что мы видим, как водяной туман, это уже результат конденсации (обратный парообразованию процесс), когда при охлаждении пар собирается в виде мельчайших капелек.

В результате испарения сама жидкость охлаждается, так как ее покидают наиболее быстрые молекулы. Как известно, температура как раз определяется скоростью движения молекул вещества, то есть их кинетической энергией.

Скорость испарения зависит от многих причин. Во-первых, она зависит от температуры жидкости. Чем температура выше, тем испарение быстрее. Это и понятно, так как молекулы двигаются быстрее, а значит, им легче вырваться с поверхности. Скорость испарения зависит от вещества. У одних веществ молекулы притягиваются сильнее, и следовательно, труднее вылетают, а у других – слабее, и следовательно, легче покидают жидкость. Испарение также зависит от площади поверхности, насыщенности воздуха паром, ветра.

Самое главное, что отличает испарение от кипения, это то, что испарение протекает при любой температуре, и оно протекает только с поверхности жидкости.

В отличие от испарения, кипение протекает только при определенной температуре. Для каждого вещества, находящегося в жидком состоянии, характерна своя температура кипения. Например, вода при нормальном атмосферном давлении кипит при 100 °C, а спирт при 78 °C. Однако с понижением атмосферного давления температура кипения всех веществ немного понижается.

При кипении из воды выделяется растворенный в ней воздух. Поскольку сосуд обычно нагревают снизу, то в нижних слоях воды температура оказывается выше, и пузыри сначала образуются именно там. В эти пузыри испаряется вода, и они насыщаются водяным паром.

Так как пузыри легче самой воды, то они поднимаются вверх. Из-за того, что верхние слои воды не прогрелись до температуры кипения, пузыри остывают и пар в них обратно конденсируется в воду, пузыри становятся тяжелее и снова опускаются.

Когда все слои жидкости прогреваются до температуры кипения, то пузыри уже не опускаются, а поднимаются на поверхность и лопаются. Пар из них оказывается в воздухе. Таким образом, при кипении процесс парообразования происходит не на поверхности жидкости, а по всей ее толще в образующихся пузырьках воздуха. В отличие от испарения, кипение возможно лишь при определенной температуре.

Следует понимать, что когда жидкость кипит, то происходит и обычное испарение с ее поверхности.

От чего зависит скорость испарения жидкости?

Мерой скорости испарения является количество вещества, улетающего в единицу времени с единицы свободной поверхности жидкости. Английский физик и химик Д. Дальтон в начале XIX в. нашел, что скорость испарения пропорциональна разности между давлением насыщенного пара при температуре испаряющейся жидкости и действительным давлением того реального пара, который над жидкостью имеется. Если жидкость и пар находятся в равновесии, то скорость испарения равна нулю. Точнее, оно происходит, но с той же скоростью происходит и обратный процесс – конденсация (переход вещества из газообразного или парообразного состояния в жидкое). Скорость испарения зависит также от того, происходит ли оно в спокойной атмосфере или движущейся; скорость его увеличивается, если образующийся пар сдувается потоком воздуха или откачивается насосом.

Если испарение происходит из жидкого раствора, то разные вещества испаряются с разной скоростью. Скорость испарения данного вещества уменьшается с увеличением давления посторонних газов, например воздуха. Поэтому испарение в пустоту происходит с наибольшей скоростью. Напротив, добавляя в сосуд посторонний, инертный газ, можно очень сильно замедлить испарение.

Иногда испарением называют также сублимацию, или возгонку, т. е. переход твердого вещества в газообразное состояние. Почти все их закономерности действительно похожи. Теплота сублимации больше теплоты испарения приблизительно на теплоту плавления.

Итак, скорость испарения зависит от:

  1. Рода жидкости. Быстрее испаряется та жидкость, молекулы которой притягиваются друг к другу с меньшей силой. Ведь в этом случае преодолеть притяжение и вылететь из жидкости может большее число молекул.
  2. Испарение происходит тем быстрее, чем выше температура жидкости. Чем выше температура жидкости, тем больше в ней число быстро движущихся молекул, способных преодолеть силы притяжения окружающих молекул и вылететь с поверхности жидкости.
  3. Скорость испарения жидкости зависит от площади её поверхности. Эта причина объясняется тем, что жидкость испаряется с поверхности, и чем больше площадь поверхности жидкости, тем большее число молекул одновременно вылетает с неё в воздух.
  4. Испарение жидкости происходит быстрее при ветре. Одновременно с переходом молекул из жидкости в пар происходит и обратный процесс. Беспорядочно двигаясь над поверхностью жидкости, часть молекул, покинувших её, снова в неё возвращается. Поэтому масса жидкости в закрытом сосуде не изменяется, хотя жидкость продолжает испаряться.

Выводы

Мы говорим, что вода испаряется. Но что это значит? Испарение – это процесс, при котором жидкость на воздухе быстро становится газом или паром. Многие жидкости испаряются очень быстро, гораздо быстрее, чем вода. Это относится к алкоголю, бензину, нашатырному спирту. Некоторые жидкости, например ртуть, испаряются очень медленно.

Из-за чего происходит испарение? Чтобы понять это, надо кое-что представлять о природе материи. Насколько мы знаем, каждое вещество состоит из молекул. Две силы оказывают воздействие на эти молекулы. Одна из них – сцепление, которое притягивает их друг к другу. Другая – это тепловое движение отдельных молекул, которое заставляет их разлетаться.

Если сила сцепления выше, вещество остается в твердом состоянии. Если же тепловое движение настолько сильно, что оно превосходит сцепление, то вещество становится или является газом. Если две силы примерло уравновешены, то тогда мы имеем жидкость.

Вода, конечно, является жидкостью. Но на поверхности жидкости есть молекулы, которые движутся настолько быстро, что преодолевают силу сцепления и улетают в пространство. Процесс вылета молекул и называется испарением.

Почему вода испаряется быстрее, когда она находится на солнце или нагревается? Чем выше температура, тем интенсивнее тепловое движение в жидкости. Это значит, что все большее количество молекул набирает достаточную скорость, чтобы улететь. Когда улетают самые быстрые молекулы, скорость оставшихся молекул в среднем замедляется. Почему остающаяся жидкость охлаждается за счет испарения.

Так что, когда вода высыхает, это означает, что она превратилась в газ или пар и стала частью воздуха.

При любой температуре с поверхности жидкости вылетает часть молекул, образуя над ней пар. Процесс перехода вещества из жидкого состояния в газообразное называется парообразованием. Парообразование, происходящее при любых температурах с открытой поверхности жидкости, называется испарением. Его скорость зависит от рода жидкости, величины ее свободной поверхности, температуры, внешнего давления и наличия над жидкостью потока воздуха, уносящего пар.

Уход молекул с поверхности жидкости при испарении связан с затратой внутренней энергии на работу выхода А в, которую молекуле необходимо совершить для преодоления сил молекулярного притяжения и сил внешнего давления. Эта работа совершается за счет кинетической энергии молекул. Молекула покинет жидкость только в том случае, если ее кинетическая энергия будет равна или больше работы выхода: (m - масса молекулы, v - составляющая скорости молекулы, направленная перпендикулярно к поверхности жидкости). При парообразовании жидкость охлаждается, так как вылетевшие молекулы уносят часть ее внутренней энергии.

Чтобы испарение жидкости происходило без изменения ее температуры, жидкости необходимо сообщать энергию. Скалярная величина, измеряемая количеством энергии, необходимой для превращения единицы массы жидкости в пар при постоянной температуре, называется удельной теплотой парообразования.

Для превращения единицы массы жидкости в пар при постоянной температуре ей сообщается количество теплоты, равное удельной теплоте парообразования. При парообразовании происходит увеличение объема вещества. Так, пары воды при, 100° С занимают объем почти в 1700 раз больше объема той же массы воды при 100° С. Поэтому вещество, испаряясь, часть удельной теплоты парообразования затрачивает на совершение работы против силы внешнего давления, а часть - на увеличение его внутренней потенциальной энергии. Поэтому при одинаковой температуре внутренняя энергия единицы массы вещества в газообразном состоянии больше, чем в жидком. Так, 1 кг водяного пара при 100° С имеет на 2*10 6 дж внутренней энергии больше, чем 1 кг воды при той же температуре.

Опыты показали, что удельная теплота парообразования вещества зависит от его температуры. Чем выше температура вещества, тем меньше его удельная теплота парообразования. Например, при 0°С удельная теплота парообразование воды 2499 кдж / кг , при 50° С - 2385 кдж / кг, при 100° С - 2257 кдж / кг, при 200°С - 1943 кдж / кг. Уменьшение теплоты парообразования объясняется тем, что чем выше температура вещества, тем больше кинетическая энергия его молекул и тем меньше энергии надо дополнительно сообщить жидкости, чтобы ее молекулы вылетели в окружающую среду.

Наименование удельной теплоты парообразования r кг / дж. Для превращения m кг массы жидкости в пар надо определенное количество энергии, в частности количество теплоты Q = rm.

Допустим, что жидкость испаряется в закрытом сосуде. Часть молекул пара вследствие теплового движения, приблизившись к поверхности жидкости, возвращается в нее. В закрытом сосуде одновременно происходит и процесс испарения и процесс конденсации Если число молекул, вылетевших из жидкости, больше числа молекул, возвратившихся в нее, то пар над жидкостью называется ненасыщенным. Опыты с ненасыщенными парами показали, что они подчиняются газовым законам.

В процессе испарения и конденсации наступает такой момент, начиная с которого число молекул, вылетевших из жидкости в единицу времени, окажется равным числу молекул, возвращающихся обратно в жидкость, то есть наступит динамическое равновесие между жидкостью и паром. Пар, находящийся в динамическим равновесием со своей жидкостью, называется насыщенным паром. Он может быть насыщенным не только в закрытом сосуде, но и в атмосфере. Так, при тумане пары воды в воздухе насыщены.

Откроем кран А (рис. 35) и впустим в колбу несколько капель эфира, который испаряется, образуя ненасыщенный пар. Чем больше эфира мы впускаем в колбу, тем больше становится давление его ненасыщенного пара. Эфир впускаем до тех пор, пока на дне колбы окажется немного жидкого эфира. Появление последнего указывает на то, что пары эфира стали насыщенными. С этого момента манометр перестает показывать увеличение давления - оно стало постоянным, несмотря на последующее добавление эфира. Следовательно, давление и плотность паров при данной температуре наибольшее, когда пар насыщен.

Если в колбу помещать поочередно различные жидкости и измерять давление их насыщенных паров, то оказывается, что при одной и той же температуре давление насыщенных паров разных жидкостей различно. Наибольшим давлением обладают пары эфира, меньшим - пары спирта и еще меньшим - пары воды.

При температуре 20° С давление насыщенных паров этих жидкостей равно (в мм рт. ст.):


Выясним, зависит ли давление насыщенного пара при постоянной температуре от его объема. Под поршнем в цилиндре, соединенном с манометром, находится жидкость и ее насыщенный пар (рис. 36). Изменяя его объем перемещением поршня вверх, а затем вниз, по показанию манометра видим, что при постоянной температуре давление насыщенного пара от объема не зависит, и оно при данной температуре для данной жидкости есть величина постоянная. Это означает, что насыщенные пары закону Бойля-Мариотта не подчиняются. Так, манометр парового котла при данной температуре показывает всегда одно и то же давление, независимо от того, какой объем занимает в нем насыщенный пар.

Объясняется это тем, что при изменении объема насыщенного пара происходит изменение его массы. Причувеличении объема масса пара увеличивается (происходит дополнительное испарение жидкости), при уменьшении объема масса пара уменьшается (часть его конденсируется).

Выясним, зависит ли при постоянном объеме давление насыщенного пара от его температуры. Нагреем насыщенный пар в колбе (см. рис. 35), поместив ее в горячую воду. Видим, с повышением температуры давление насыщенного пара увеличивается. Например, давление насыщенного пара воды при 50° С равно 92,5 мм рт. ст. , а при 100° С - 760 мм рт. ст.

Опыты и расчеты по изменению давления насыщенного пара от нагревания показывают, что давление увеличивается во много раз больше, чем следовало бы по закону Шарля, т. е. зависимость давления от температуры не подчиняется данному закону. Объясняется это тем, что давление насыщенного пара при нагревании возрастает, во-первых, вследствие увеличения средней кинетической энергии молекул этого пара и, во-вторых, из-за увеличения концентрации молекул пара, т. е. увеличения общей массы молекул.

Пока пар остается насыщенным, изменение его температуры или объема всегда сопровождается изменением массы пара, т.е. парообразованием, или конденсацией.

Свойство насыщенных паров воды увеличивать свое давление с повышением температуры применяется в паровых котлах для получения пара, имеющего большое давление, например 100 ат, при температуре кипения воды 310° С. Для использования пара в паровых машинах его отводят из котла, нагревают, превращают в ненасыщенный. Такой пар называется перегретым, он обладает большим запасом внутренней энергии. Если пар не перегрет, то он содержит капельки жидкости.

Получив в пробирке пары эфира, начнем охлаждать их, поместив ее в смесь льда и соли. На стенках пробирки появляется налет жидкого эфира, так как при охлаждении его пары превратились в жидкость. Существует два способа обращения пара в жидкость: увеличение давления на пар, сжатие его (см. рис.36) и понижение температуры пара, охлаждение его. Опыты показывают, что и газы можно превратить в жидкость (сжижение газов). Для этого их надо одновременно и сжимать и охлаждать, пока они не превратятся в жидкость.



Последние материалы раздела:

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...