Сечение случайной функции. Комплексные случайные функции и их характеристики

Пусть над случайной функцией X(t) проведено п независимых опытов (наблюдений) и в результате получено п реализаций случайной функции (рис. 15.4.1).

Рис. 15.4.1

Требуется найти оценки для характеристик случайной функции: ее математического ожидания m x (t), дисперсии D x (t) и корреляционной функции K x (t,t).

Для этого рассмотрим ряд сечений случайной функции для моментов времени

и зарегистрируем значения, принятые функцией X(t) в эти моменты времени. Каждому из моментов /, t 2 , ..., t m будет соответствовать п значений случайной функции.

Значения /, I, t m обычно задаются равноотстоящими; величина интервала между соседними значениями выбирается в зависимости от вида экспериментальных кривых так, чтобы по выбранным точкам можно было восстановить основной ход кривых. Часто бывает так, что интервал между соседними значениями t задается независимо от задач обработки частотой работы регистрирующего прибора (например, темпом киноаппарата).

Зарегистрированные значения X(t) заносятся в таблицу, каждая строка которой соответствует определенной реализации, а число столбцов равно числу опорных значений аргумента (табл. 15.4.1).

Таблица 15.4.1

X 2 (?2)

x 2 U k )

X 2 {ti)

x 2 (J m)

%i (tm)

X„{t 2)

X„(tk)

X„ (?,)

В таблице 15.4.1 в /-Й строке помещены значения случайной функции, наблюденной в /-й реализации (/-м опыте) при значениях аргумента, / 2 , ..., t m . Символом Xj(4) обозначено значение, соответствующее /-й реализации в момент t k .

Полученный материал представляет собой не что иное, как результаты п опытов над системой т случайных величин

и обрабатывается совершенно аналогично (см. подраздел 14.3). Прежде всего находятся оценки для математических ожиданий по формуле

затем - для дисперсий

и, наконец, для корреляционных моментов

В ряде случаев бывает удобно при вычислении оценок для дисперсий и корреляционных моментов воспользоваться связью между начальными и центральными моментами и вычислять их по формулам:

При пользовании последними вариантами формул, чтобы избежать разности близких чисел, рекомендуется заранее перенести начало отсчета по оси ординат поближе к математическому ожиданию.

После того, как эти характеристики вычислены, можно, пользуясь рядом значений m x (t {),m x (t 2), m x (t m), построить зависимость m x (t) (рис. 15.4.1). Аналогично строится зависимость О х (/). Функция двух аргументов K x (t,t") воспроизводится по ее значениям в прямоугольной сетке точек. В случае надобности все эти функции аппроксимируются какими-либо аналитическими выражениями.

15.5. Методы определения характеристик преобразованных случайных функций по характеристикам исходных случайных функций

В предыдущем подразделе мы познакомились с методом непосредственного определения характеристик случайной функции из опыта. Такой метод применяется далеко не всегда. Во-первых, постановка специальных опытов, предназначенных для исследования интересующих нас случайных функций, может оказаться весьма сложной и дорогостоящей.

Во-вторых, часто нам требуется исследовать случайные функции, характеризующие ошибки приборов, прицельных приспособлений, систем управления и т.д., еще не существующих, а только проектируемых или разрабатываемых. При этом обычно исследование этих ошибок и предпринимается именно для того, чтобы рационально выбрать конструктивные параметры системы так, чтобы они приводили к минимальным ошибкам.

Ясно, что при этом непосредственное исследование случайных функций, характеризующих работу системы, нецелесообразно, а в ряде случаев вообще невозможно. В таких случаях в качестве основных рабочих методов применяются не прямые, а косвенные методы исследования случайных функций. Подобными косвенными методами мы уже пользовались при исследовании случайных величин: ряд глав нашего курса -10,11,12 - был посвящен нахождению законов распределения и числовых характеристик случайных величин косвенно, по законам распределения и числовым характеристикам других случайных величин, с ними связанных. Пользуясь совершенно аналогичными методами, можно определять характеристики случайных функций косвенно, по характеристикам других случайных функций, с ними связанных. Развитие таких косвенных методов и составляет главное содержание прикладной теории случайных функций.

Задача косвенного исследования случайных функций на практике обычно возникает в следующей форме.


Рис. 15.5.1

Имеется некоторая динамическая система А; под «динамической системой» мы понимаем любой прибор, прицел, счетно-решающий механизм, систему автоматического управления и т.п. Эта система может быть механической, электрической или содержать любые другие элементы. Работу системы будем представлять себе следующим образом: на вход системы непрерывно поступают какие-то входные данные; система перерабатывает их и непрерывно выдает некоторый результат. Условимся называть поступающие на вход системы данные «воздействием», а выдаваемый результат «реакцией» системы на это воздействие. В качестве воздействий могут фигурировать изменяющиеся напряжения, угловые и линейные координаты каких-либо объектов, сигналы или команды, подаваемые на систему управления, и т.п. Равным образом и реакция системы может вырабатываться в той или иной форме: в виде напряжений, угловых перемещений и т.д. Например, для прицела воздушной стрельбы воздействием является угловая координата движущейся цели, непрерывно измеряемая в процессе слежения, реакцией - угол упреждения. Рассмотрим самый простой случай: когда на вход системы А подается только одно воздействие, представляющее собой функцию времени х(/); реакция системы на это воздействие есть другая функция времени у (/). Схема работы системы А условно изображена на рис. 15.5.1. Будем говорить, что система А осуществляет над входным воздействием некоторое преобразование, в результате которого функция x(f) преобразуется в другую функцию у (/). Запишем это преобразование символически в виде:

Преобразование А может быть любого вида и любой сложности. В наиболее простых случаях это, например, умножение на заданный множитель (усилители, множительные механизмы), дифференцирование или интегрирование (дифференцирующие или интегрирующие устройства). Однако на практике системы, осуществляющие в чистом виде такие простейшие преобразования, почти не встречаются; как правило, работа системы описывается дифференциальными уравнениями, и преобразование А сводится к решению дифференциального уравнения, связывающего воздействие х (/) с реакцией у (I).

При исследовании динамической системы в первую очередь решается основная задача: по заданному воздействию x(t) определить реакцию системы y(t). Однако для полного исследования системы и оценки ее технических качеств такой элементарный подход является недостаточным. В действительности воздействие х(/) никогда не поступает на вход системы в чистом виде; оно всегда искажено некоторыми случайными ошибками (возмущениями), в результате которых на систему фактически воздействует не заданная функция x(t), а случайная функция X(t) соответственно этому система вырабатывает в качестве реакции случайную функцию Y(t), также отличающуюся от теоретической реакции у (/) (рис. 15.5.2).


Рис. 15.5.2

Естественно возникает вопрос: насколько велики будут случайные искажения реакции системы при наличии случайных возмущений на ее входе? И далее: как следует выбрать параметры системы для того, чтобы эти искажения были минимальными?

Решение подобных задач не может быть получено методами классической теории вероятностей; единственным подходящим математическим аппаратом для этой цели является аппарат теории случайных функций.

Из двух поставленных выше задач, естественно, более простой является первая - прямая - задача. Сформулируем ее следующим образом.

На вход динамической системы А поступает случайная функция Х(1 ); система подвергает ее известному преобразованию, в результате чего на выходе системы появляется случайная функция:

Известны характеристики случайной функции X(t): математическое ожидание и корреляционная функция. Требуется найти аналогичные характеристики случайной функции Y(t). Короче, по заданным характеристикам случайной функции на входе динамической системы найти характеристики случайной функции на выходе.

Поставленная задача может быть решена совершенно точно в одном частном, но весьма важном для практики случае: когда преобразование А принадлежит к классу так называемых линейных преобразований и соответственно система А принадлежит к классу линейных систем.

Лекция 13 Случайные процессы Основные понятия. Закон распределения и . Стационарные, эргодичес

Лекция 13
Случайные процессы
Основные понятия. Закон распределения и основные характеристики
случайных процессов. Стационарные, эргодические, элементарные случайные
процессы
(Ахметов С.К.)

Определения

Случайным процессом X(t) называется процесс, значение которого при
любом фиксированном t = ti является СВ X(ti)
Реализацией случайного процесса X(t) называется неслучайная функция
х(t), в которую превращается случайный процесс X(t) в результате опыта
Сечение случайного процесса (случайной функции) – это случайная
величина X(ti) при t = ti.

Случайный процесс X(t) называется процессом с дискретным
временем, если система, в которой он протекает, может менять
свои состояния только в моменты t1, t2, t3….. tn, число которых
конечно или счетно

временем, если переходы системы из состояния в состояние могут
происходить в любой момент времени t наблюдаемого периода
Случайный процесс X(t) называется процессом с непрерывным
состоянием, если его сечение в любой момент t представляет
собой не дискретную, а непрерывную величину
Случайный процесс X(t) называется процессом с дискретным
состоянием, если в любой момент времени t множество его
состояний конечно или счетно, то есть, если его сечение в любой
момент t характеризуется дискретной случайной величиной

Классификация случайных процессов

Таким образом, все СП можно разделить на 4 класса:
Процессы
временем;
Процессы
временем;
Процессы
временем;
Процессы
временем.
с дискретным состоянием и дискретным
с дискретным состоянием и непрерывным
с непрерывным состоянием и дискретным
с непрерывным состоянием и непрерывным
Большинство гидрологических процессов являются
процессами с непрерывным состоянием и непрерывным
временем. Но при вводе шага дискретности по времени они
превращаются из процесса с непрерывным временем в
процесс с дискретным временем. При этом процесс остается
непрерывным по состоянию

Основные характеристики случайных процессов

Сечение случайного процесса х(t) при любом фиксированном значении
аргумента t представляет собой СВ, которая имеет закон распределения
F (t, x) = P{X(t) < x}
Это одномерный закон распределения случайного процесса X(t)
Но, он не является исчерпывающей характеристикой СП, так как
характеризует свойства любого, но отдельно взятого сечения и не дает
представления о совместном распределении двух или более сечений.
Это видно на рисунке, где показаны два СП с разными вероятностными
структурами, но примерное одинаковыми распределениями СВ в каждом
сечении

Основные характеристики случайных процессов

Поэтому более полной характеристикой СП является двумерный закон
распределения
F(t1,t2,x1,x2) = P {X(t1) < x1, X(t2) < x2}
В общем случае исчерпывающей характеристикой СП является n мерный закон распределения
На практике вместо многомерных законов распределения используют
основные характеристики СП, такие как МО, дисперсия, начальные и
центральные моменты, но только для СП эти характеристики будут не
числами, а функциями
Математическое ожидание СП X(t) - неслучайная функция mx(t),
которая при любом значении аргумента t равна математическому
ожиданию соответствующего сечения СП:
где f1(x,t) – одномерная плотность распределения СП X(t)

Основные характеристики случайных процессов

МО СП представляет собой некоторую «среднею» функцию, вокруг
которой происходит разброс СП
Если из СП X(t) вычесть его МО, то получим центрированный СП:
X0(t) = X(t) – mx(t)
Дисперсией СП X(t) называется неслучайная функция СП X(t), которая
при любом значении аргумента t равна дисперсии соот – го сечения СП X(t)
СП X(t) = D = M{2}
Среднеквадратическим отклонением СП X(t) называется неслучайная
функция σx(t), которая равна корню квадратному из дисперсии СП:
σx(t) = σ = √Dx(t)

Основные характеристики случайных процессов

Для полной характеристики СП необходимо учитывать взаимосвязь
между различными сечениями. Поэтому, к комплексу перечисленных
характеристик нужно добавить также корреляционную функцию СП:
Корреляционной (или ковариационной) функцией СП X(t) называется
неслучайная функция Kx(t,t’), которая при каждой паре значений
аргументов t и t’ равна корреляции соответствующих сечений X(t) и X(t’)
Kx(t,t’) = M{ x }
или
Kx(t,t’) = M = M - mx(t) mx(t’)
Свойства корреляционной функции:
- при равенстве t = t’ корреляционная функция равна дисперсии СП, т. е.
Kx(t,t’) = Dx(t)
- корреляционная функция Kx(t,t’) симметрична относительно своих
аргументов, то есть
Kx(t,t’) = Kx(t’,t)

Основные характеристики случайных процессов

Нормированной корреляционной функцией rx(t,t’) СП X(t) называется
функция, полученная делением корреляционной функции на произведение
среднеквадратических отклонений σx(t) σx(t’)
rx(t,t’) = /(σx(t)σx(t’)) = /(√(Dx(t)Dx(t’))
Свойства нормированной корреляционной функции:
- при равенстве аргументов t и t’ нормированная корреляционная функция
равна единице rx(t,t’) = 1
-нормированная корреляционная функция симметрична относительно
своих аргументов, то есть rx(t,t’) = rx(t’,t)
- нормированная корреляционная функция по модулю не превышает
единицу rx(t,t’) ≤ 1

Основные характеристики случайных процессов

Скалярный СП – это когда речь идет об одном СП, как было до сих
пор.
Векторный СП – это когда рассматриваются 2 и более СП.
Допустим заданы расходы воды в нескольких створах во времени
В этом случае для характеристики СП нужно знать для каждого
скалярного процесса:
-МО
-корреляционную функцию
-взаимную корреляционную функцию
Взаимной корреляционной функцией Ri,j(t,t’) двух случайных
процессов X(t) и X(t’) называется неслучайная функция двух
аргументов t и t’, которая при каждой паре значений t и t’ равна
ковариации (линейной связи) двух сечений СП X(t) и X(t’)
Ri,j(t,t’) = M

Стационарные случайные процессы

Стационарные СП – это СП, у которых все вероятностные
характеристики не зависят от времени, то есть:
- mx = const
- Dx = const
Отличие стационарных и нестационарных СП показано на рисунке
а) стационарный СП
б) нестационарный СП по МО
с) нестационарный СП по дисперсии

Свойства корреляционной функции стационарного СП

Четность функции от своего аргумента, то есть kx(τ) = kx(-τ)
τ – сдвиг всех временных аргументов СП на одинаковую величину Θ
k – корреляционная функция СП при Kx(t1,t2) = kx(τ)
Значение корреляционной функции стационарного СП при нулевом
сдвиге τ равно дисперсии СП
Dx = Kx(t1,t2) = kx(t - t) = kx(0)
|kx(τ)| ≤ kx(0)
Помимо корреляционной функции используется нормированная
корреляционная функция стационарного СП, которую называют
автокорреляционной функцией
rx(τ) = kx(τ)/Dx = kx(τ)/kx(0)

Эргодические случайные процессы

Эргодическое свойство СП – это когда по одной достаточно
продолжительной реализации СП можно судить о СП в целом
Достаточным условием эргодичности СП является условие
lim kx(τ) = 0
при τ → ∞, т.е. при увеличении сдвига между сечениями
корреляционная функция затухает
На рисунке показаны а) неэргодический и б) эргодический СП
На практике (чаще всего) мы вынуждены принимать гипотезу о
стационарности и эргодичности гидрологических процессов, чтобы по
имеющемуся раду судить о всей генеральной совокупности

Элементарные случайные процессы

Элементарный СП (э.с.п) – это такая функция аргумента t, для
которой зависимость от t представлена обычной неслучайной функцией,
в которую в качестве аргумента входит одна или несколько обычных СВ
То есть каждая СВ порождает свою реализацию СП
К примеру, если в каком – то створе ветвь спада половодья является
устойчивой и описывается уравнением
Q(t) = Qнe-at
a - районный параметр (a>0)
Qн - расход воды в начальный момент времени t = t0
то процесс спада половодья можно считать э.с.п., где a - неслучайная
величина, Qн -случайная величина

До сих пор мы изучали только скалярные или векторные случайные величины, каждая из которых в результате опыта принимает одно определенное значение, скалярное или векторное, соответственно. Однако в приложениях приходится встречаться еще с такими случайными величинами, значения которых в каждом данном опыте изменяются в зависимости от времени или каких-нибудь других аргументов. Каждая такая случайная величина принимает в результате опыта бесчисленное (в общем случае несчетное) множество значений - по одному для каждого значения аргумента или для каждой совокупности значений аргументов. Так, например, в результате измерения непрерывно изменяющейся величины мы получаем функцию, определяющую закон изменения результата измерения со временем в процессе измерения. Эта функция имеет одно вполне определенное значение для каждого момента времени в интервале, в течение которого производится измерение. Повторяя измерение, казалось бы в одинаковых условиях, мы будем получать вследствие неточности измерительных приборов различные функции. Таким образом, результат измерения непрерывно изменяющейся величины является такой случайной величиной, которая в каждом данном опыте представляет собой определенную функцию времени, а в различных опытах, произведенных как будто бы в совершенно одинаковых условиях, представляет собой различные функции времени. Подобные случайные величины представляют собой случайные функции. Результат одновременного измерения нескольких непрерывно изменяющихся величин (например, координат какого-либо движущегося объекта) может служить примером векторной случайной функции, т. е. совокупности нескольких случайных функций.

Случайной функцией называется функция, значение которой при каждом данном значении аргумента (или нескольких аргументов)

является случайной величиной. В результате опыта случайная функция может принимать различные конкретные формы. Всякая функция, которой может оказаться равной случайная функция в результате опыта, называется реализацией случайной функции (или возможным значением случайной функции). В соответствии с принятым в настоящей книге правилом обозначения случайных величин и их возможных значений мы будем обозначать случайные функции большими буквами латинского алфавита, например Реализации случайных функций будем обозначать соответствующими малыми буквами, например х, у и т. д.

Аргумент случайной функции или совокупность всех ее аргументов будем обозначать буквой или буквой 5 и писать, как обычно принято, в скобках за обозначением самой функции, например Если аргумент случайной функции представляет собой совокупность скалярных переменных, то его можно рассматривать как -мерный вектор. Таким образом, аргументами случайных функций в излагаемой дальше теории могут быть произвольные скалярные или векторные величины

Случайную функцию можно также рассматривать как бесконечную (в общем случае несчетную) совокупность случайных величин, зависящую от одного или нескольких непрерывно изменяющихся параметров Каждому данному значению параметра (или параметров) соответствует одна случайная величина Вместе все случайные величины определяют случайную функцию Такая трактовка случайной функции показывает, что случайная функция как объект математического исследования значительно сложнее обычной случайной величины, а именно равноценна бесконечному (в общем случае несчетному) множеству случайных величин.

В физических и технических приложениях часто приходится рассматривать случайные функции времени. Такие случайные функции обычно называются случайными или стохастическими процессами. Соответственно теория случайных функций одной независимой переменной часто называется теорией случайных (стохастических) процессов. Примером случайной функции времени может служить ошибка измерения непрерывно изменяющейся величины. На рис. 18 приведена запись ошибки измерения угловой координаты самолета радиолокатором, заимствованная из .

В физике часто приходится рассматривать случайные функции координат точки пространства. Пространство с заданным в нем распределением значений некоторой величины называется полем данной величины. Случайная функция координат точки пространства приводит

(кликните для просмотра скана)

в соответствие каждой точке пространства некоторую случайную величину. Вследствие этого, изучая случайную функцию координат точки пространства, можно говорить о случайном поле. Поэтому теорию случайных функций координат точки пространства часто называют теорией случайных полей. Примером случайного поля может служить поле вектора скорости ветра в установившейся турбулентной атмосфере. В общем случае неустановившейся атмосферы вектор скорости ветра является случайной функцией координат точки пространства и времени.

Так как при каждом данном значении аргумента значение случайной функции является обычной скалярной случайной величиной, то полной вероятностной характеристикой этого значения является его закон распределения. Этот закон распределения называется одномерным законом распределения случайной функции Одномерный закон распределения случайной функции в общем случае зависит от как от параметра и может быть задан одномерной плотностью вероятности Одномерный закон распределения случайной функции является достаточной характеристикой случайной функции для тех задач, в которых значения случайной функции при различных значениях аргумента рассматриваются изолированно друг от друга. Для решения задач, в которых приходится рассматривать совместно значения случайной функции при двух или большем числе значений аргумента, необходимо ввести совместные законы распределения значений случайной функции при нескольких значениях аргумента.

Двумерным законом распределения случайной функции называется совместный закон распределения ее значений при двух произвольно взятых значениях аргумента Вообще -мерным законом распределения случайной функции называется закон распределения совокупности ее значений при произвольно взятых значениях аргумента Мы будем характеризовать -мерный закон распределения случайной функции ее -мерной плотностью вероятности которая в общем случае зависит от значений аргумента как от параметров.

Зная двумерную плотность вероятности случайной функции, можно определить ее одномерную плотность вероятности по формуле (15.8). В результате получим соотношение

Вообще, зная -мерную плотность вероятности случайной функции, можно определить все ее плотности вероятности чисел измерений, меньших чем пользуясь формулой (15.17). В результате

Таким образом, задавая -мерную плотность вероятности случайной функции, мы тем самым задаем и все ее плотности вероятности меньших чисел измерений. Закон распределения случайной функции большего числа измерений является более полной характеристикой случайной функции, чем любой закон распределения меньшего числа измерений. Однако закон распределения любого конечного числа измерений не может служить в общем случае исчерпывающей характеристикой случайной функции, так как знание -мерного закона распределения в общем случае недостаточно для определения законов распределения больших, чем чисел измерений. Лишь в частных случаях закон распределения конечного числа измерений может служить исчерпывающей характеристикой случайной функции. В общем случае для полной характеристики случайной функции необходимо задать всю последовательность ее законов распределения, т. е. плотности вероятности для всех значений

Если значения случайной функции при любых различных значениях аргумента являются независимыми случайными величинами, то -мерная плотность вероятности случайной функции согласно формуле (16.9) и определению независимости случайных величин (§ 16), при любом выражается через ее одномерную плотность вероятности формулой

Эта формула показывает, что исчерпывающей характеристикой случайной функции с независимыми значениями является ее одномерный закон распределения.

Примером случайных функций, исчерпывающей характеристикой которых являются двумерные законы распределения, могут служить марковские случайные процессы. Марковским случайным процессом, или случайным процессом без последствия, называется случайная функция скалярной переменной значения которой при значениях переменной при любом образуют простую цепь Маркова . Согласно определению простой цепи Маркова,

данному в § 47, условный закон распределения значения случайной функции зависит только от значения случайной величины и не зависит от значений случайных величин Поэтому, применяя последовательно общую формулу (16.17), получим для -мерной плотности вероятности марковского случайного процесса формулу

Но условная плотность вероятности на основании формулы (16.6) равна:

Формулы (48.4) и (48.5) дают:

Формулы (48.1) и (48.6) показывают, что -мерная плотность вероятности марковского случайного процесса при любом может быть определена, если известна его двумерная плотность вероятности. Следовательно, двумерный закон распределения является исчерпывающей характеристикой марковского случайного процесса.

Вторым примером случайных функций, для которых исчерпывающей характеристикой является двумерный закон распределения, могут служить нормально распределенные случайные функции. Мы будем считать, что случайная функция распределена нормально, если совокупность ее значений при любом и при любых из области изменения аргумента образует нормально распределенный случайный вектор. В § 23 мы видели, что -мерный нормальный закон распределения полностью определяется математическими ожиданиями, дисперсиями и корреляционными моментами случайных величин. Но математические ожидания и дисперсии случайных величин вполне определяются одномерным законом распределения случайной функции а их корреляционные моменты - двумерным законом распределения случайной функции Следовательно, двумерный закон распределения нормально распределенной случайной функции вполне определяет ее -мерный закон распределения при любом таким образом, является исчерпывающей ее характеристикой.

Несколько более общей, чем случайная функция с независимыми значениями, является случайная функция с некоррелированными значениями. Однако случайная функция с некоррелированными значениями в общем случае не может быть полностью охарактеризована никаким конечномерным законом распределения. Несмотря на это,

случайные функции с некоррелированными значениями играют большую роль в прикладной теории случайных функций.

Легко понять, что интеграл от случайной функции с некоррелированными (в частном случае независимыми) значениями представляет собой случайную функцию с некоррелированными (соответственно независимыми) приращениями на неперекрывающихся областях изменения аргумента. В § 54 будет показано, что интеграл от случайной функции с некоррелированными значениями имеет конечную дисперсию только в том случае, если дисперсия этой случайной функции бесконечна. Вследствие этого особенно важными для приложений являются случайные функции с некоррелированными значениями и бесконечной дисперсией, называемые обычно белыми шумами. Мы будем называть белым шумом любую случайную функцию с некоррелированными значениями, имеющую бесконечную дисперсию и конечную дисперсию интеграла от нее по любэй конечной области изменения аргумента. В основе этого термина лежат физические представления, связанные с быстро изменяющимися величинами, значения которых, разделенные очень малыми промежутками времени, практически независимы. Мы увидим дальше, что при разложении таких случайных функций на элементарные гармонические колебания гармоники всех частот оказываются одинаковыми по интенсивности. Эта аналогия с белым светом и послужила причиной того, что такие случайные функции называются белыми шумами. Это название удобно распространить на все случайные функции, обладающие перечисленными свойствами, независимо от физической (или математической) природы их аргументов.

Белый шум в чистом виде в природе не существует. Как мы увидим в § 74, для реализации белого шума необходима бесконечная мощность. Поэтому понятие белого шума является математической абстракцией, удобной для построения теории. Практически же можно говорить лишь о большей или меньшей степени приближения к белому шуму, о том, что минимальный промежуток времени, разделяющий значения случайной функции, которые можно считать практически некоррелированными, достаточно мал для того, чтобы его можно было не учитывать.

Очевидно, что вместо того, чтобы характеризовать случайную функцию последовательностью ее законов распределения различных чисел измерений, можно характеризовать ее одномерным законом распределения и последовательностью условных законов распределения, которые можно задать соответствующими условными плотностями вероятности

Совершенно так же, как был определен двумерный закон распределения случайной функции, определяется двумерный закон распределения двух случайных функций Двумерным законом распределения случайных функций называется закон распределения двумерного случайного вектора, составляющими которого

являются значение случайной функции при данном значении аргумента и значение случайной функции при данном значении аргумента Аналогично определяются совместные законы распределения других чисел измерений двух или нескольких случайных функций.

Исчерпывающей характеристикой случайной функции является ее вероятностная мера, определение которой было дано в § 14 для любых случайных объектов, в том числе и для случайных функций. Вероятностную меру случайной функции можно определить, если известны ее законы распределения всех чисел измерений. Выделим сначала из множества всех возможных реализаций случайной функции X множество всех реализаций, значения которых в точках принадлежат данным числовым множествам Согласно определению вероятностной меры значение вероятностной меры случайной функции X, соответствующее множеству ее реализаций, определится формулой

Эта формула определяет вероятностную меру случайной функции X для всех множеств рассмотренного типа при любых и при любом выборе числовых множеств Поставим теперь в соответствие каждому значению аргумента случайной функции X некоторое числовое множество и рассмотрим множество А всех реализаций случайной функции значения которых при всех принадлежат соответствующим множествам Для того чтобы определить значение вероятностной меры случайной функции X для такого множества ее реализаций, поставим в соответствие каждому целому положительному разбиение области изменения аргумента случайной функции X на ячеек таким образом, чтобы размеры всех ячеек стремились к нулю при . В каждой ячейке разбиения выберем произвольную точку так, чтобы множество точек содержало все точки соответствующие предыдущим разбиениям. Обозначим через множество реализаций случайной функции X, значения которых в точках принадлежат соответственно множествам Тогда получим последовательность множеств реализаций случайной функции X, каждое из которых включает все последующие множества. Предположим, что произведение всех множеств (т. е. множество реализаций случайной функции X, принадлежащих всем множествам совпадает с исходным множеством реализаций А, если не считать некоторых исключительных реализаций, имеющих нулевую суммарную вероятность появления, при любом выборе такого множества реализаций А. Это предположение накладывает определенные ограничения на характер возможных реализаций случайной функции . А именно, необходимо, чтобы любое множество ее реализаций можно было определить с любой степенью точности, накладывая на них ограничения в конечном числе достаточно близких друг к другу точек. Полагая в формуле (48.7)

найдем значения вероятностной меры случайной функции для множеств Числа образуют монотонную невозрастающую последовательность неотрицательных чисел. Следовательно, существует предел

который и является значением вероятностной меры случайной функции X для рассматриваемого множества ее реализаций А.

Формулы (48.7) и (48.8) определяют вероятностную меру случайной функции для всех цилиндрических множеств реализаций. Этого достаточно для того, чтобы определить ее для любых множеств реализаций .

Для случайной функции можно также определить функционал распределения, который является естественным обобщением функции распределения случайной величины. В соответствии с определением функции распределения (14.13) функционалом распределения случайной функции X называется вероятность выполнения неравенства при всех значениях аргумента

где произвольно заданная функция. Величина является функционалом, так как она зависит от вида функции Очевидно, что функционал распределения случайной функции представляет собой значение ее вероятностной меры, соответствующее множеству всех реализаций, значения которых при каждом принадлежат соответствующему полубесконечному интервалу Поэтому на основании (48.8) и (48.7) функционал распределения случайной функции X выражается формулой

Вероятностная мера и функционал распределения случайной функции пока не имеют большого практического значения, вследствие того, что методы вычисления интегралов типа (18.12) для произвольно заданной вероятностной меры в настоящее время еще очень мало разработаны .

Совершенно аналогично можно обобщить понятие характеристической функции на случайные функции. Рассматривая случайную функцию как совокупность бесконечного множества случайных величин зависящую от непрерывно изменяющегося параметра и обобщая определение характеристической функции -мерного случайного вектора (28.1), мы должны будем распространить сумму в показателе степени на все возможные значения непрерывно изменяющегося параметра При этом вместо придется взять и заменить сумму интегралом. В результате получим определение характеристического функционала действительной случайной функции

где интеграл распространяется на всю область изменения аргумента Характеристический функционал случайной функции зависит от функции (т. е. от значений этой функции при всех значениях аргумента

Характеристический функционал является исчерпывающей характеристикой случайной функции Действительно, задавая функцию к как линейную комбинацию импульсных -функций:

получим на основании свойств -функции:

Сравнивая это выражение с (28.1), приходим к заключению, что величина представляет собой характеристическую функцию -мерного случайного вектора с составляющими Поэтому, применяя формулу (28.14), можно определить -мерную плотность вероятности случайной функции при любом значении Таким образом, если задан характеристический функционал случайной функции то его значения при частных видах функции определяют все законы распределения случайной функции.

Можно дать более общее определение характеристического функционала. Для этого необходимо предварительно дать определение линейного функционала. Линейным функционалом называется такая величина, которая зависит от функции и удовлетворяет условию

где произвольные постоянные, а произвольные функции. Интеграл в показателе в формуле (48.11), очевидно, является линейным функционалом от случайной функции Сумма в показателе формулы (48.13) также является линейным функционалом от случайной функции Линейный функционал от функции можно сокращенно обозначать опуская скобки и обозначение аргумента функции х.

Обобщая определение (48.11), можно определить характеристический функционал случайной функции формулой

где А - произвольный линейный функционал. Задавая в формуле (48.15), линейный функционал А в виде интеграла или суммы, получим формулы (48.11) и (48.13) как частные случаи формулы (48.15). Формула (48.15) определяет характеристический функционал и в том случае, когда аргумент случайной функции X является вектором, одни составляющие которого представляют собой непрерывно изменяющиеся переменные, а другие составляющие являются дискретными переменными, в то время как формула (48.11) определяет характеристический функционал только в частном случае, когда все составляющие вектора являются непрерывно изменяющимися переменными.

Если характеристический функционал случайной функции X определяется формулой

где - некоторые функции, а индексы у линейных функционалов А указывают, к функциям каких аргументов они применяются, то характеристические функции всех чисел измерений случайной функции А

будут нормальными и, следовательно, случайная функция X распределена нормально. Таким образом, формула (48.16) определяет характеристический функционал нормально распределенной случайной функции. Эта формула является очевидным обобщением формулы (28.18) для характеристической функции нормально распределенного случайного вектора.

Пример 1. Найти плотности вероятности случайной функции скалярной независимой переменной с независимыми приращениями, если при ее значение равно нулю, а ее приращение на любом интервале распределено нормально и имеет математическое ожидание, равное нулю, и дисперсию

В данном случае значение случайной функции X при любом равно сумме ее значения при (равного нулю) и ее приращения на интервале Следовательно, одномерная плотность вероятности случайной функции X определяется формулой

Рассматриваемая случайная функция, очевидно, представляет собой марковский случайный процесс, так как ее приращение на любом интервале не зависит от ее значений вне этого интервала и, следовательно, ее значение в конце интервала связано лишь с ее значением в начале интервала и не имеет непосредственной статистической связи с ее значениями в точках, предшествующих началу интервала. Вследствие этого для определения всех плотностей вероятности случайной функции X в данном случае достаточно найти условную плотность вероятности ее значения в конце любого интервала относительно ее значения в начале интервала. Эта условная плотность вероятности, очевидно, выражается формулой

Предварительные замечания. Найдем изображение Фурье от d -функции.

Очевидно, справедливо и обратное преобразование Фурье:

А также:

1. Пусть процесс представляет собой постоянную величину x(t)=A o . Как уже было выяснено ранее, корреляционная функция такого процесса равна Найдем спектральную плотность процесса путем прямого преобразования Фурье функции R(t):

Спектр процесса состоит из единственного пика типа импульсной функции, расположенной в начале координат. Таким образом, если в процессе присутствует только одна частота w =0, то это значит, что вся мощность процесса сосредоточена на этой частоте, что и подтверждает вид функции S(w). Если случайная функция содержит постоянную составляющую, т.е. среднее значение , то S(w) будет иметь разрыв непрерывности в начале координат и будет характеризоваться наличием d -функции в точке w =0.

2. Для гармонической функции X=A o sin(w 0 t+j) корреляционная функция:

Спектральная плотность равна

График S(w) будет иметь два пика типа импульсной функции, расположенных симметрично относительно начала координат при w= +w 0 и w= -w 0 . Это говорит о том, что мощность процесса сосредоточена на двух частотах +w 0 и -w 0 .

Если случайная функция имеет гармонические составляющие, то спектральная плотность имеет разрывы непрерывности в точках w = ±w 0 и характеризуется наличием двух дельта-функций, расположенных в этих точках.

Белый шум . Под белым шумом понимают случайный процесс, имеющий одинаковые значения спектральной плотности на всех частотах от -¥ до +¥ : S(w ) = Const.

Примером такого процесса при определенных допущениях являются тепловые шумы, космическое излучение и др. Корреляционная функция такого процесса равна

Таким образом R(t) представляет собой импульсную функцию, расположенную в начале координат.

Этот процесс является чисто случайным процессом, т.к. при любом t ¹0 отсутствует корреляция между последующими и предыдущими значениями случайной функции. Процесс с такой спектральной плотностью является физически нереальным, т.к. ему соответствуют бесконечно большие дисперсия и средний квадрат случайной величины:

Такому процессу соответствует бесконечно большая мощность и источник с бесконечно большой энергией.

2. Белый шум с ограниченной полосой частот. Такой процесс характеризуется спектральной плотностью вида

S(w)=C при ½w½ <w n ,

S(w) =0 при ½w½>w n .

где (-w n , w n) полоса частот для спектральной плотности.

Это такой случайный процесс, спектральная плотность которого остается практически постоянной в диапазоне частот, могущих оказать влияние на рассматриваемую систему управления, т.е. в диапазоне частот, пропускаемых системой. Вид кривой S (w ) вне этого диапазона не имеет значения, т.к. часть кривой, соответствующая высшим частотам, не окажет влияния на работу системы. Этому процессу соответствует корреляционная функция

Дисперсия процесса равна

5. Типовой входной сигнал следящей системы. В качестве типового сигнала принимают сигнал, график которого показан на рис.63. Скорость вращения задающего вала следящей системы сохраняет постоянное значение в течение некоторых интервалов времени t 1 , t 2 ,...

Переход от одного значения к другому совершается мгновенно. Интервалы времени подчиняются закону распределения Пуассона. Математическое ожидание

Рис.63. Типовой сигнал

График такого вида получается в первом приближении при слежении РЛС за движущейся целью. Постоянные значения скорости соответствуют движению цели по прямой. Перемена знака или величины скорости соответствует маневру цели.

Пусть m -среднее число перемен скорости за 1 с. Тогда Т=1/m будет среднее значение интервалов времени, в течение которых угловая скорость сохраняет свое постоянное значение. Применительно к РЛС это значение будет средним временем движения цели по прямой. Для определения корреляционной функции необходимо найти среднее значение произведения

При нахождении этого значения могут быть два случая.

1. Моменты времени t и t+t относятся к одному интервалу. Тогда среднее произведения угловых скоростей будет равно среднему квадрату угловой скорости или дисперсии:

2. Моменты времениt и t+t относятся к разным интервалам. Тогда среднее произведения скоростей будет равно нулю, так как величины W(t) и W(t+t) для разных интервалов можно считать независимыми величинами:

Корреляционная функция равна:

где, Р 1 - вероятность нахождения моментов времени t и t+t в одном интервале, а Р 2 =1- Р 1 вероятность нахождения их в разных интервалах.

Оценим величину Р 1 . Вероятность появления перемены скорости на малом интервале времени Dt пропорциональна этому интервалу и равна mDt или Dt/Т. Вероятность отсутствия перемены скорости для этого же интервала будет равна 1-Dt/Т. Для интервала времени t вероятность отсутствия перемены скорости т.е. вероятность нахождения моментов времени t и t+t в одном интервале постоянной скорости будет равна произведению вероятности отсутствий перемены скорости на каждом элементарном промежутке Dt, т.к. эти события независимые. Для конечного промежутка получаем, что число промежутков равно t/Dt и

Перейдя к пределу, получим

100 р бонус за первый заказ

Выберите тип работы Дипломная работа Курсовая работа Реферат Магистерская диссертация Отчёт по практике Статья Доклад Рецензия Контрольная работа Монография Решение задач Бизнес-план Ответы на вопросы Творческая работа Эссе Чертёж Сочинения Перевод Презентации Набор текста Другое Повышение уникальности текста Кандидатская диссертация Лабораторная работа Помощь on-line

Узнать цену

Случайная функция – функция, которая в результате опыта может принять тот или иной неизвестный заранее конкретный вид. Обычно аргументом случайной функции (с.ф.) является время, тогда с.ф. называют случайным процессом (с.п.).

С.ф. непрерывно изменяющегося аргумента t называется такая с.в., распределение которой зависит не только от аргумента t=t1 , но и от того, какие частные значения принимала эта величина при других значениях данного аргумента t=t 2. Эти с.в. корреляционно связаны между собой и тем больше, чем ближе одни к другим значения аргументов. В пределе при интервале между двумя значениями аргумента, стремящемся к нулю, коэффициент корреляции равен единице:

т.е. t 1 и t1+Dt1 при Dt1 ®0 связаны линейной зависимостью.

С.ф. принимает в результате одного опыта бесчисленное (в общем случае несчетное) множество значений – по одному для каждого значения аргумента или для каждой совокупности значений аргументов. Эта функция имеет одно вполне определенное значение для каждого момента времени. Результат измерения непрерывно изменяющейся величины является такой с.в., которая в каждом данном опыте представляет собой определенную функцию времени.

С.ф. можно также рассматривать как бесконечную совокупность с.в., зависящую от одного или нескольких непрерывно изменяющихся параметров t . Каждому данному значению параметра t соответствует одна с.в Xt. Вместе все с.в. X t определяют с.ф. X(t). Эти с.в. корреляционно связаны между собой и тем сильнее, чем ближе друг к другу.

Элементарная с.ф. – это произведение обычной с.в. Х на некоторую неслучайную функцию j(t): X(t)=X×j(t) , т.е. такая с.ф., у которой случайным является не вид, а только ее масштаб.

С.ф. - имеет м.о. равное нулю. p – плотность распределения с.в. Х (значения с.ф. X(t) ), взятой при произвольном значении t 1 аргумента t .

Реализация с.ф. X(t) – описывается уравнением x=f1(t) при t=t1 и уравнением x=f2(t) при t=t2 .

Вообще функции x=f1(t) и x=f2(t) – различные функции. Но эти функции тождественны и линейны тем более, чем более (t1 ®t2 ) t 1 ближе к t 2.

Одномерная плотность вероятности с.ф. p(x,t) – зависит от х и от параметра t . Двумерная плотность вероятности p(x1,x2;t1,t2) – совместный закон распределения значений X(t1) и X(t2) с. ф. X(t) при двух произвольных значениях t и t ¢ аргумента t .

. (66.5)

В общем случае функция X(t) характеризуется большим числом n -мерных законов распределения .

М.о. с.ф. X(t) - неслучайная функция , которая при каждом значении аргумента t равна м.о. ординаты с.ф. при этом аргументе t.

- функция, зависящая от x и t .

Аналогично и дисперсия - неслучайная функция.

Степень зависимости с.в. для различных значений аргумента характеризуется автокорреляционной функцией.

Автокорреляционная функция с.ф. X(t) Kx(ti,tj) , которая при каждой паре значений ti, tj равна корреляционному моменту соответствующих ординат с.ф. (при i=j корреляционная функция (к.ф.) обращается в дисперсию с.ф.);

где - совместная плотность распределения двух с.в. (значений с.ф.), взятых при двух произвольных значениях t 1 и t 2 аргумента t . При t1=t2=t получаем дисперсию D(t).

Автокорреляционная функция - совокупность м.о. произведений отклонений двух ординат с.ф. , взятых при аргументах t1 и t 2, от ординат неслучайной функции м.о. , взятых при тех же аргументах.

Автокорреляционная функция характеризует степень изменчивости с.ф. при изменении аргумента. На рис. видно, что зависимость между значениями с.ф., соответствующим двум данным значениям аргумента t - слабее в первом случае.

Рис . Корреляционно связанные случайные функции

Если две с.ф. X(t) и Y(t) , образующие систему не являются независимыми, то тождественно не равна нулю их взаимная корреляционная функция:

где - совместная плотность распределения двух с.в. (значений двух с.ф. X(t) и Y(t) ), взятых при двух произвольных аргументах (t 1 - аргумент функции X(t) , t 2 - аргумент функции Y(t) ).

Если X(t) и Y(t) независимы, то K XY(t1,t2 )=0. Система из n с.ф. X 1(t), X2(t),...,Xn(t) характеризуется n м.о. , n автокорреляционными функциями и еще n (n -1)/2 корреляционными функциями .

Взаимная корреляционная функция (характеризует связь между двумя с.ф., т.е. стохастическую зависимость) двух с.ф. X(t) и Y(t) - неслучайная функция двух аргументов t i и t j, которая при каждой паре значений t i, t j равна корреляционному моменту соответствующих сечений с.ф. Она устанавливает связь между двумя значениями двух функций (значения - с.в.), при двух аргументах t 1 и t 2.

Особое значение имеют стационарные случайные функции , вероятностные характеристики которых не меняются при любом сдвиге аргумента. М.о. стационарной с.ф. постоянно (т.е. не является функцией), а корреляционная функция зависит лишь от разности значений аргументов t i и t j.

Это четная функция (симметрично OY ).

При большом значении интервала времени t=t2-t1 отклонение ординаты с.ф. от ее м.о. в момент времени t 2 становится практически независимым от значения этого отклонения в момент времени t 1. В этом случае функция KX(t), дающая значение корреляционного момента между X(t1) и X(t2), при ½t ½®¥ стремится к нулю.

Многие стационарные с.ф. обладают эргодическим свойством, которое заключается в том, что при неограниченно возрастающем интервале наблюдения среднее наблюденное значение стационарной с.ф. с вероятностью, равной 1, будет неограниченно приближаться к ее м.о. Наблюдение стационарной с.ф. при разных значениях t на достаточно большом интервале в одном опыте равноценно наблюдению ее значений при одном и том же значении t в ряде опытов.

Иногда требуется определить характеристики преобразованных с.ф. по характеристикам исходных с.ф. Так если

(70.5),

то т.е. м.о. интеграла (производной) от с.ф. равно интегралу (производной) от м.о. (y(t) - скорость изменения с.ф. X(t) , - скорость изменения м.о.).

При интегрировании или дифференцировании с.ф. получаем также с.ф. Если X(t) распределена нормально, то Z(t) и Y(t) распределены тоже нормально. Если X(t) – стационарная с.ф., то Z(t) уже не стационарная с.ф., т.к. зависит от t .

Примеры корреляционных функций.

1) (из (2) при b®0); 2) ;

3) ; 4) ;

5) (из (3) при b ®0); 6) (из (4) при b ®0).

На графиках a = 1, b = 5, s = 1.

a - характеризует быстроту убывания корреляционной связи между ординатами с.ф. при увеличении разности аргументов этих ординат t.

a/b - характеризует "степень нерегулярности процесса". При малом a/b ординаты процесса оказываются сильно коррелированными и реализация процесса похожа на синусоиду; при большом a/b (71.5).

Формула (71) для стационарной функции примет вид:

Корреляционная функция с.ф. и ее производной . Для дифференцируемого стационарного процесса ордината с.ф. и ее производной, взятая в тот же момент времени являются некоррелированными с.в. (а для нормального процесса и независимыми).

При умножении с.ф. на детерминированную получаем с.ф. Z(t)=a(t)X(t) , корреляционная функция которой равна

KZ(t1,t2)=a(t1)a(t2) KX(t1,t2) (72.5),

где a(t) - детерминированная функция.

Сумма двух с.ф. является тоже с.ф. Z(t)=X(t)+Y(t) и ее корреляционная функция при наличии корреляционной связи между X(t) и Y(t):

KZ(t1,t2)=KX(t1,t2)+ KY(t1,t2)+ 2KXY(t1,t2), (73.5)

где KXY(t1,t2) - см. (68.5) - взаимная корреляционная функция двух зависимых с.ф. X(t) и Y(t).

Если X(t) и Y(t) независимы, то KXY(t1,t2) =0. М.о. с.ф. Z(t): .



Последние материалы раздела:

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...

Пробный ЕГЭ по русскому языку
Пробный ЕГЭ по русскому языку

Здравствуйте! Уточните, пожалуйста, как верно оформлять подобные предложения с оборотом «Как пишет...» (двоеточие/запятая, кавычки/без,...

Математические, статистические и инструментальные методы в экономике: Ключ к анализу и прогнозированию
Математические, статистические и инструментальные методы в экономике: Ключ к анализу и прогнозированию

В современном мире, где экономика становится все более сложной и взаимосвязанной, невозможно переоценить роль аналитических инструментов в...