Как найти относительную погрешность приближенного значения. Измерение физических величин

1. Как определять погрешности измерений.

Выполнение лабораторных работ связано с измерением различных физических величин и последующей обработкой их результатов.

Измерение - нахождение значения физической величины опытным путем с помощью средств измерений.

Прямое измерение - определение значения физической величины непосредственно средствами измерения.

Косвенное измерение - определение значения физической величины по формуле, связывающей ее с другими физическими величинами, определяемыми прямыми измерениями.

Введем следующие обозначения:

А, В, С, ... - физические величины.

А пр - приближенное значение физической величины, т. е. значение, полученное путем прямых или косвенных измерений.

ΔА - абсолютная погрешность измерения физической величины.

ε - относительная погрешность измерения физической величины, равная:

Δ И А - абсолютная инструментальная погрешность, определяемая конструкцией прибора (погрешность средств измерения; см. табл. 1).

Δ 0 А - абсолютная погрешность отсчета (получающаяся от недостаточно точного отсчета показаний средств измерения); она равна в большинстве случаев половине цены деления, при измерении времени - цене деления секундомера или часов.

Таблица 1

Абсолютные инструментальные погрешности средств измерений

Средства измерения Предел измерения Цена деления Абсолютная инструментальная погрешность
1 Линейка
ученическая до 50 см 1 мм ± 1 мм
чертежная до 50 см 1 мм ± 0,2 мм
инструментальная (стальная) 20 см 1 мм ± 0,1 мм
демонстрационная 100 см 1 см ± 0,5 см
2 Лента измерительная 150 см 0,5 см ± 0,5 см
3 Измерительный цилиндр до 250 мл 1 мл ± 1 мл
4 Штангенциркуль 150 мм 0,1 мм ± 0,05 мм
5 Микрометр 25 мм 0,01 мм ± 0,005 мм
6 Динамометр учебный 4 Н 0,1 Н ± 0,05 Н
7 Весы учебные 200 г - ± 0,01 г
8 Секундомер 0-30 мин 0,2 с ± 1 с за 30 мин
9 Барометр-анероид 720-780 мм рт. ст. 1 мм рт. ст. ± 3 мм рт. ст.
10 Термометр лабораторный 0-100 0 С 1 0 С ± 1 0 С
11 Амперметр школьный 2 А 0,1 А ± 0,05 А
12 Вольтметр школьный 6 В 0,2 В ± 0,15 В

Максимальная абсолютная погрешность прямых измерений складывается из абсолютной инструментальной погрешности и абсолютной погрешности отсчета при отсутствии других погрешностей:

Абсолютную погрешность измерения обычно округляют до одной значащей цифры (ΔА = 0,17 ≈ 0,2); числовое значение результата измерений округляют так, чтобы его последняя цифра оказалась в том же разряде, что и цифра погрешности (А = 10,332 ≈ 10,3).

Результаты повторных измерений физической величины А, проведенных при одних и тех же контролируемых условиях и при использовании достаточно чувствительных и точных (с малыми погрешностями) средств измерения, обычно отличаются друг от друга. В этом случае А пр находят как среднее арифметическое значение всех измерений, а погрешность ΔА (ее называют случайной погрешностью) определяют методами математической статистики.

В школьной лабораторной практике такие средства измерения практически не используются. Поэтому при выполнении лабораторных работ необходимо определять максимальные погрешности измерения физических величин. Для получения результата достаточно одного измерения.

Относительная погрешность косвенных измерений определяется так, как показано в таблице 2.

Таблица 2

Формулы для вычисления относительной погрешности косвенных измерений

Формула для физической величины Формула для относительной погрешности
1
2
3
4

Абсолютная погрешность косвенных измерений определяется по формуле ΔА = А пр ε (ε выражается десятичной дробью).

2. О классе точности электроизмерительных приборов.

Для определения абсолютной инструментальной погрешности прибора надо знать его класс точности. Класс точности γ пр измерительного прибора показывает, сколько процентов составляет абсолютная инструментальная погрешность Δ и А от всей шкалы прибора (A max):

Класс точности указывают на шкале прибора или в его паспорте (знак % при этом не пишут). Существуют следующие классы точности электроизмерительных приборов: 0,1; 0,2; 0,5; 1; 1,5; 2,5; 4. Зная класс точности прибора (γ пр) и всю его шкалу (А mах), определяют абсолютную погрешность Δ и А измерения физической величины А этим прибором:

3. Как сравнивать результаты измерений.

1. Записать результаты измерений в виде двойных неравенств:

А 1np - ΔА 1 < А 1пр < А 1пр + ΔА 1 ,

А 2пр - ΔА 2 < А 2пр < А 2пр + ΔА 2 .

2. Сравнить полученные интервалы значений: если интервалы не перекрываются, то результаты неодинаковы; если перекрываются - одинаковы при данной относительной погрешности измерений.

4. Как оформлять отчет о проделанной работе.

  1. Лабораторная работа № ... .
  2. Наименование работы.
  3. Цель работы.
  4. Чертеж (если требуется).
  5. Формулы искомых величин и их погрешностей.
  6. Таблица результатов измерений и вычислений.
  7. Окончательный результат, вывод и пр. (согласно цели работы).

5. Как записывать результат измерения.

А = А пр ± ΔА
е = ...%.


Пусть некоторая случайная величина a измеряется n раз в одинаковых условиях. Результаты измерений дали набор n различных чисел

Абсолютная погрешность - величина размерная. Среди n значений абсолютных погрешностей обязательно встречаются как положительные, так и отрицательные.

За наиболее вероятное значение величины а обычно принимают среднее арифметическое значение результатов измерений

.

Чем больше число измерений, тем ближе среднее значение к истинному.

Абсолютной погрешностью i

.

Относительной погрешностью i -го измерения называется величина

Относительная погрешность - величина безразмерная. Обычноотносительная погрешность выражается в процентах, для этого e i домножают на 100%. Величина относительной погрешности характеризует точность измерения.

Средняя абсолютная погрешность определяется так:

.

Подчеркнем необходимость суммирования абсолютных значений (модулей) величин Dа i . В противном случае получится тождественный нулевой результат.

Средней относительной погрешностью называется величина

.

При большом числе измерений .

Относительную погрешность можно рассматривать как значение погрешности, приходящееся на единицу измеряемой величины.

О точности измерений судят на основании сравнения погрешностей результатов измерений. Поэтому погрешности измерений выражают в такой форме, чтобы для оценки точности достаточно было сопоставить только одни погрешности результатов, не сравнивая при этом размеры измеряемых объектов или зная эти размеры весьма приближенно. Из практики известно, что абсолютная погрешность измерения угла не зависит от значения угла, а абсолютная погрешность измерения длины зависит от значения длины. Чем больше значение длины, тем при данном методе и условиях измерения абсолютная погрешность будет больше. Следовательно, по абсолютной погрешности результата о точности измерения угла судить можно, а о точности измерения длины нельзя. Выражение погрешности в относительной форме позволяет сравнивать в известных случаях точность угловых и линейных измерений.


Основные понятия теории вероятности. Случайная погрешность.

Случайной погрешностью называют составляющую погрешности измерений, изменяющуюся случайным образом при повторных измерениях одной и той же величины.

При проведении с одинаковой тщательностью и в одинаковых условиях повторных измерений одной и той же постоянной неизменяющейся величины мы получаем результаты измерений – некоторые из них отличаются друг от друга, а некоторые совпадают. Такие расхождения в результатах измерений говорят о наличии в них случайных составляющих погрешности.

Случайная погрешность возникает при одновременном воздействии многих источников, каждый из которых сам по себе оказывает незаметное влияние на результат измерения, но суммарное воздействие всех источников может оказаться достаточно сильным.

Случайные ошибки являются неизбежным следствием любых измерений и обусловлены:

а) неточностью отсчетов по шкале приборов и инструментов;

б) не идентичностью условий повторных измерений;

в) беспорядочными изменениями внешних условий (температуры, давления, силового поля и т.д.), которые невозможно контролировать;

г) всеми другими воздействиями на измерения, причины которых нам неизвестны. Величину случайной погрешности можно свести к минимуму путем многократного повторения эксперимента и соответствующей математической обработки полученных результатов.

Случайная ошибка может принимать различные по абсолютной величине значения, предсказать которые для данного акта измерения невозможно. Эта ошибка в равной степени может быть как положительной, так и отрицательной. Случайные ошибки всегда присутствуют в эксперименте. При отсутствии систематических ошибок они служат причиной разброса повторных измерений относительно истинного значения.

Допустим, что при помощи секундомера измеряют период колебаний маятника, причем измерение многократно повторяют. Погрешности пуска и остановки секундомера, ошибка в величине отсчета, небольшая неравномерность движения маятника – все это вызывает разброс результатов повторных измерений и поэтому может быть отнесено к категории случайных ошибок.

Если других ошибок нет, то одни результаты окажутся несколько завышенными, а другие несколько заниженными. Но если, помимо этого, часы еще и отстают, то все результаты будут занижены. Это уже систематическая ошибка.

Некоторые факторы могут вызвать одновременно и систематические и случайные ошибки. Так, включая и выключая секундомер, мы можем создать небольшой нерегулярный разброс моментов пуска и остановки часов относительно движения маятника и внести тем самым случайную ошибку. Но если к тому же мы каждый раз торопимся включить секундомер и несколько запаздываем выключить его, то это приведет к систематической ошибке.

Случайные погрешности вызываются ошибкой параллакса при отсчете делений шкалы прибора, сотрясении фундамента здания, влиянием незначительного движения воздуха и т.п.

Хотя исключить случайные погрешности отдельных измерений невозможно, математическая теория случайных явлений позволяем уменьшить влияние этих погрешностей на окончательный результат измерений. Ниже будет показано, что для этого необходимо произвести не одно, а несколько измерений, причем, чем меньшее значение погрешности мы хотим получить, тем больше измерений нужно провести.

В связи с тем, что возникновение случайных погрешностей неизбежно и неустранимо, основной задачей всякого процесса измерения является доведение погрешностей до минимума.

В основе теории погрешностей лежат два основных предположения, подтверждаемых опытом:

1. При большом числе измерений случайные погрешности одинаковой величины, но разного знака, т.е погрешности в сторону увеличения и уменьшения результата встречаются достаточно часто.

2. Большие по абсолютной величине погрешности встречаются реже, чем малые, таким образом, вероятность возникновения погрешности уменьшается с ростом ее величины.

Поведение случайных величин описывают статистические закономерности, которые являются предметом теории вероятностей. Статистическим определением вероятности w i события i является отношение

где n - общее число опытов, n i - число опытов, в которых событие i произошло. При этом общее число опытов должно быть очень велико (n ®¥). При большом числе измерений случайные ошибки подчиняются нормальному распределению (распределение Гаусса), основными признаками которого являются следующие:

1. Чем больше отклонение значения измеренной величины от истинного, тем меньше вероятность такого результата.

2. Отклонения в обе стороны от истинного значения равновероятны.

Из приведенных выше допущений вытекает, что для уменьшения влияния случайных ошибок необходимо произвести измерение данной величины несколько раз. Предположим, что мы измеряем некоторую величину x. Пусть произведено n измерений: x 1 , x 2 , ... x n - одним и тем же методом и с одинаковой тщательностью. Можно ожидать, что число dn полученных результатов, которые лежат в некотором достаточно узком интервале от x до x + dx , должно быть пропорционально:

Величине взятого интервала dx ;

Общему числу измерений n .

Вероятность dw (x ) того, что некоторое значение x лежит в интервале от x до x + dx, определяется следующим образом:

(при числе измерений n ®¥).

Функция f (х ) называется функцией распределения или плотностью вероятности.

В качестве постулата теории ошибок принимается, что результаты прямых измерений и их случайные погрешности при большом их количестве подчиняются закону нормального распределения.

Найденная Гауссом функция распределения непрерывной случайной величины x имеет следующий вид:

, где mиs - параметры распределения.

Параметрmнормального распределения равен среднему значению áx ñ случайной величины, которое при произвольной известной функции распределения определяется интегралом

.

Таким образом, величина m является наиболее вероятным значением измеряемой величины x, т.е. ее наилучшей оценкой.

Параметр s 2 нормального распределения равен дисперсии D случайной величины, которая в общем случае определяется следующим интегралом

.

Квадратный корень из дисперсии называется средним квадратическим отклонением случайной величины .

Среднее отклонение (погрешность) случайной величины ásñ определяется с помощью функции распределения следующим образом

Средняя погрешность измерений ásñ, вычисленная по функции распределения Гаусса, соотносится с величиной среднего квадратического отклонения s следующим образом:

< s> = 0,8s .

Параметры s и m связаны между собой следующим образом:

.

Это выражение позволяет находить среднее квадратическое отклонение s , если имеется кривая нормального распределения.

График функции Гаусса представлен на рисунках. Функция f (x ) симметрична относительно ординаты, проведенной в точке x = m; проходит через максимум в точке x = m и имеет перегиб в точках m ±s. Таким образом, дисперсия характеризует ширину функции распределения, или показывает, насколько широко разбросаны значения случайной величины относительно ее истинного значения. Чем точнее измерения, тем ближе к истинному значению результаты отдельных измерений, т.е. величина s - меньше. На рисунке A изображена функция f (x ) для трех значений s.

Площадь фигуры, ограниченной кривой f (x ) и вертикальными прямыми, проведенными из точек x 1 и x 2 (рис.Б), численно равна вероятности попадания результата измерения в интервал Dx = x 1 - x 2 , которая называется доверительной вероятностью. Площадь под всей кривой f (x ) равна вероятности попадания случайной величины в интервал от 0 до ¥, т.е.

,

так как вероятность достоверного события равна единице.

Используя нормальное распределение, теория ошибок ставит и решает две основные задачи. Первая - оценка точности проведенных измерений. Вторая - оценка точности среднего арифметического значения результатов измерений.5. Доверительный интервал. Коэффициент Стъюдента.

Теория вероятностей позволяет определить величину интервала, в котором с известной вероятностью w находятся результаты отдельных измерений. Эта вероятность называется доверительной вероятностью , а соответствующий интервал (<x > ± Dx ) w называется доверительным интервалом. Доверительная вероятность также равна относительной доле результатов, оказавшихся внутри доверительного интервала.

Если число измерений n достаточно велико, то доверительная вероятность выражает долю из общего числа n тех измерений, в которых измеренная величина оказалась в пределах доверительного интервала. Каждой доверительной вероятности w соответствует свой доверительный интервал.w 2 80%. Чем шире доверительный интервал, тем больше вероятность получить результат внутри этого интервала. В теории вероятностей устанавливается количественная связь между величиной доверительного интервала, доверительной вероятностью и числом измерений.

Если в качестве доверительного интервала выбрать интервал, соответствующий средней погрешности, то есть Da = áDа ñ, то при достаточно большом числе измеренийон соответствует доверительной вероятности w 60%. При уменьшении числа измерений доверительная вероятность, соответствующая такому доверительному интервалу (áа ñ ± áDа ñ), уменьшается.

Таким образом, для оценки доверительного интервала случайной величины можно пользоваться величиной средней погрешностиáDа ñ.

Для характеристики величины случайной погрешности необходимо задать два числа, а именно, величину доверительного интервала и величину доверительной вероятности. Указание одной только величины погрешности без соответствующей ей доверительной вероятности в значительной мере лишено смысла.

Если известна средняя погрешность измерения ásñ, доверительный интервал, записанный в виде (<x > ± ásñ) w , определен с доверительной вероятностью w = 0,57.

Если известно среднее квадратическое отклонение s распределения результатов измерений, указанный интервал имеет вид (<x t w s) w , где t w - коэффициент, зависящий от величины доверительной вероятности и рассчитывающийся по распределению Гаусса.

Наиболее часто используемые величиныDx приведены в таблице 1.

Абсолютная и относительная погрешность

Элементы теории погрешностей

Точные и приближенные числа

Точность числа, как правило, не вызывает сомнений, когда речь идет о целых значениях данных(2 карандаша, 100 деревьев). Однако, в большинстве случаев, когда точное значение числа указать невозможно (например, при измерении предмета линейкой, снятии результатов с прибора и т.п.), мы имеем дело с приближенными данными.

Приближенным значениемназывается число, незначительно отличающееся от точного значения и заменяющее его в вычислениях. Степень отличия приближенного значения числа от его точного значения характеризуется погрешностью .

Различают следующие основные источники погрешностей:

1. Погрешности постановки задачи , возникающие в результате приближенного описания реального явления в терминах математики.

2. Погрешности метода , связанные с трудностью или невозможностью решения поставленной задачи и заменой ее подобной, такой, чтобы можно было применить известный и доступный метод решения и получить результат, близкий к искомому.

3. Неустранимые погрешности , связанные с приближенными значениями исходных данных и обусловленные выполнением вычислений над приближенными числами.

4. Погрешности округления , связанные с округлением значений исходных данных, промежуточных и конечных результатов, получаемых с применением вычислительных средств.


Абсолютная и относительная погрешность

Учет погрешностей является важным аспектом применения численных методов, поскольку погрешность конечного результата решения всей задачи является продуктом взаимодействия всех видов погрешностей. Поэтому одной из основных задач теории погрешностей является оценка точности результата на основании точности исходных данных.

Если – точное число и – его приближенное значение, то погрешностью (ошибкой) приближенного значения является степень близости его значения к его точному значению .

Простейшей количественной мерой погрешности является абсолютная погрешность, которая определяется как

(1.1.2-1)

Как видно из формулы 1.1.2-1, абсолютная погрешность имеет те же единицы измерения, что и величина . Поэтому по величине абсолютной погрешности далеко не всегда можно сделать правильное заключение о качестве приближения. Например, если , а речь идет о детали станка, то измерения являются очень грубыми, а если о размере судна, то – очень точными. В связи с этим введено понятие относительной погрешности, в котором значение абсолютной погрешности отнесено к модулю приближенного значения ().

(1.1.2-2)

Использование относительных погрешностей удобно, в частности, тем, что они не зависят от масштабов величин и единиц измерений данных. Относительная погрешность измеряется в долях или процентах. Так, например, если

, то , а если и ,

то тогда .

Чтобы численно оценить погрешность функции, требуется знать основные правила подсчета погрешности действий:

· при сложении и вычитании чисел абсолютные погрешности чисел складываются

· при умножении и делении чисел друг на друга складываются их относительные погрешности


· при возведении в степень приближенного числа его относительная погрешность умножается на показатель степени

Пример 1.1.2-1. Дана функция: . Найти абсолютную и относительную погрешности величины (погрешность результата выполнения арифметических операций), если значения известны, а 1 – точное число и его погрешность равна нулю.

Определив, таким образом, значение относительной погрешности, можно найти значение абсолютной погрешности, как , где величина вычисляется по формуле при приближенных значениях

Поскольку точное значение величины обычно неизвестно, то вычисление и по приведенным выше формулам невозможно. Поэтому на практике проводят оценку предельных погрешностей вида:

(1.1.2-3)

где и известные величины, которые являются верхними границами абсолютной и относительной погрешностей, иначе их называют – предельная абсолютная и предельная относительная погрешности. Таким образом, точное значение лежит в пределах:

Если величина известна, то , а если известна величина , то

3.1 Среднеарифметическая погрешность. Как уже отмечалось раньше, измерения принципиально не могут быть абсолютно точными. Поэтому в ходе измерения возникает задача об определении интервала, в котором вероятнее всего находится истинное значение измеряемой величины. Такой интервал указывают в виде абсолютной ошибки измерения.

Если предположить, что грубые промахи в измерениях устранены, а систематические ошибки сведены к минимуму тщательной настройкой приборов и всей установки и не являются определяющими, то результаты измерений будут, в основном, содержать только случайные погрешности, которые являются знакопеременными величинами. Поэтому, если проведено несколько повторных измерений одной и той же величины, то наиболее вероятным значением измеряемой величины является ее среднеарифметическое значение:

Средней абсолютной ошибкой называется среднеарифметическое модулей абсолютных ошибок отдельных измерений:

Последнее неравенство обычно принято записывать как окончательный результат измерения следующим образом:

(5)

где абсолютная погрешность a ср должна вычисляться (округляться) с точностью до одной-двух значащих цифр. Абсолютная ошибка показывает, в каком знаке числа содержатся неточности, поэтому в выражении для а ср оставляют все верные цифры и одну сомнительную. То есть среднее значение и средняя ошибка измеряемой величины должны вычисляться до цифры одного и того же разряда. Например: g = (9,78 ± 0,24) м/с 2 .



Относительная погрешность. Абсолютная ошибка определяет интервал наиболее вероятных значений измеряемой величины, но не характеризует степень точности произведенных измерений. Например, расстояние между населенными пунктами, измеренное с точностью до нескольких метров, можно отнести к весьма точным измерениям, в то время как измерение диаметра проволоки с точностью до 1 мм, в большинстве случаев будет являться весьма приближенным измерением.

Степень точности проведенных измерений характеризует относительная погрешность.

Средней относительной погрешностью или просто относительной ошибкой измерения называется отношение средней абсолютной ошибки измерения к среднему значению измеряемой величины:

Относительная ошибка является безразмерной величиной и обычно выражается в процентах.

3.2 Погрешность метода или приборная погрешность. Среднеарифметическое значение измеряемой величины тем ближе к истинному, чем больше проведено измерений, при этом абсолютная погрешность измерения с увеличением их числа стремится к значению, которое определяется методом измерения и техническими характеристиками используемых приборов.

Погрешность метода или приборную погрешность можно рассчитать по одноразовому измерению, зная класс точности прибора или другие данные технического паспорта прибора, в котором указывается либо класс точности прибора, либо его абсолютная или относительная погрешность измерения.

Класс точности прибора выражает в процентах номинальную относительную ошибку прибора, то есть относительную ошибку измерения, когда измеряемая величина равна предельному для данного прибора значению

Абсолютная погрешность прибора не зависит от значения измеряемой величины.

Относительная погрешность прибора (по определению):

(10)

откуда видно, что относительная приборная ошибка тем меньше, чем ближе значение измеряемой величины к пределу измерения данного прибора. Поэтому ре­комендуется подбирать приборы так, чтобы измеряемая величина составляла 60 -90% от величины, на которую рассчитан прибор. При работе с многопредельными приборами тоже следует стремиться к тому, чтобы отсчет производился во второй половине шкалы.

При работе с простыми приборами (линейка, мензурка и т.п.), классы точности и погрешности которых не определены техническими характеристиками, абсолютную погрешность прямых измерений принимают равной половине цены деления данного прибора. (Ценой деления называют значение измеряемой величины при показаниях прибора в одно деление).

Приборную погрешность косвенных измерений можно рассчитать, используя правила приближенных вычислений. В основе вычисления погрешности косвенных измерений лежат два условия (предположения):

1. Абсолютные ошибки измерений всегда очень малы по сравнению с измеряемыми величинами. Поэтому абсолютные ошибки (в теории) можно рассматривать как бесконечно малые приращения измеряемых величин, и они могут быть заменены соответствующими дифференциалами.

2. Если физическая величина, которую определяют косвенным путем, является функцией одной или нескольких непосредственно измеряемых величин, то абсолютная ошибка функции, обусловленная бесконечно малыми приращениями, является также бесконечно малой величиной.

При указанных допущениях абсолютную и относительную погрешность можно рассчитать, используя известные выражения из теории дифференциального исчисления функций многих переменных:

(11)
(12)

Абсолютные ошибки непосредственных измерений могут иметь знаки "плюс" или "минус", но какой именно - неизвестно. Поэтому при определении погрешностей рассматривается наиболее невыгодный случай, когда ошибки прямых изме­рений отдельных величин имеют один и тот же знак, то есть абсолютная ошибка имеет максимальное значение. Поэтому при расчете приращений функции f(x 1 ,x 2 ,…,х n) по формулам (11) и (12) частные приращения должны складываться по абсолютной величине. Таким образом, используя приближение Dх i ≈ dx i , и вы­ражения (11) и (12), для бесконечно малых приращений можно записать:

(13)
(14)

Здесь: а - косвенно измеряемая физическая величина, то есть определяемая по расчетной формуле, - абсолютная ошибка ее измерения, х 1 , х 2 ,...х n ; Dх 1, Dx 2 ,..., Dх n , - физические величины прямых измерений и их абсолютные ошибки соответственно.

Таким образом: а) абсолютная ошибка косвенного метода измерения равна сумме модулей произведений частных производных функции измерения и соответствующих абсолютных ошибок прямых измерений; б) относительная ошибка косвенного метода измерения равна сумме модулей дифференциалов от логарифма натурального функции измерения, определяемой расчетной формулой.

Выражения (13) и (14) позволяют рассчитать абсолютные и относительные погрешности по одноразовому измерению. Заметим, что для сокращения расчетов по указанным формулам достаточно рассчитать одну из погрешностей (абсолютную или относительную), а другую рассчитать, используя простую связь между ними:

(15)

На практике чаще пользуются формулой (13), так как при логарифмировании расчетной формулы произведения различных величин преобразуются в соответствующие суммы, а степенные и показательные функции преобразуются в произведения, что намного упрощает процесс дифференцирования.

Для практического руководства по расчету погрешности косвенного метода измерения можно пользоваться следующим правилом:

Чтобы вычислить относительную ошибку косвенного метода измерения, нужно:

1. Определить абсолютные ошибки (приборные или средние) прямых измерений.

2. Прологарифмировать расчетную (рабочую) формулу.

3. Принимая величины прямых измерений за независимые переменные, найти полный дифференциал от полученного выражения.

4. Сложить все частные дифференциалы по абсолютной величине, заменив в них дифференциалы переменных соответствующими абсолютными ошибками прямых измерений.

Например, плотность тела цилиндрической формы вычисляется по формуле:

(16)

где m, D, h - измеряемые величины.

Получим формулу для расчета погрешностей.

1. Исходя из используемого оборудования, определяем абсолютные погрешности измерения массы, диаметра и высоты цилиндра (∆m, ∆D, ∆h соответственно).

2. Логарифмируем выражение (16):

3. Дифференцируем:

4. Заменяя дифференциал независимых переменных на абсолютные ошибки и складывая модули частных приращений, получаем:

5. Используя численные значения m, D, h, D, m, h , рассчитываем Е.

6. Вычисляем абсолютную ошибку

где r рассчитано по формуле (16).

Предлагаем самим убедиться, что в случае полого цилиндра или трубки с внутренним диаметром D 1 и внешним диаметром D 2

К расчету ошибки метода измерения (прямого или косвенного) приходится прибегать в случаях, когда многократные измерения либо невозможно провести в одних и тех же условиях, либо они занимают много времени.

Если определение погрешности измерения является принципиальной задачей, то обычно измерения проводят многократно и вычисляют и среднеарифметическую погрешность и погрешность метода (приборную погрешность). В окончательном результате указывают большую из них.

О точности вычислений

Ошибка результата определяется не только неточностями измерений но и неточностями вычислений. Вычисления необходимо проводить так, чтобы их ошибка была на порядок меньше ошибки результата измерений. Для этого вспомним правила математического действия с приближёнными числами.

Результаты измерений – приближённые числа. В приближённом числе все цифры должны быть верными. Последней верной цифрой приближённого числа считается такая цифра, ошибка в которой не превышает одной единицы её разряда. Все цифры от 1 до 9 и 0, если он стоит в середине или в конце числа, называются значащими. В числе 2330 - 4 значащих цифры, а в числе 6,1×10 2 – только две, в числе 0,0503 – три, так как нули слева от пятёрки незначащие. Запись числа 2,39 означает, что верны все знаки до второго после запятой, а запись в 1,2800 – что верно также и третий и четвёртый знаки. В числе 1,90 три значащих цифры и это значит, что при измерении мы учитывали не только единицы, но и десятые и сотые, а в числе 1,9 – только две значащих цифры и это значит, что мы учитывали целые и десятые и точность этого числа в 10 раз меньше.

Правила округления чисел

При округлении оставляют лишь верные знаки, остальные отбрасываются.

1. Округление достигается простым отбрасыванием цифр, если первая из отбрасываемых цифр меньше, чем 5.

2. Если первая из отбрасываемых цифр больше, чем 5, то последняя цифра увеличивается на единицу. Последняя цифра увеличивается также и в том случае, когда первая из отбрасываемых цифр 5, а за ней есть одна или несколько цифр, отличных от нуля.

Например, различные округления числа 35,856 будут: 35,9; 36.

3. Если отбрасываемая цифра 5, а за ней нет значащих цифр, то округление производится на ближайшее чётное число, то есть, последняя сохраняемая цифра остаётся неизменной, если она чётная и увеличивается на единицу, если она нечётная.

Например, 0,435 округляем до 0,44; 0,365 округляем до 0,36.

На практике обычно числа, над которыми производятся вычисления, являются приближенными значениями тех или иных величин. Для краткости речи приближенное значение величины называют приближенным числом. Истинное значение величины называют точным числом. Приближенное число имеет практическую ценность лишь тогда, когда мы можем определить, с какой степенью точности оно дано, т.е. оценить его погрешность. Напомним основные понятия из общего курса математики.

Обозначим: x - точное число (истинное значение величины), а -приближенное число (приближенное значение величины).

Определение 1 . Погрешностью (или истинной погрешностью) приближенного числа называется разность между числом x и его приближенным значением а . Погрешность приближенного числа а будем обозначать . Итак,

Точное число x чаще всего бывает неизвестно, поэтому найти истинную и абсолютную погрешности не представляет возможным. С другой стороны, бывает необходимо оценить абсолютную погрешность, т.е. указать число, которого не может превысить абсолютная погрешность. Например, измеряя длину предмета данным инструментом, мы должны быть уверены в том, что погрешность полученного числового значения не превысит некоторого числа, например 0,1 мм. Другими словами, мы должны знать границу абсолютной погрешности. Эту границу будем называть предельной абсолютной погрешностью.

Определение 3 . Предельной абсолютной погрешностью приближенного числа а называется положительное число такое, что , т.е.

Значит, х по недостатку, - по избытку. Применяют также такую запись:

. (2.5)

Ясно, что предельная абсолютная погрешность определяется неоднозначно: если некоторое число есть предельная абсолютная погрешность, то любое большее число тоже есть предельная абсолютная погрешность. На практике стараются выбирать возможно меньшее и простое по записи (с 1-2 значащими цифрами) число , удовлетворяющее неравенству (2.3).



Пример. Определить истинную, абсолютную и предельную абсолютную погрешности числа а = 0,17, взятого в качестве приближенного значения числа .

Истинная погрешность:

Абсолютная погрешность:

За предельную абсолютную погрешность можно принять число и любое большее число. В десятичной записи будем иметь: Заменяя это число большим и возможно более простым по записи, примем:

Замечание . Если а есть приближенное значение числа х , причем предельная абсолютная погрешность равна h , то говорят, что а есть приближенное значение числа х с точностью до h.

Знания абсолютной погрешности недостаточно для характеристики качества измерения или вычисления. Пусть, например, получены такие результаты при измерении длины. Расстояние между двумя городами S 1 =500 1 км и расстояние между двумя зданиями в городе S 2 =10 1 км. Хотя абсолютные погрешности обоих результатов одинаковы, однако существенное значение имеет то, что в первом случае абсолютная погрешность в 1 км приходится на 500 км, во втором - на 10 км. Качество измерения в первом случае лучше, чем во втором. Качество результата измерения или вычисления характеризуется относительной погрешностью.

Определение 4. Относительной погрешностью приближенного значения а числа х называется отношение абсолютной погрешности числа а к абсолютному значению числа х :

Определение 5. Предельной относительной погрешностью приближенного числа а называется положительное число такое, что .

Так как , то из формулы (2.7) следует, что можно вычислить по формуле

. (2.8)

Для краткости речи в тех случаях, когда это не вызывает недоразумений, вместо “предельная относительная погрешность” говорят просто “относительная погрешность”.

Предельную относительную погрешность часто выражают в процентах.

Пример 1 . . Полагая , можем принять = . Производя деление и округляя (обязательно в сторону увеличения), получим =0,0008=0,08%.

Пример 2. При взвешивании тела получен результат: p=23,4 0,2 г. Имеем =0,2. . Производя деление и округляя, получим =0,9%.

Формула (2.8) определяет зависимость между абсолютной и относительной погрешностями. Из формулы (2.8) следует:

. (2.9)

Пользуясь формулами (2.8) и (2.9), мы можем, если известно число а , по данной абсолютной погрешности находить относительную погрешность и наоборот.

Заметим, что формулы (2.8) и (2.9) часто приходится применять и тогда, когда мы еще не знаем приближенного числа а с требуемой точностью, а знаем грубое приближенное значение а . Например, требуется измерить длину предмета с относительной погрешностью не выше 0,1%. Спрашивается: возможно ли измерить длину с нужной точностью при помощи штангенциркуля, позволяющего измерить длину с абсолютной погрешностью до 0,1 мм? Пусть мы еще не измеряли предмет точным инструментом, но знаем, что грубое приближенное значение длины - около 12 см. По формуле (1.9) находим абсолютную погрешность:

Отсюда видно, что при помощи штангенциркуля возможно выполнить измерение с требуемой точностью.

В процессе вычислительной работы часто приходится переходить от абсолютной погрешности к относительной, и наоборот, что делается с помощью формул (1.8) и (1.9).



Последние материалы раздела:

Важность Патриотического Воспитания Через Детские Песни
Важность Патриотического Воспитания Через Детские Песни

Патриотическое воспитание детей является важной частью их общего воспитания и развития. Оно помогает формировать у детей чувство гордости за свою...

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...