Максвелл краткая биография. Научные труды Джеймс Максвелл

Государство: Великобритания

Сфера деятельности: Наука, физика

Величайшее достижение: Стал основоположником электродинамики.

С тех самых пор, как наука была открыта всему человечеству, каждый пытался найти в ней что-то новое. И вписать свое имя в историю. Конечно, людям, увлекающимся гуманитарными науками, неизвестны имена физиков, химиков и математиков. Но, тем не менее, есть некоторые личности, которые на слуху а каждого, даже человека, отдаленно не представляющего, что такое физика. Джеймс Максвелл – один из таких ученых, который оставил свой след в истории математики и физики.

Джеймс Клерк Максвелл, шотландский физик, наиболее известный за его формулировку электромагнитной теории. Он рассматривается большинством современных физиков, как ученый 19-го века, которые оказали наибольшее влияние на физику 20-го века, и он занимает почетное место с Исааком Ньютоном и за фундаментальный характер его вклада.

Ранние годы

Будущий физик родился 13 июня 1831 года в Эдинбурге. Первоначальная фамилия была Клерк, дополнительная фамилия добавляется его отцом, который работал юристом и унаследовал поместье Миддлби. Джеймс был единственным ребенком. Его родители поженились довольно поздно по тем временам, а его матери было 40 лет на момент его рождения. Детские годы мальчик провел в поместье Миддлби, который был переименован в Гленлэр.

Его мать умерла в 1839 году от рака брюшной полости, и отец стал основной фигурой в воспитании. Именно благодаря ему юный Джеймс заинтересовался точными науками. В школе он проявлял живое любопытство в раннем возрасте и имел феноменальную память. В 1841 году он был отправлен в школу при Эдинбургской Академии. Среди других учеников были его будущий биограф Льюис Кэмпбелл и его друг Питер Гатри Тэйт.

Интересы Максвелла выходили далеко за рамки школьной программы, и он не обращал особого внимания на результаты экзаменов. Его первая научная работа, опубликованная, когда ему было всего 14 лет, описывала обобщенный ряд овальных кривых, которые можно было проследить с помощью булавок и нитей по аналогии с эллипсом. Это увлечение геометрией и механическими моделями продолжалось на протяжении всей его карьеры и было большим подспорьем в его последующих исследованиях.

В 16 лет он поступил в Эдинбургский университет, где он читал запоем книги по всем предметам и опубликовал еще две научные работы. В 1850 году он поступил в Кембридж. После окончания учебы Джеймсу предложили место преподавателя. В то время он интересуется электричеством и цветами, которые впоследствии лягут в основу первой фотографии в цвете.

Карьера и открытия Джеймса Масквелла

В 1854 он продолжает работу в Тринити Колледже, но, поскольку здоровье его отца ухудшалось, ему пришлось вернуться в Шотландию. В 1856 году он был назначен профессором естественной философии в колледже Маришаль в Абердине, но это назначение омрачилось печальной новостью о кончине отца. Это была большая личная потеря Максвелла, так как у него были близкие отношения с папой. В июне 1858 Максвелл женился на Кэтрин Дьюар, дочери директора колледжа, где он начал работать. Детей у супругов не было, но были доверительные отношения и взаимоуважение.

В 1860 Маришаль и королевский колледж объединились и образовали Абердинский университет. Максвелла попросили покинуть должность. Он подал заявку на вакансию в Эдинбургском университете, но ему было отказано в пользу его школьного друга Тейта. После отказа Джеймс переезжает в Лондон.

Следующие пять лет, несомненно, были самыми плодотворными в его карьере. В этот период были опубликованы две его классические работы по электромагнитному полю, и состоялась его демонстрация цветной фотографии. Максвелл руководил экспериментальным определением электрических единиц для Британской ассоциации содействия развитию науки, и эта работа в области измерений и стандартизации привела к созданию Национальной физической лаборатории.

Именно исследования Максвелла по электромагнетизму создали ему имя среди великих ученых истории. В предисловии к своему трактату об электричестве и магнетизме (1873), Максвелл заявил, что его главной задачей было преобразовать физические идеи Фарадея в математическую форму. Пытаясь проиллюстрировать закон индукции Фарадея (что изменяющееся магнитное поле порождает индуцированное электромагнитное поле), Максвелл построил механическую модель. Он обнаружил, что модель порождает соответствующий «ток смещения» в диэлектрической среде, который затем может быть местом поперечных волн. Рассчитав скорость этих волн, он обнаружил, что они очень близки к скорости света.

Теория Максвелла предполагала, что электромагнитные волны могут генерироваться в лаборатории — возможность, впервые продемонстрированная Генрихом Герцем в 1887 году, через восемь лет после смерти Максвелла. В дополнение к своей электромагнитной теории Максвелл сделал большой вклад в другие области физики. Еще в возрасте 20 лет он продемонстрировал свое мастерство в классической физике, написав эссе о кольцах Сатурна, в котором он пришел к выводу, что кольца должны состоять из масс материи, не связанных друг с другом-вывод, который был подтвержден более чем 100 лет спустя первым космическим зондом Voyager, достигшим кольцевой планеты.

Последние годы жизни

В 1871 году Максвелл был избран новым профессором Кавендиш колледжа в Кембридже. Он приступил к проектированию местной лаборатории и руководил ее строительством. У Максвелла было немного студентов, но они были самого высокого калибра и включали Уильяма Д. Нивена, Джона Амброуза (позже ставшего сэром Джоном Амброузом), Ричарда Тетли Глейзбрука, Джона Генри Пойнтинга и Артура Шустера.

Во время Пасхи 1879 года Максвелл серьезно заболел – оказался рак брюшной полости. То, от чего скончалась когда-то его мать. Не имея возможности проводить лекции, как прежде, он вернулся в Гленлэр в июне, но его состояние не улучшалось. Великий физик Джеймс Масквелл умер 5 ноября 1879 года. Как ни странно, Максвелл не получил никаких общественных почестей и был тихо похоронен на небольшом кладбище в деревне Партон, в Шотландии.

Важнейшим фактором изменений облика мира является расширение горизонтов научных знаний. Ключевой особенностью в развитии науки этого периода времени является широкое применение электричества во всех отраслях производства. И люди уже не могли отказаться от использования электричества, ощутив его существенные преимущества. В это время ученые начали плотно изучать электромагнитные волны и их влияние на различные материалы.

Большим достижением науки XIX в. была выдвинутая английским ученым Д. Максвеллом электромагнитная теория света (1865 г.), которая обобщила исследования и теоретические выводы многих физиков разных стран в отраслях электромагнетизма, термодинамики и оптики.

Максвелл хорошо известен тем, что сформулировал четыре уравнения, которые явились выражением основных законов электричества и магнетизма. Эти две области широко исследовались до Максвелла на протяжении многих лет, и было хорошо известно, что они взаимосвязаны. Однако хотя уже были открыты различные законы электричества и они были истинными для специфических условий, до Максвелла не существовало ни одной общей и единообразной теории.

Д. Максвелл пришел к мысли о единстве и взаимосвязь электрических и магнитных полей, создал на этой основе теорию электромагнитного поля, согласно которой, возникнув в любой точке пространства, электромагнитное поле распространяться в нем со скоростью, равной скорости света. Таким образом он установил связь световых явлений с электромагнетизмом.

В своих четырех уравнениях, коротких, но довольно сложных, Максвелл сумел точно описать поведение и взаимодействие электрических и магнитных полей. Тем самым он трансформировал это сложное явление в единую, доступную для понимания теорию. Уравнения Максвелла находили широкое применение в прошлом веке как в теоретических, так и прикладных науках. Главным достоинством уравнений Максвелла было то, что они являются общими уравнениями, употребимыми при всех обстоятельствах. Все известные прежде законы электричества и магнетизма можно вывести из уравнений Максвелла, равно как и многие другие прежде неизвестные результаты.

Наиболее важные из этих результатов были выведены самим Максвеллом. Из его уравнений можно сделать вывод, что существует периодическое колебание электромагнитного поля. Начавшись, такие колебания, названные электромагнитными волнами, будут распространяться в пространстве. Из своих уравнений Максвелл сумел вывести, что скорость таких электромагнитных волн составила бы приблизительно 300000 километров (186000 миль) в секунду Максвелл увидел, что эта скорость равняется скорости света. Из этого он сделал правильный вывод о том, что свет сам состоит из электромагнитных волн. Таким образом, уравнения Максвелла являются не только основными законами электричества и магнетизма, они являются основными законами оптики. И действительно, все ранее известные законы оптики можно вывести из его уравнений, точно так же, как неизвестные ранее результаты и взаимосвязи. Видимый свет является не только возможным видом электромагнитного излучения.

Уравнения Максвелла показали, что могут существовать другие электромагнитные волны, отличающиеся от видимого света по длине волн и частоте. Эти теоретические выводы были впоследствии наглядно подтверждены Генрихом Герцем, который сумел как создавать, так и выпрямлять невидимые волны, существование которых предсказал Максвелл.

Впервые на практике наблюдать распространения электромагнитных волн удалось немецкому физику Г. Герцу (1883). Он также определил, что скорость их распространения - 300 тыс. км/сек. Парадоксально, но он считал, что электромагнитные волны не будут иметь практического применения. А уже через несколько лет, на основе этого открытия А.С. Попов применил их для передачи первой в мире радиограммы. Она состояла всего из двух слов: «Генрих Герц».

Сегодня мы с успехом используем их для телевидения. Рентгеновские лучи, гамма-лучи, инфракрасные лучи, ультрафиолетовые лучи являются еще одним примером электромагнитного излучения. Все это можно изучить посредством уравнений Максвелла. Хотя Максвелл добился признания главным образом благодаря его эффектному вкладу в электромагнетизм и оптику, он сделал также вклад в другие области науки, включая астрономическую теорию и термодинамику (изучение тепла). Предметом особого его интереса была кинетическая теория газов. Максвелл понял, что не все молекулы газа движутся с одинаковой скоростью. Одни молекулы движутся медленнее, другие быстрее, а некоторые движутся с очень высокой скоростью. Максвелл вывел формулу, которая определяет, какая частица молекулы данного газа будет двигаться при любой установленной скорости. Эта формула, получившая название «распределение Максвелла», широко используется в научных уравнениях и находит значительное применение во многих областях физики.

Это изобретение стало основой для современных технологий беспроводной передачи информации, радио и телевидения, в том числе всех видов мобильной связи, в основе работы которых лежит принцип передачи данных посредствам электромагнитных волн. После экспериментального подтверждения реальности электромагнитного поля было сделано фундаментальное научное открытие: существуют различные виды материи, и каждому из них присущи свои законы, не сводимые к законам механики Ньютона.

О роли Максвелла в развитии науки превосходно сказал американский физик Р. Фейнман: «В истории человечества (если посмотреть на нее, скажем, через десять тысяч лет) самым значительным событием девятнадцатого столетия, несомненно, будет открытие Максвеллом законов электродинамики. На фоне этого важного научного открытия гражданская война в Америке в том же десятилетии будет выглядеть провинциальным происшествием».

Родился Джеймс Максвелл 13 июня 1831 в столице Шотландии, городе Эдинбурге, в семье адвоката и потомственного дворянина Джона Клерка Максвелла. Детство Джеймса прошло в фамильном имении в Южной Шотландии. Его мать рано умерла, и воспитанием мальчика занимался отец. Именно он привил Джеймсу любовь к техническим наукам. В 1841 он поступил в Эдинбургскую академию. Затем, в 1847 году в течение трех лет учился в университете Эдинбурга. Здесь Максвелл изучает и развивает теорию упругости, ставит научные опыты. В 1850 – 1854 гг. учился в Кембриджском университете, который окончил со степенью бакалавра.

После завершения учебы Джеймс остается преподавать в Кембридже. В это время он начинает работу над теорией цветов, впоследствии легшей в основу цветной фотографии. Максвелл также начинает интересоваться электричеством и магнитным эффектом.

В 1856 году Джеймс Максвелл стал профессором Маришаль-колледжа в Абердине (Шотландия), проработав там до 1860 года. В июне 1858 года Максвелл женился на дочери директора колледжа. Работая в Абердине, Джеймс трудится над трактатом «Об устойчивости движения колец Сатурна»(1859), признанной и одобренной научными кругами. Одновременно с этим, Максвелл занимается разработкой кинетической теорией газов, которая легла в основу современной статистической механики, а позже, в 1866 году, им был открыт закон распределения молекул по скоростям, названный его именем.

В 1860 – 1865 гг. Джеймс Максвелл был профессором на кафедре натуральной философии в Кингс-колледже (Лондон). в 1864 году вышла его статья «Динамическая теория электромагнитного поля», которая стала главной работой Максвелла и предопределила направление его дальнейших исследований. Проблемами электромагнетизма ученый занимался вплоть до конца своей жизни.

В 1871 году Максвелл вернулся в Кембриджский университет, где возглавил первую лабораторию для физических экспериментов, названную по имени английского ученого Генри Кавендиша – Кавендишская лаборатория. Там он преподавал физику и участвовал в оснащении лаборатории.

В 1873 году ученый наконец заканчивает работу над двухтомным трудом «Трактат об электричестве и магнетизме», ставшим поистине энциклопедическим наследием в области физики.

Скончался великий ученый 5 ноября 1879 года от рака и был похоронен близ родового имения, в шотландской деревне Партон.

Оценка по биографии

Новая функция! Средняя оценка, которую получила эта биография. Показать оценку

(1831-1879) английский физик, создатель теории электромагнитного поля

Джеймс Клерк Максвелл родился в 1831 году в состоятельной дворянской семье, принадлежавшей к знатному и старинному шотландскому роду Клерков. Его отец Джон Клерк, принявший фамилию Максвелл, был юристом. Он проявлял большой интерес к естествознанию, был человеком с разносторонними культурными интересами, путешественником, изобретателем и ученым. Детство Джеймса прошло в Гленлэре - живописном уголке, расположенном в нескольких милях от залива Ирландского моря.

Джеймс очень любил переделывать вещи, улучшая их конструкцию, мастерить, рисовать, умел вязать и вышивать. Его природная любознательность и склонность к уединенным размышлениям находили полное понимание у его родных и особенно у отца. Дружбу с отцом Джеймс пронес через всю жизнь, и, став взрослым, он скажет, что величайшая удача в жизни - иметь добрых и мудрых родителей. Мальчик рано потерял мать: в 1839 году она умерла, не перенеся тяжелой операции.

В 1841 году в возрасте 10 лет Джеймс поступает в Эдинбургскую академию - среднее учебное заведение типа классической гимназии. До пятого класса он учился без особого интереса, много болел. В пятом классе мальчик увлекся геометрией, начал мастерить модели геометрических тел и придумывать свои методы решения задач. В 1846 году, когда ему не было и 15 лет, он написал свою первую научную работу - «О черчении овалов и об овалах со многими фокусами», напечатанную впоследствии в трудах Эдинбургского королевского общества. Этой юношеской работой открывается двухтомное собрание научных статей Максвелла.

В 1847 году, не закончив гимназии, он поступил в Эдинбургский университет. К этому времени Джеймс увлекся опытами по оптике, химии, магнетизму, много занимался физикой и математикой. В 1850 году он выступил перед членами Королевского общества с докладом «О равновесии упругих тел», в котором доказал известную теорему, названную «теоремой Максвелла».

В 1850 году Джеймс перевелся в Кембриджский университет, в знаменитый Тринити-колледж, где в свое время учился Исаак Ньютон. Важную роль в формировании научного мировоззрения молодого человека сыграло его общение с учеными колледжа, в первую очередь с Джорджем Сто-ксом и Уильямом Томсоном (Кельвином). Кропотливое изучение работ Майкла Фарадея по электричеству указало путь его собственным дальнейшим исследованиям.

В 1854 году Максвелл закончил Кембриджский университет, получив вторую награду - премию Смита, присуждавшуюся за победу на труднейшем математическом экзамене. Первую награду он уступил Раусу - будущему известному механику и математику. Сразу же после окончания университета началась его преподавательская деятельность в Тринити-колледже. Максвелл читает лекции по гидравлике и оптике, занимается исследованиями по теории цвета. В 1855 году он посылает в Эдинбургское королевское общество доклад «Опыты по цвету», разрабатывает теорию цветного зрения. Как свидетельствовали современники, Джеймс Максвелл не был блестящим преподавателем, но относился к своим педагогическим обязанностям очень добросовестно. Его истинной страстью были научные исследования.

К этому времени у него пробудился интерес к проблемам электричества и магнетизма, и в 1855-1856 годах он закончил свою первую работу в этой области - «О фарадеевых силовых линиях». В ней уже намечаются основные черты его будущего великого труда. С 1855 года ученый состоит в Эдинбургском королевском обществе.

В 1856 году профессор Дж. Максвелл едет работать на кафедру натурфилософии Абердинского университета в Шотландии, где остается до 1860 года. В 1857 году он посылает свою статью по электромагнетизму Майклу Фарадею, очень тронувшую того. Фарадей поразился силе таланта молодого ученого. В этот период Максвелл параллельно с проблемами электромагнетизма занимается решением научных вопросов и в других областях. Он принимает участие в конкурсе Кембриджского университета, посвященном устойчивости колец Сатурна, и представляет на конкурс работу «Об устойчивости колец Сатурна», в которой показывает, что кольца не являются твердыми или жидкими, а представляют собой рой метеоритов. Эти работа была названа одним из замечательных приложений математики, а ученый получил почетную премию Адамса.

Джеймс Максвелл является одним из создателей кинетической теории газов. В 1859 году он установил статистический закон распределения молекул газа, находящегося в состоянии теплового равновесия, по скоростям, получивший название распределения Максвелла.

С 1860 по 1865 год Максвелл является профессором физики Кинге-Колледжа в Лондонском университете. Здесь он впервые встретился со своим кумиром - Майклом Фарадеем, который был уже стар и болен.

Избрание Дж. Максвелла в 1861 году членом Королевского общества в Лондоне стало признанием важности его научных трудов, среди которых следует отметить две важные статьи по электромагнетизму: «О физических силовых линиях» (1861-1862) и «Динамическая теория электромагнитного поля» (1864-1865). В последней работе изложена теория электромагнитного поля, которую он сформулировал в виде системы нескольких уравнений - уравнений Максвелла, выражающих все основные закономерности электромагнитных явлений. Также в ней дается представление о свете как электромагнитных волнах.

1 еория электромагнитного поля является самым большим научным достижением Джеймса Максвелла, она ознаменовала собой начало нового этапа в физике. Большинство ученых исключительно высоко оценили теорию Максвелла, ставшего одним из ведущих физиков мира.

В 1865 году во время верховой езды с ним произошел несчастный случай. Перенеся тяжелое заболевание, он оставил кафедру в Лондонском университете и переехал в родной Гленлэр, в свое поместье, где на протяжении шести лет (до 1871 года) продолжал исследования по теории электромагнетизма и теплоты. Результаты его работы были опубликованы в 1871 году в труде «Теория теплоты».

В 1871 году на средства потомка известного английского ученого XVIII века Генри Кавендиша - герцога Кавенди-ша - была учреждена кафедра экспериментальной физики в Кембриджском университете, первым профессором которой был приглашен Максвелл. Вместе с кафедрой он принял и лабораторию, строительство которой только что началось под его наблюдением и руководством. Это была будущая знаменитая Кавендишская лаборатория - научный и исследовательский центр, прославившийся впоследствии на весь мир. 16 июня 1874 года состоялось торжественное открытие Кавендишской лаборатории, которую Максвелл возглавлял до конца своей жизни. Впоследствии ее возглавляли Дж. Рэлей, Д. Д. Гомсон, Э. Резерфорд, У. Брэгг.

Джеймс Максвелл был прекрасным руководителем лаборатории и имел непререкаемый авторитет среди сотрудников. Он отличался большой простотой, мягкостью и искренностью в общении с людьми, всегда был принципиален и активен, ценил и любил юмор.

В Кавендише Максвелл вел большую научную и педагогическую работу. В 1873 году выходит в свет его «Трактат об электричестве и магнетизме», подводящий итог его исследованиям в этой области и ставший вершиной его научного творчества. Восемь лет он отдал «Трактату», а последние пять лет жизни посвятил обработке и изданию неопубликованных трудов Генри Кавендиша, в честь которого была названа лаборатория. Два больших тома работ Кавендиша со своими комментариями Максвелл опубликовал в 1879 году.

Он никогда не проявлял себялюбия и обидчивости, не стремился к славе и всегда спокойно принимал критику в свой адрес. Его спутниками всегда были самообладание и выдержка. Даже когда он тяжело заболел и испытывал мучительные боли, он оставался уравновешенным и спокойным. Ученый мужественно встретил слова врача о том, что ему осталось жить не более месяца.

Джеймс Клерк Максвелл скончался 5 ноября 1879 года от рака в возрасте сорока восьми лет. Врач, лечивший его, пишет в своих воспоминаниях, что Джеймс мужественно переносил болезнь. Он испытывал невероятные боли, но никто из окружающих даже не догадывался об этом. До самой смерти он мыслил четко и ясно, прекрасно сознавая близкую кончину и сохраняя полное спокойствие.

Джеймс Клерк Максвелл (James Clerk Maxwell, 1831–1879) - выдающийся деятель шотландского Просвещения, многое сделавший для актуализации наследия кельтов, которые взаимодействовали с пространством с позиции цвета и света. Максвелл внес неоценимый вклад в понимание античных культур. Кроме того, его труды по электродинамике являются основой учения о развитии и управлении сознанием человека посредством электромагнитных волн.

Максвелл создал важнейшую систему теории света, которая опередила на тот момент и даже сегодня опережает возможности человека переживать цвет. Он научно доказал важность понимания именно восьми частотных характеристик цвета, которые определяют возможности нашего сознания. Особенно важно отметить его изучение восьмого цвета - белого, который он показал как фигуру, состоящую из частотных характеристик красного, зеленого и фиолетовых цветов. Это значит, что три цвета, определяющие самый низкий, самый высокий и средний частотные показатели, образуют белый цвет.

По сути, он создал великую теорию Геометрии цвета, которая так и не стала востребована обществом для развития человека, а ушла в научную плоскость - работу с различными частотными колебаниями. А ведь белый цвет - это, по сути, равнобедренный треугольник, обладающий центром вращения (он же точка смешения трех цветов). По аналогичной схеме работает и наше тело, если понимать его как треугольник (но это только если понимать его как треугольник). Если воссоздать в теле подобную точку смешения, то мы сможем получить наивысшую частотную характеристику, связанную с белым цветом. Это не просто электромагнитный эффект, а возможность проживания нашего духа.

Так мы изменяем поведение молекулярных связей внутри нашего тела и можем противопоставить себя магнитному полю. Но самое главное состоит в том, что Максвелл показал поступательность этого движения, то есть наращивание, где можно доказать безграничность развития нашего тела и сознания. И известное правило буравчика, которое мы изучаем, технически несет в себе совсем иное концептуальное осмысление.

Увы, великие знания Максвелла до сих пор преподаются и трактуются неверно. А ведь здесь объясняется возможность понимания, вернее, восприятия физического состояния оси как органа, который наделен электрическими показателями с особой частотой.

Наличие этой оси позволяет человеку сместить все свои энергетические характеристики, создать внутренний «волчок», что, кстати, Максвелл доказал не только посредством своей теории цветов, но и опытом с бросанием кошки вниз (ее способность приземляться на четыре лапы).

Но почему именно цвет столь важен для нас в этой связи? Потому что цветовая реакция на мозг затмила все другие реакции в нашем теле. Не научившись воспринимать цвет и правильно реагировать на него, мы все равно будем зависеть от этой реакции, и она будет мешать всем остальным восприятиям. Цвет - основа нашего зрения, а зрение - основа нашего духа, то есть дух человека питается в первую очередь цветом. Самое важное - разобраться с тремя цветами - красный, зеленый и фиолетовый (синий).

Понятно, что Максвелл не углубился в то, что он выявил, но важно то, что он это обозначил, так как именно здесь закладывается опора образования человека и развития его качества наблюдения. Что бы мы ни делали, мы зависим от цвета - и в месте, где мы живем, и в одежде, которую носим. И даже в пище, которую мы едим. Это реальная система, обладающая физическими показателями и соответствующей силой. Так что этот великий шотландец не только дал человечеству ключи к познанию природы, но и объяснил идею тартана (расцветки клеток ткани у шотландских семейств и организаций), клановости шотландцев, где скрыта комбинация развития клана. Тартан - это формула, которая имеет свои частотные показатели.



Последние материалы раздела:

Важность Патриотического Воспитания Через Детские Песни
Важность Патриотического Воспитания Через Детские Песни

Патриотическое воспитание детей является важной частью их общего воспитания и развития. Оно помогает формировать у детей чувство гордости за свою...

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...