Понятие стохастического процесса. Значение стохастический процесс в современном толковом словаре, бсэ

Стохастические процессы подразделяются на стационарные и нестационарные процессы. Стохастический процесс является стационарным, если он находится в определенном смысле в статистическом равновесии, т.е. его свойства с вероятностной точки зрения не зависят от времени. Процесс не стационарен, если эти условия нарушаются.

Важное теоретическое значение имеют гауссовские процессы. Это такие процессы, в которых любой набор наблюдений имеет совместное нормальное распределение. Как правило, термин "временной ряд" сам по себе подразумевает, что этот ряд является одномерным (скалярным).

При анализе экономических временных рядов традиционно различают разные виды эволюции (динамики). Эти виды динамики могут, вообще говоря, комбинироваться. Тем самым задается разложение временного ряда на составляющие или компоненты, которые с экономической точки зрения несут разную содержательную нагрузку. Различают два вида компонент: систематические (это результат воздействия на временной ряд постоянно действующих факторов) и случайные (это случайный шум или ошибка, нерегулярно воздействующие на ряд).

Перечислим наиболее важные компоненты. К систематическим относятся следующие:

тенденция - соответствует медленному изменению, происходящему в некотором направлении, которое сохраняется в течение значительного промежутка времени. Тенденцию называют также трендом или долговременным движением;

циклические колебания - это более быстрая, чем тенденция, квазипериодическая динамика, выходящая за рамки одного периода и в которой есть фаза возрастания и фаза убывания. Промежуток времени между двумя вершинами или впадинами считается длиною цикла. На циклические компоненты оказывают влияние трудно идентифицируемые формальными методами факторы (изменение политической ситуации, прирост или истощение ресурсов и др.). Наиболее часто цикл связан с флуктуациями экономической активности;

сезонные колебания - соответствуют изменениям, которые происходят регулярно в течение года, недели или суток, т.е. внутри одного выделенного периода. Они связаны с сезонами и ритмами человеческой активности;

календарные эффекты - это отклонения, связанные с определенными предсказуемыми календарными событиями, такими, как праздничные дни, количество рабочих дней за месяц, високосный год и т.п.

Систематические компоненты могут одновременно все присутствовать во временном ряде.

Случайные компоненты включают в себя следующие виды:

случайные флуктуации - беспорядочные движения относительно большой частоты. Они порождаются влиянием разнородных событий на изучаемую величину (несистематический или случайный эффект). Часто такую составляющую называют шумом (этот термин пришел из технических приложений).

выбросы - это аномальные движения временного ряда, связанные с редко происходящими событиями, которые резко, но лишь очень кратковременно отклоняют ряд от общего закона, по которому он движется.

структурные сдвиги - это аномальные движения временного ряда, связанные с редко происходящими событиями, имеющие скачкообразный характер и меняющие тенденцию.

Некоторые экономические ряды можно считать представляющими те или иные виды таких движений почти в чистом виде. Но большая часть их имеет очень сложный вид. В них могут проявляться, например, как общая тенденция возрастания, так и сезонные изменения, на которые могут накладываться случайные флуктуации. Часто для анализа временных рядов оказывается полезным изолированное рассмотрение отдельных компонент.

Для того чтобы можно было разложить конкретный ряд на эти составляющие, требуется сделать какие-то допущения о том, какими свойствами они должны обладать. Желательно построить сначала формальную статистическую модель, которая бы включала в себя в каком-то виде эти составляющие, затем оценить ее, а после этого на основании полученных оценок вычленить составляющие. Однако построение формальной модели является сложной задачей. В частности, из содержательного описания не всегда ясно, как моделировать те или иные компоненты. Например, тренд может быть детерминированным или стохастическим. Аналогично, сезонные колебания можно комбинировать с помощью детерминированных переменных или с помощью стохастического процесса определенного вида. Компоненты временного ряда могут входить в него аддитивно или мультипликативно, либо в смешенном виде. Более того, далеко не все временные ряды имеют достаточно простую структуру, чтобы можно было разложить их на указанные составляющие. Существует два основных подхода к разложению временных рядов на компоненты. Первый подход основан на использовании множественных регрессий с факторами, являющимися функциями времени, второй основан на применении линейных фильтров.

Еще статьи по экономике

Статистическое исследование рынка труда
Проблема рынка труда, занятости и безработицы являются одной из важнейших социально-экономических проблем нашего времени. В условиях переходной экономики эти проблемы проявляются особенно ос...

Комплексный экономический анализ производственно-хозяйственной деятельности медицинской организации
Анализ финансово-хозяйственной деятельности предприятий как наука представляет собой систему специальных знаний, связанных с исследованием тенденций хозяйственного развития, н...

Кооперативные уставы, их виды и содержание
Кооператив - это самодеятельная организация работников - собственников, организующих его деятельность в целях получения прибыли или реализации в своих интересах различного род...

Не может быть определен по изначальному состоянию системы.

  • В математике стохастическая матрица - это матрица , в которой все столбцы и/или строки - ряды неотрицательных действительных чисел, дающих в сумме.
  • В физике, стохастический резонанс - это проявление эффекта допорогового периодического сигнала, из-за добавления беспорядочного (шумового) воздействия, имеющего определённую оптимальную амплитуду, при которой проявление наиболее сильно́.
  • В музыке. Стохастическая музыка - по Хиллеру - это название такого вида композиционной техники, при котором законы теории вероятности определяют факт появления тех или иных элементов композиции при заранее обусловленных общих формальных предпосылках. В 1956 году, Янис Ксенакис ввел свой термин «стохастическая музыка», для описания музыки, основанной на законах вероятностей и законах больших чисел.
  • Стохастические системы - это системы, изменение в которых носит случайный характер. При случайных воздействиях данных о состоянии системы недостаточно для предсказания в последующий момент времени.

    Стохастический: Определение процесса, определяемого рядом наблюдений.

    См. также


    Wikimedia Foundation . 2010 .

    Синонимы :

    Смотреть что такое "Стохастический" в других словарях:

      - [гр. stochastikos умеющий угадывать] случайный, вероятностный, беспорядочный, непредсказуемый. Словарь иностранных слов. Комлев Н.Г., 2006. стохастический (гр. stochasis догадка) случайный, или вероятностный, напр, с. процесс процесс, характер… … Словарь иностранных слов русского языка

      Вероятностный, случайный; непредсказуемый. Ant. закономерный, обязательный Словарь русских синонимов. стохастический прил., кол во синонимов: 4 беспорядочный (44) … Словарь синонимов

      Большой Энциклопедический словарь

      Управляемый законами теории вероятностей, случайный. Геологический словарь: в 2 х томах. М.: Недра. Под редакцией К. Н. Паффенгольца и др.. 1978 … Геологическая энциклопедия

      Англ. stochastic; нем. stochastisch. В статистике случайный или вероятный; напр., С. процесс процесс, характер изменения к рого во времени точно предсказать невозможно. Antinazi. Энциклопедия социологии, 2009 … Энциклопедия социологии

      стохастический - ая, ое. stochastique, нем. stochastisch <гр. stochasis догадка. мат. Случайный, происходящий с вероятностью, которую невозможно предсказать. С.процесс. Стохастичность и, ж. Крысин 1998. Лекс. БСЭ 2: стохасти/ческий … Исторический словарь галлицизмов русского языка

      стохастический - tikimybinis statusas T sritis automatika atitikmenys: angl. stochastic vok. stochastisch rus. стохастический pranc. stochastique ryšiai: sinonimas – stochastinis … Automatikos terminų žodynas

      Ая, ое [греч. stochasis догадка] Книжн. Случайный, вероятностный, возможный. С ие изменения в экономике. С. процесс эволюции природы. * * * стохастический (от греч. stochastikós умеющий угадывать), случайный, вероятностный … Энциклопедический словарь

      Стохастический - то есть случайный, не имеющий очевидной закономерной причины … Физическая Антропология. Иллюстрированный толковый словарь.

      Стохастический - (от греч. stochastikos умеющий угадывать) случайный, вероятностный … Начала современного естествознания

    Книги

    • , Ф. С. Насыров. Книга посвящена применению методов теории функций вещественной переменной и теории дифференциальных уравнений в стохастическом анализе. Материал охватывает общую теорию локальных времен для…
    • Локальные времена, симметричные интегралы и стохастический анализ , Насыров Ф.С.. Книга посвящена применению методов теории функций вещественной переменной и теории дифференциальных уравнений в стохастическом анализе. Материал охватывает общую теорию локальных времен для…

    "Стохастический" – это слово, которое физики, математики и другие ученые используют для описания процессов, обладающих элементом случайности. Происхождение его древнегреческое. В переводе оно означает "умеющий угадывать".

    Значение слова "стохастический"

    "Стохастический" - это понятие, которое используется во множестве различных областей науки. Оно означает случайность, хаотичность, неопределенность чего-либо. В этике Аристотеля (его скульптурный портрет представлен выше) понятие "стохастический" – это определение, относящееся к способности угадывать. Очевидно, математики употребляли его на том основании, что элемент случайности появляется как раз при необходимости угадывать. Слово "стохастический" – это понятие, которое определено в "Новом международном словаре" как "предположительный".

    Таким образом, можно заметить, что техническое значение данного понятия не точно соответствует его словарному (лексическому) значению. Некоторые авторы используют выражение "стохастический процесс" как синоним понятия "случайный процесс".

    Стохастичность в математике

    Употребление данного термина в математике в настоящее время широко распространено. К примеру, существует такое понятие в теории вероятности, как стохастический процесс. Его итог нельзя определить по изначальному состоянию данной системы.

    Употребление в математике понятия "стохастичность" относят к трудам Владислава Борцкевича. Именно он использовал данный термин в значении "выдвигать гипотезы". В математике, в особенности в таком разделе этой науки, как теория вероятности, область случайных исследований играет большую роль. Существует, к примеру, такое понятие, как стохастическая матрица. Колонки или строки данной матрицы в сумме дают единицу.

    Стохастическая математика (финансовая)

    Данный раздел математики анализирует финансовые структуры, действующие в условиях неопределенности. Он призван находить самые рациональные методы управления финансовыми средствами и структурами, учитывая такие факторы, как стохастическая эволюция, риск, время и др.

    В науке принято выделять следующие структуры и объекты, которые используются в финансовой математике в целом:

    • фирмы (к примеру, компании);
    • индивидуумы;
    • посреднические структуры (пенсионные фонды, банки);
    • финансовые рынки.

    Основным объектом изучения финансовой математики стохастической является именно последний из них. Данный раздел базируется на таких дисциплинах, как статистика случайных процессов, теория случайных процессов и др.

    В настоящее время даже людям, далеким от науки, хорошо известно по многочисленным новостям и публикациям в СМИ, что значения так называемых глобальных финансовых индексов (например, индекса Доу Джонса), цены акций меняются хаотически. Л. Башелье предпринял первую попытку описать с использованием математики эволюцию стоимости акций. Его стохастический метод опирается на теорию вероятностей. Диссертация Л. Башелье, где представлена эта попытка, была опубликована в 1900 году. Ученый доказал формулу, известную в настоящее время как формула справедливой стоимости опциона-колл. В ней отражается стохастическая вероятность.

    Важные идеи, которые в дальнейшем привели к возникновению теории эффективного рынка, были изложены в труде М. Кендалла, изданном в 1953 году. В этой работе рассматривается вопрос динамики цен акций. Исследователь описывает ее с помощью стохастических процессов.

    Стохастичность в физике

    Благодаря физикам Э. Ферми, С. Уламу, Н. Метрополису и Д. Нейману большое распространение получил метод Монте-Карло. Его название произошло от казино, расположенного в одноименном городе такой страны, как Монако. Именно здесь занимал деньги для игры дядя Улама. Использование природы повторов и случайностей для изучения процессов является аналогичным происходящей в казино деятельности.

    При применении данного метода моделирования сначала происходит поиск вероятностного аналога. До этого моделирование осуществлялось в противоположном направлении: оно использовалось для проверки результата детерминированной проблемы, полученной ранее. И хотя и до открытия метода Монте-Карло существовали подобные подходы, они не были популярными и общими.

    Энрико Ферми в 1930 году применил стохастические приемы для расчета свойств нейтрона, в то время только что обнаруженного. Методы Монте-Карло в дальнейшем использовались при работе над манхэттенским проектом, хотя в то время были существенно ограничены возможности вычислительных машин. По этой причине они получили широкое распространение только после того, как появились компьютеры.

    Стохастические сигналы

    Регулярные и стохастические сигналы имеют разные формы колебаний. Если повторно измерить последние, мы получим колебания, имеющие новую форму, которая отлична от предыдущей, однако проявляет определенное сходство в существенных чертах. Пример стохастического сигнала – запись колебаний волн моря.

    Почему же вообще необходимо вести речь об этих достаточно необычных сигналах? Дело в том, что при изучении автоматических систем они встречаются даже чаще, чем предсказуемые.

    Стохастичность и искусственный интеллект

    Стохастические программы в сфере искусственного интеллекта работают с применением вероятностных методов. В качестве примера можно привести такие алгоритмы, как стохастическая оптимизация или нейронные сети. Это же относится к имитации отжига и генетическим алгоритмам. Во всех этих случаях стохастичность может содержаться в проблеме как таковой или же в планировании чего-либо в условии неопределенности. Детерминированное окружение для агента моделирования является более простым, чем стохастическое.

    Итак, как мы видим, интересующее нас понятие используется во многих областях науки. Мы перечислили и охарактеризовали лишь основные сферы его применения. Изучение всех этих процессов, согласитесь, очень важно и актуально. Именно поэтому интересующее нас понятие, вероятно, будет еще долго использоваться в науке.

    Обнаружение радиолокационных сигналов неопределенно из-за того, что одновременно с ними присутствуют и случайные флуктуации, или "шумы". Если бы можно было предсказать точные значения шумовых напряжений или токов, их можно было бы вычесть из суммарного сигнала и после этого принять определенное решение либо о наличии, либо об отсутствии сигнала. Но такое предсказание невозможно, так как шумовые напряжения появляются вследствие хаотического теплового движения ионов - и электронов в элементах приемника и в пространстве, окружающем антенну. Лучшее, что можно сделать, это описать флуктуации напряжения статистически с помощью распределений вероятностей их значений и использовать эти статистические данные для проектирования приемника, в котором достигалось бы наибольшее возможное число успешных обнаружений при большом числе опытов. В настоящей главе дается статистическое описание шума, а в следующей главе вводятся различные критерии успешного и ошибочного обнаружения в статистических ситуациях, указывающие, какими соображениями следует руководствоваться при поисках оптимальной конструкции приемника.

    Если бы напряжение в некоторой точке радиолокационного приемника, например на сетке первой усилительной лампы, было записано как функция времени, запись имела бы совершенно беспорядочный вид и казалось бы, что нет способа вычисления или предсказания значений этого флуктуирующего напряжения. Если бы одновременно были записаны напряжения в соответствующих точках каждого из набора одинаковых приемников, находящихся в одинаковых условиях,

    они различались бы в деталях от приемника к приемнику. Однако некоторые грубые или средние свойства записей были бы почти одинаковы. Изучая большое число таких записей и определяя относительные частоты, с которыми рассматриваемые величины принимают различные значения, можно описать поведение флуктуирующих напряжений статистически. Такое описание производится на языке теории вероятностей, позволяющей делать логические заключения о свойствах флуктуирующих напряжений. Краткий обзор теории вероятностей дан в приложении Б. Для более полного ознакомления с ней читателю следует изучить один из учебников, указанных в литературе к приложению Б. В настоящей главе теория вероятностей будет использована для анализа шумовых флуктуаций.

    Функция времени, подобная записи флуктуационного напряжения, упомянутой выше, называется временндй последовательностью, а набор временных последовательностей, подобный тому, который получается от большого числа приемников, находящихся в одинаковых условиях, известен как ансамбль. Случайная функция, значения которой описываются только при помощи системы распределений вероятностей, о чем более подробно будет говориться ниже, часто называется стохастическим процессом. Если измерения производятся непрерывно во времени, имеет место непрерывный стохастический процесс. Во многих случаях величины измеряются только в отдельные последовательные моменты времени. При этом получается дискретный стохастический процесс. Пример последнего - ежечасные или ежедневные наблюдения температуры на метеорологических станциях. Мы будем иметь дело в основном с непрерывными процессами, но многие представления могут быть применены в той же мере и к дискретным процессам. Каждый член ансамбля называется реализацией стохастического процесса.

    Если член ансамбля временных последовательностей выбран случайно, вероятность, что его значение х в любой данный момент времени лежит в интервале между есть

    где функция плотности вероятности переменной х. Под этим мы понимаем в применении к вышеприведенному

    примеру следующее. Если напряжения измерены в одинаковых точках в большом числе идентичных приемников, число значений, лежащих в таком интервале, равно длине интервала, умноженной на достаточно малой длине интервала). Во многих случаях не будет зависеть от момента времени, в который производятся измерения. Функция плотности вероятности является основой статистического описания стохастического процесса, но сама по себе она недостаточна, так как ничего не говорит о том, как связано значение х, измеренное в один момент времени, со значениями, измеренными в другие моменты времени.

    Обозначим значения временной последовательности измеренные в последовательные моменты времени через Функция плотности совместного распределения вероятностей

    определяется утверждением, что вероятность выполнения неравенств

    равна Для полного описания непрерывного стохастического процесса требуется задание функций распределения для всех возможных выборов моментов времени для всех положительных целых Все эти функции нормированы так, что выполняется соотношение

    в соответствии с определением вероятности. Кроме того, они должны быть согласованы так, чтобы функцию распределения более низкого порядка можно было получить, интегрируя по

    интервалу изменения "лишней" переменной. Например,

    Любые переменных для которых выполняется равенство

    называются статистически независимыми.

    Функция плотности совместного распределения операционно определяется с помощью относительных частот осуществления различных комбинаций значений для и рассматриваемых моментов времени. Но, очевидно, определить полную систему функций распределения таким образом невозможно. Вместо этого для получения гипотетических распределений строится теория процессов птем применения законов физики к ситуациям, возникающим в таких областях науки, как статистическая механика или термодинамика. С помощью теории стохастических процессов вычисляются некоторые средние значения, доступные для наблюдения, и вычисленные значения сравниваются с найденными из опыта. Когда ситуация слишком сложна для такого анализа, как, например, в экономике и, вероятно, даже в метеорологии, для стохастического процесса предлагается простая статистическая "модель". Эта модель дает функцию распределения, содержащую несколько неизвестных параметров, значения которых оцениваются на основе доступных данных. Затем строятся логические заключения и, если возможно, производится сравнение с результатами дальнейших наблюдений. К счастью, существует большая теоретическая база, позволяющая рассматривать электрические шумовые процессы, с которыми приходится встречаться в задачах обнаружения сигналов. Некоторые физические основы будут изложены ниже, в разд. 3. Но сначала мы должны обсудить некоторые понятия, которые будут применяться при анализе стохастических процессов.

    Пока радиолокационный приемник поддерживается при постоянной температуре и связан с неподвижной антенной,

    на которую сигнал не действует, статистическое описание шума в приемнике не будет зависеть от выбора начала отсчета времени. Это значит, что плотность совместного распределения вероятностей зависит только от интервалов между измерениями, а не от самих моментов времени Такие стохастические процессы называют стационарными. Если не будет сделано других утверждений, будем считать, что изучаемые временные последовательности обладают этим свойством временной инвариантности или стационарности.

    Длинная запись одиночной реализации стационарной временной последовательности для большинства моментов времени обладает одинаковыми свойствами. По-видимому, большое число отрезков, взятых из одного члена ансамбля, будет создавать ансамбль с такими же статистическими свойствами, как и у основного ансамбля. Если измеряемая переменная связана с механической системой, подобной газу, или электрической, подобной контуру, и если с течением времени система проходит через все состояния, совместимые с внешними условиями, созданными экспериментатором, сделанное выше предположение является обоснованным. В частности, средние, найденные по длинной выборке на одной реализации процесса, равны средним значениям по всем членам ансамбля в какой-либо момент времени. Стохастические процессы, обладающие этим свойством, называются эргодическими.

    Например, среднее или "математическое ожидание" стационарной временнбйпоследовательности определяется равенством

    где функция плотности распределения вероятностей одиночного наблюдения. Это среднее значение х не зависит от времени. С другой стороны, среднее по времени х можно определить формулой

    Из-за условия стационарности это среднее по времени не зависит от момента времени в который начинается усреднение. Если, кроме того, стохастический процесс эргодический, То же самое справедливо для математического ожидания других функций аргумента х.

    Легко можно представить себе процессы, не являющиеся эргодическими, например такие, где величина х постепенно перемещается в область, которую она потом не может покинуть, или если есть некоторое количество таких "ловящих" областей. Но в этой книге будет предполагаться, что все изучаемые флуктуационные процессы являются эргодическими. Справедливость такого предположения должна основываться на успехе теорий, в которых оно принято, так как, хотя это допущение и подтверждается интуицией, проверить его экспериментально невозможно. Допущение эргодичности существенно для любых задач, в которых статистические параметры приходится оценивать на основе одиночной экспериментальной реализации процесса.

    Временные ряды . Временной ряд – это множество наблюдений, генерируемых последовательно во времени. Если время непрерывно, временно ряд называется непрерывным. Если время изменяется дискретно, временной ряд дискретен. Наблюдения дискретного временного ряда, сделанные в моменты времени могут быть обозначены через . В этой книге рассматриваются только дискретные временные ряды, в которых наблюдения делаются через фиксированный интервал . Когда имеется последовательных значений такого ряда, доступных для анализа, мы пишем , обозначая так наблюдения, сделанные в равноотстоящие моменты времени . Во многих случаях значения и не важны, но если необходимо точно определить времена наблюдений, нужно указать эти два значения. Если мы принимаем за начало и за единицу времени, мы можем рассматривать как наблюдение в момент времени .

    Дискретные временные ряды могут появляться двумя путями.

    1) Выборкой из непрерывных временных рядов, например, в ситуации, показанной на рис. 1.2, где значения непрерывных входа и выхода газовой печи считываются с интервалом 9 с.

    2) Накоплением переменной в течение некоторого периода времени; примерами могут служить дождевые осадки, которые обычно накапливаются за такие периоды, как день или месяц, или выход партий продукта, накапливающегося за время цикла. Например, на рис. 2.1 показан временной ряд, состоящий из значений выхода 70 последовательных партий продукта химического процесса.

    Рис. 2.1 Выход 70 последовательных партий продукта химического процесса.

    Детерминированные и случайные временные ряды . Если будущие значения временного ряда точно определены какой-либо математической функцией, например, такой, как

    ,

    временной ряд называют детерминированным. Если будущие значения могут быть описаны только с помощью распределения вероятностей, временной ряд называют недетерминированным, или просто случайным. Данные о партиях продукта на рис. 2.1 – это пример случайного временного ряда. Хотя в этом ряду имеется отчетливая тенденция к чередованию «вверх-вниз», невозможно точно предсказать выход следующей партии. В этой книге мы будем исследовать именно такие случайные временные ряды.

    Стохастические процессы . Статическое явление, развивающееся во времени согласно законам теории вероятности, называется стохастическим процессом. Мы часто будем называть его просто процессом, опуская слово «стохастический». Подлежащий анализу временной ряд может быть рассматриваться как одна частная реализация изучаемой системы, генерируемая скрытым вероятностным механизмом. Другими словами, анализируя временной ряд, мы рассматриваем его как реализацию стохастического процесса.

    Рис. 2.2 Наблюденный временной ряд (жирная линия) и другие временные ряды, являющиеся реализациями одного и того же стохастического ряда.

    Рис. 2. 3. Изолинии плотности двумерного распределения вероятности, описывающего стохастический процесс в моменты времени и , там же маргинальное распределение в момент .

    Например, анализирую данные о выходе партии продукта на рис 2.1, мы можем представить себе другие множества наблюдений (другие реализации порождающего эти наблюдения стохастического процесса), которые могут быть генерированы той же самой химической системой, за те же циклов. Так, например, на рис. 2.2 показаны выходы партий продукта с по (жирная линия) вместе с другими временными рядами, которые могли бы быть получены из популяции временных рядов, определяемых тем же стохастическим процессом. Отсюда следует, что мы можем рассматривать наблюдение в данное время , скажем , как реализацию случайной величины с плотностью вероятности . с плотностью вероятности .



    Последние материалы раздела:

    Важность Патриотического Воспитания Через Детские Песни
    Важность Патриотического Воспитания Через Детские Песни

    Патриотическое воспитание детей является важной частью их общего воспитания и развития. Оно помогает формировать у детей чувство гордости за свою...

    Изменение вида звездного неба в течение суток
    Изменение вида звездного неба в течение суток

    Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

    Развитие критического мышления: технологии и методики
    Развитие критического мышления: технологии и методики

    Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...