Теплоемкость гелия. Способы получение гелия

Гелий (лат. Helium), химический элемент из семейства благородных (инертных) газов He, Ne, Ar, Kr, Xe, Rn, составляющих VIIIA подгруппу в периодической системе элементов, или, как ее еще называют, нулевую группу. Гелий (лат. Helium), символ Не, химический элемент VIII группы периодической системы, относится к инертным газам; порядковый номер 2, атомная масса 4,0026, инертный одноатомный газ без цвета, вкуса и запаха.. Природный гелий состоит из 2 стабильных изотопов: 3 He и 4 He (содержание 4 He резко преобладает). Гелий - один из наиболее распространённых элементов во Вселенной, он занимает второе место после водорода . Также гелий является вторым по лёгкости (после водорода) химическим веществом. Гелий добывается из природного газа процессом низкотемпературного разделения - так называемой фракционной перегонкой.

Гелий впервые был идентифицирован как химический элемент в 1868 П. Жансеном при изучении солнечного затмения в Индии. При спектральном анализе солнечной хромосферы была обнаружена ярко-желтая линия, первоначально отнесенная к спектру натрия, однако в 1871 Дж. Локьер и П. Жансен доказали, что эта линия не относится ни к одному из известных на земле элементов. Локьер и Э. Франкленд назвали новый элемент гелием от греч. "гелиос", что означает солнце. В то время не знали, что гелий - инертный газ, и предполагали, что это металл. И только спустя почти четверть века гелий был обнаружен на земле. В 1895, через несколько месяцев после открытия аргона, У. Рамзай и почти одновременно шведские химики П. Клеве и Н. Ленгле установили, что гелий выделяется при нагревании минерала клевеита. Год спустя Г. Кейзер обнаружил примесь гелия в атмосфере, а в 1906 гелий был обнаружен в составе природного газа нефтяных скважин Канзаса. В том же году Э. Резерфорд и Т. Ройдс установили, что a-частицы, испускаемые радиоактивными элементами, представляют собой ядра гелия. В 1938 году советский физик Пётр Леонидович Капица открыл явление сверхтекучести жидкого гелия-II, которое заключается в резком снижении коэффициента вязкости, вследствие чего гелий течёт практически без трения.

Содержание гелия в мировом пространстве составляет 28% (второе место после водорода). Гелий занимает второе место по распространённости во Вселенной после водорода - около 23% по массе. Гелий - основной компонент звездной материи. Практически весь гелий Вселенной образовался в первые несколько минут после Большого Взрыва. В современной Вселенной почти весь новый гелий образуется в результате термоядерного синтеза из водорода в недрах звёзд. В результате углеродного цикла (сложная цепь ядерных реакций), впервые изученного Х. Бете в 1939, водород в звездном веществе превращается в гелий, при этом происходит значительное выделение энергии.
Содержание гелия в атмосфере (образуется в результате распада Ac, Th, U) - 5,27·10−4% по объёму, 7,24·10−5% по массе. Запасы гелия в атмосфере, литосфере и гидросфере оцениваются в 5·1014 м³. Гелионосные природные газы содержат как правило до 2% гелия по объёму. Исключительно редко встречаются скопления газов, гелиеносность которых достигает 8 - 16%.
На Земле он образуется в результате альфа-распада тяжёлых элементов. Часть гелия, возникшего при альфа-распаде и просачивающегося сквозь породы земной коры, захватывается природным газом. Гелий образуется при распаде тяжелых радиоактивных элементов, находящихся в расплавленном земном ядре, и медленно диффундирует через земную мантию. Тепловая энергия, выделяющаяся при ядерных процессах, поддерживает ядро земли в расплавленном состоянии. Среднее содержание гелия в земном веществе - 0,003мг/кг или 0,003г/т. Наибольшая концентрация гелия наблюдается в минералах, содержащих уран, торий и самарий: клевеите, фергюсоните, самарските, гадолините, монаците (монацитовые пески в Индии и Бразилии), торианите. Содержание гелия в этих минералах составляет 0,8 - 3,5л/кг, а в торианите оно достигает 10,5л/кг. Этот гелий является радиогенным и содержит лишь изотоп 4 He, он образуется из альфа-частиц, излучаемых при альфа-распаде урана, тория и их дочерних радионуклидов. Природный метан, добываемый из скважин, содержит ок. 1,75% гелия и 0,5% CO 2 . После удаления CO 2 , глубокого охлаждения природного газа до -185°C и сжатия образуется жидкий метан, а в газовой фазе остаются гелий и азот . Метод глубокого охлаждения позволяет получать гелий чистотой 98% и выше.

Гелий - практически инертный химический элемент. Простое вещество гелий - нетоксично, не имеет цвета, запаха и вкуса. При нормальных условиях представляет собой одноатомный газ. Его точка кипения (T = 4,215K для 4 He) наименьшая среди всех простых веществ; твёрдый гелий получен лишь при давлениях выше 25 атмосфер - при атмосферном давлении он не переходит в твёрдую фазу даже при крайне близких к абсолютному нулю температурах. Экстремальные условия также необходимы для создания немногочисленных химических соединений гелия, все они нестабильны при нормальных условиях. Плотность г/см 3 - 0,178, температура плавления °С -272,2 (при 26 атм), температура кипения - °С - 268,93, критическая температура К - 5,25, Критическое давление МПа - 0,23.

Гелий - наименее химически активный элемент восьмой группы таблицы Менделеева (инертные газы). Многие соединения гелия существуют только в газовой фазе в виде так называемых эксимерных молекул, у которых устойчивы возбуждённые электронные состояния и неустойчиво основное состояние. Гелий образует двухатомные молекулы He 2 + , фторид HeF, хлорид HeCl (эксимерные молекулы образуются при действии электрического разряда или ультрафиолетового излучения на смесь гелия с фтором или хлором). Энергия связи молекулярного иона гелия He 2 + составляет 58 ккал/моль, равновесное межъядерное расстояние 1,09Å.
Известно химическое соединение гелия LiHe (возможно, имелось в виду соединение LiHe 7). Гелий имеет одну-единственную электронную оболочку, занятую двумя электронами, т.е. его оболочка полностью заполнена электронами, которые испытывают сильное притяжение ядра, а значит, очень устойчивы; поэтому гелий не вступает в химические реакции, не образует химические соединений и не имеет степеней окисления. Его атомы не соединяются даже между собой. Наиболее распространенный изотоп 4 He содержит в ядре два протона и два нейтрона, поэтому его массовое число равно 4. Более редкий изотоп 3 He с одним нейтроном был открыт в 1939 Л. Альваресом и Р. Кернегом. Содержание 3 He составляет 10-5% гелия, находящегося в природном газе, добываемом из скважин. 3 He получается в ядерных реакциях при распаде трития (3 H-изотоп водорода). Гелий - необычное вещество, по свойствам он близок к состоянию идеального газа.

При нормальных условиях гелий ведёт себя практически как идеальный газ. При всех условиях гелий является моноатомным веществом. При нормальных условиях, плотность составляет 0,17847кг/м³, обладает тепло­проводностью 0,1437Вт⁄(м·К) - бо́льшей, чем у всех других газов за исключением водорода, а его удельная теплоёмкость чрезвычайно высока (ср = 5,23кДж⁄(кг·К), для сравнения - 14,23 кДж⁄(кг·К) для Н 2).
При пропускании тока через заполненную гелием трубку наблюдаются разряды различных цветов, зависящих главным образом от давления газа в трубке. Обычно видимый свет спектра гелия имеет жёлтую окраску. По мере уменьшения давления происходит смена цветов - розового, оранжевого, жёлтого, ярко-жёлтого, жёлто-зелёного и зелёного. Это связано с присутствием в спектре гелия нескольких серий линий, расположенных в диапазоне между инфракрасной и ультрафиолетовой частями спектра, важнейшие линии гелия в видимой части спектра лежат между 706,52нм и 447,14нм. Уменьшение давления приводит к увеличению длины свободного пробега электрона, то есть к возрастанию его энергии при столкновении с атомами гелия. Это приводит к переводу атомов в возбуждённое состояние с бо́льшей энергией, в результате чего и происходит смещение спектральных линий от инфракрасного к ультрафиолетовому краю.
Гелий менее растворим в воде, чем любой другой известный газ. В 1л воды при 20°C растворяется около 8,8 мл (9,78 при 0°C, 10,10 при 80°C), в этаноле - 2,8 мл/л (15°C), 3,2 мл/л (25°C). Скорость его диффузии сквозь твёрдые материалы в три раза выше, чем у воздуха, и приблизительно на 65 % выше, чем у водорода.
Коэффициент преломления гелия ближе к единице, чем у любого другого газа. Этот газ имеет отрицательный коэффициент Джоуля - Томсона при нормальной температуре среды, то есть он нагревается, когда ему дают возможность свободно увеличиваться в объёме. Только ниже температуры инверсии Джоуля - Томсона (приблизительно 40К при нормальном давлении) он остывает во время свободного расширения. После охлаждения ниже этой температуры гелий может быть превращён в жидкость при расширительном охлаждении. Такое охлаждение производится при помощи детандера.
В 1908 году Х. Камерлинг-Оннес впервые смог получить жидкий гелий. Твёрдый гелий удалось получить лишь под давлением 25 атмосфер при температуре около 1К (В. Кеезом, 1926). Кеезом также открыл наличие фазового перехода гелия- 4 (4 He) при температуре 2,17K; назвал фазы гелий-I и гелий-II (ниже 2,17K). В 1938 году П. Л. Капица обнаружил, что у гелия-II отсутствует вязкость (явление сверхтекучести). В гелии-3 сверхтекучесть возникает лишь при температурах ниже 0,0026К. Сверхтекучий гелий относится к классу так называемых квантовых жидкостей, макроскопическое поведение которых может быть описано только с помощью квантовой механики. В 2004 году появилось сообщение об открытии сверхтекучести твёрдого гелия (т. н. эффект суперсолид) при исследовании его в торсионном осцилляторе. Однако многие исследователи сходятся во мнении, что обнаруженный в 2004 году эффект не имеет ничего общего со сверхтекучестью кристалла. В настоящее время продолжаются многочисленные экспериментальные и теоретические исследования, целью которых является понимание истинной природы данного явления.

В 1908 году Х. Камерлинг-Оннес впервые смог получить жидкий гелий. Твёрдый гелий удалось получить лишь под давлением 25 атмосфер при температуре около 1К (В. Кеезом, 1926). Кеезом также открыл наличие фазового перехода гелия - 4 (4 He) при температуре 2,17K; назвал фазы гелий-I и гелий-II (ниже 2,17K). В 1938 году П. Л. Капица обнаружил, что у гелия-II отсутствует вязкость (явление сверхтекучести). В гелии-3 сверхтекучесть возникает лишь при температурах ниже 0,0026К. Сверхтекучий гелий относится к классу так называемых квантовых жидкостей, макроскопическое поведение которых может быть описано только с помощью квантовой механики. В 2004 году появилось сообщение об открытии сверхтекучести твёрдого гелия (т. н. эффект суперсолид) при исследовании его в торсионном осцилляторе. Однако многие исследователи сходятся во мнении, что обнаруженный в 2004 году эффект не имеет ничего общего со сверхтекучестью кристалла. В настоящее время продолжаются многочисленные экспериментальные и теоретические исследования, целью которых является понимание истинной природы данного явления.
Жидкий гелий обладает рядом уникальных свойств; он имеет самую низкую температуру кипения: 4 He кипит при 4,22K, а 3 He - 3,19K. Это свойство гелия используют для создания низких температур. Гелий - единственное вещество на земле, которое при нормальном давлении не кристаллизуется вблизи абсолютного нуля, что объясняется слабым межатомным взаимодействием и квантовыми свойствами. Жидкий гелий бесцветен, очень текуч и имеет очень низкое поверхностное натяжение. Изотопы гелия в жидком состоянии сильно различаются. Так, 4 He имеет две формы: при температурах выше 2,18K существует 4 He, а ниже 2,18K происходит необычный переход (фазовый переход второго рода) в 4 He-II. Если пустой стеклянный сосуд погрузить в 4 He-II, то жидкость будет медленно подниматься вверх по стенкам и перетекать внутрь до выравнивания уровней жидкости снаружи и внутри. Если сосуд приподнять, то процесс пойдет обратно до нового выравнивания уровней жидкостей. Это - пленочное движение; оно характерно только для 4 He-II. Другое аномальное свойство 4 He-II - способность жидкости перетекать из области более низких температур в область более высоких. 4 He-II обладает сверхтекучестью - свойством, известным только для жидкого гелия. Явление сверхтекучести объясняется на основе двухжидкостной модели. Согласно ей, 4 He-II состоит из двух полностью взаимопроникающих жидкостей - нормальной и сверхтекучей; последняя является идеальной жидкостью и не испытывает сопротивления при протекании через узкие капилляры. Согласно теории, в 4 He-II существуют необычные температурные волны (второй звук). Объяснение аномалий 4 He-II дается на основе представлений квантовой механики. Жидкие 3 He и 4 He называются квантовыми жидкостями. 4 He не имеет ядерного спина, а у 3 He он равен 1/2 в единицах постоянной Планка. Удивительное различие состоит также в том, что 4 He-II - сверхтекучая жидкость, а сопротивление текучести 3He резко возрастает с уменьшением температуры. Гелий-3 становится, однако, сверхтекучим при температуре примерно 0,001К, как было открыто в 1972. Это явление аналогично явлению сверхпроводимости, которая рассматривается как сверхтекучесть "электронной жидкости" . В 3 He обнаружен новый тип звука при очень низких температурах, нулевой звук, предсказанный Л.Д. Ландау и относящийся к волнам, характерным для ионизованных газов (плазмы).
Растворы изотопов гелия также необычны. Ниже 0,9K раствор спонтанно делится на две части, образуя раствор, обогащенный 3 He и текущий над раствором, обогащенным 4 He. 6% 3 нe растворимы в 4 He, но 4 He не растворяется в 3 He при абсолютном нуле. Твердый гелий можно получить сжатием 4 He до 25 атм или 3 He до 34 атм при низких температурах. Твердый гелий - кристаллическое прозрачное вещество, причем границу между твердым и жидким гелием трудно обнаружить, так как их рефракции близки.

В промышленности гелий получают из гелийсодержащих природных газов (в настоящее время эксплуатируются главным образом месторождения, содержащие > 0,1% гелия). От других газов гелий отделяют методом глубокого охлаждения, используя то, что он сжижается труднее всех остальных газов. Охлаждение производят дросселированием в несколько стадий очищая его от CO 2 и углеводородов. В результате получается смесь гелия, неона и водорода. Эту смесь, т. н. сырой гелий, (He - 70-90% об.) очищают от водорода (4-5%) с помощью CuO при 650-800К. Окончательная очистка достигается охлаждением оставшейся смеси кипящим под вакуумом N 2 и адсорбцией примесей на активном угле в адсорберах, также охлаждаемых жидким N 2 . Производят гелий технической чистоты (99,80% по объёму гелий) и высокой чистоты (99,985%).
В России газообразный гелий получают из природного и нефтяного газов. В настоящее время гелий извлекается на гелиевом заводе в Оренбурге из газа с низким содержанием гелия (до 0,055% об.), поэтому российский гелий имеет высокую себестоимость. Актуальной проблемой является освоение и комплексная переработка природных газов крупных месторождений Восточной Сибири с высоким содержанием гелия (0,15-1% об.), что позволит намного снизить его себестоимость.

Хотя инертные газы обладают наркозным действием, это воздействие у гелия и неона при атмосферном давлении не проявляется, в то время как при повышении давления раньше возникают симптомы «нервного синдрома высокого давления» .
Вдыхание гелия вызывает кратковременное повышение тембра голоса (обратное эффекту вдыхания ксенона).

Не поддается законам классической механики. Ученые пытаются разгадать тайну гелия-4. Это легкий, не радиоактивный изотоп элемента. На него, собственно, приходятся 99,9% гелия на Земле.

Так вот, если 4-ый изотоп охладить до -271-го градуса Цельсия, получится жидкость. Только вот свойства ее для жидкости не типичны. Наблюдается, к примеру, сверхтекучесть.

Если поместить гелий в сосуд и поставить его вертикально, жидкость нарушит законы гравитации. Через несколько минут содержимое емкости вытечет из нее. Из сего же вытекает, что гелий – элемент любопытный, а любопытство надо удовлетворять. Начнем знакомство со свойств вещества.

Свойства гелия

Не. Это не частица отрицания, а обозначение 2-го элемента периодической системы , то есть, гелия . Газ в обычном состоянии, он сгущается лишь при минусовых температурах. Причем, минус этот должен быть в пару сотен градусов Цельсия.

При этом, в свойства газа гелия вписана нерастворимость в воде. То есть, если сам не , то его молекулы находятся в одной фазе, не переходя в другие. Между тем, именно смена фаз вещества является определением образования раствора.

Гелий – инертный газ . Его инертность проявляется не только в отсутствии «желания» растворяться в воде. Вещество не спешит вступать и в прочие реакции. Причина: — стабильная внешняя оболочка атома.

На ней находятся 2 электрона. Разбить крепкую пару, то есть, удалить одну из частиц с оболочки атома, сложно. Поэтому, открыли гелий не в ходе химических опытов, а при спектроскопическом исследовании протуберанцев .

Произошло это во второй половине 19-го века. Прочие инертные газы, а их 6, открыли еще позже. Примерно в это же время, то есть, в начале 20-го века, удалось перевести гелий в жидкую форму.

Гелий – одноатомный газ без , вкуса и запаха. Это тоже выражение инертности элемента. Связывается он лишь с тремя «коллегами» по таблице Менделеева, — , и . Сама реакция не запустится.

Нужен ультрафиолет, или разряды тока. Зато, чтобы гелий «убежал» из пробирки, или другого объемного и тела, усилий не нужно. У 2-го элемента самая малая адсорбция, то есть, способность концентрироваться на плоскости или в объеме.

Хранят газ гелий в баллонах . Они должны быть абсолютно герметичными. Иначе, адсорбция сыграет с поставщиками злую шутку. Вещество просочится через малейшие щели. А будь баллоны из пористого материала, гелий уйдет сквозь него.

Плотность газа гелия в 7 раз уступает кислороду. Показатель последнего – 1,3 килограмма на кубический метр. У гелия же плотность равна всего 0,2 кило. Соответственно герой легок. Молярная масса гелия равна 4-ем граммам на моль.

Для сравнения у воздуха в целом показатель равен 29-ти граммам. Становится ясно, почему популярен гелий для шаров . Разница в массах 2-го элемента и воздуха тратится на подъем грузов. Вспомним, что моль равен 22-ум литрам. Получается, что 22 литра гелия способны поднять 25-граммовый груз. Кубометр газа потянет уже более килограмма.

Напоследок заметим, что у гелия отличная электропроводность. По крайней мере, это касается газов. Среди них 2-ой уже не на втором, а на первом месте. А вот по содержанию на Земле гелий – не передовик. В атмосфере планеты героя статьи миллионные доли процента. Так откуда же тогда добывают газ. Выуживать его из атмосферы нецелесообразно.

Добыча гелия

Формула гелия является составной не только атмосферы, но и природного . В разных месторождениях разнится и содержание 2-го элемента. В , к примеру, наиболее богаты гелием залежи Дальнего Востока и востока Сибири.

Однако, месторождения газа в этих регионах плохо освоены. Подстегивает к их разработке 0,2-0,8-процентное содержание гелия. Пока же, его добывают лишь на одном месторождении страны. Оно находится в Оренбурге, признано бедным на гелий. Тем не менее, 5 000 000 кубов газа в год добывают.

Общемировое производство гелия в год равно 175 000 000 кубических метров. При этом, запасы газа – 41 миллиард кубов. Большая часть из них скрыта в недрах Алжира, Катара и США. тоже входит в список.

Из природного газа гелий получают путем низкотемпературной конденсации. Получается концентрат 2-го элемента с его содержанием не менее 80%. Еще 20% приходятся на аргон, неон, метан, и азот. Какой газ гелию мешает? Никакой. Но, людям примеси мешают. Поэтому, концентрат очищают, превращая 80% 2-го элемента в 100%.

Проблема состоит в том, что у есть так же, 100-процентная уверенность, что планету ждет дефицит гелия. Уже к 2030-му году мировое потребление газа должно достигнуть 300 000 000 кубометров.

Производство гелия через 10 лет не сможет перешагнуть планку в 240 000 000 из-за дефицита сырья. Оно является невосполнимым ресурсом. Второй выделяется по крупицам при распаде радиоактивных пород.

Скорости природного производства не угнаться за нуждами людей. Поэтому, специалисты прочат резкий скачок на гелий. Пока, низкую обесценивает распродажа резервного фонда США, который стране стало невыгодно содержать.

Национальный запас создали в начале прошлого века, дабы наполнять военные дирижабли и коммерческие воздушные суда. Хранилище расположено в штате Техас.

Применение гелия

Найти гелий можно в топливных баках ракет. Там 2-ой соседствует с жидким водородом. Лишь гелий, при этом, способен оставаться газообразным, а значит, создавать в баках двигателей нужное давление.

Наполнение аэростатов, — еще одно дело, в котором пригождается газ гелий. Углекислый, к примеру, не подойдет, поскольку тяжел. Легче гелия лишь один газ , это водород. Только вот, он взрывоопасен.

В начале прошлого века водородом наполнили дирижабль «Гинденбург» и лицезрели, как тот воспламенился во время полета. С тех пор сделан в пользу инертного, хоть и чуть более тяжелого, гелия.

Популярен гелий и как охлаждающий агент. Применение связано со способностью газа порождать сверхнизкие температуры. Гелий закупают для адронных коллайдеров и спектрометров ядерного магнитного резонанса. Пользуются 2-ым элементом так же, в аппаратах МРТ. Там гелий закачивают в сверхпроводящие .

МРТ проходили многие. Близки массовому потребителя и сканеры на кассах, считывающие штрих-коды. Так вот, в магазинские лазеры закачены гелий и неон. Отдельно гелий помещают в ионные микроскопы. Они дают лучшую картинку, чем электронные, можно сказать, тоже считывают данные.

В системах кондиционирования воздуха 2-ой нужен для диагностики утечек. Пригождается сверхпроницаемость героя статьи. Если он находит куда просочиться, значит, могут «утечь» и прочие компоненты.

Речь о системах кондиционирования автомобилей. Кстати, подушки безопасности тоже заполняются гелием. Он просачивается в спасительные емкости быстрее иных газов.

Цена гелия

Пока, на газ гелий цена равна примерно 1 300 рублям за полтора куба. В них вмещаются 10 литров 2-го элемента. Есть баллоны и по 40 литров. Это почти 6 кубов гелия. Ценник на 40-литровые упаковки равен примерно 4 500 .

Кстати, для пущей герметичности, на баллоны с газом надевают защитные чехлы. Они тоже стоят , обычно, около 300-от рублей для 40-литровой тары и 150-ти рублей для баллонов на 10 литров.

По физическим свойствам гелий наиболее близок к молекулярному водороду. Вследствие ничтожной поляризуемости атомов гелия у него самые низкие температуры кипения (-269 o С) и плавления (-271 o С при 2,5×10 6 Па).

Гелий по сравнению с другими элементами обладает наибольшей энергией ионизации атома (24,59 эВ). Особая устойчивость электронной структуры атома отличает гелий от остальных элементов Периодической системы Д.И. Менделеева.

Гелий хуже других газов растворяется в воде и других растворителях. В 1 л воды, например, растворяется при 0 o С менее 10 мл гелия, т.е. в два с лишним раза меньше, чем молекул водорода (H 2), и в 51000 раз меньше, чем молекул хлороводорода (HCl).

После водорода гелий - самый легкий из всех газов. Он более чем в 7 раз легче воздуха.

Плотность гелия равна 0,178кг/м 3 . Важнейшие константы гелия представлены в таблице ниже:

Таблица 1. Физические свойства гелия.

Распространенность гелия в природе

Гелий относится к группе благородный газов. Он впервые был обнаружен на Солнце, а затем и на Земле. Спектральный анализ показывает присутствие гелия в атмосфере звезд и в метеоритах.

Краткое описание химических свойств и плотность гелия

Для инертных газов характерно полное или почти полное отсутствие химической активности. Так, в обычных условиях гелий химически инертен, но при сильном возбуждении атомов он может образовывать молекулярные ионы He 2 + . В обычных условиях эти ионы неустойчивы; захватывая недостающий электрон, они распадаются на два нейтральных атома.

Примеры решения задач

ПРИМЕР 1

Задание Относительная плотность газа по водороду - 27. Массовая доля элемента водорода в нем - 18,5%, а элемента бора - 81,5%. Определите формулу газа.
Решение Массовая доля элемента Х в молекуле состава НХ рассчитывается по следующей формуле:

ω (Х) = n × Ar (X) / M (HX) × 100%.

Обозначим число атомов водорода в молекуле через «х», число атомов бора через «у».

Найдем соответствующие относительные атомные массы элементов водорода и бора (значения относительных атомных масс, взятые из Периодической таблицы Д.И. Менделеева, округлим до целых чисел).

Ar(B) = 11; Ar(H) = 1.

Процентное содержание элементов разделим на соответствующие относительные атомные массы. Таким образом мы найдем соотношения между числом атомов в молекуле соединения:

x:y = ω(H)/Ar(H) : ω (B)/Ar(B);

x:y = 18,5/1: 81,5/11;

x:y = 18,5: 7,41 = 2,5: 1 = 5: 2.

Значит простейшая формула соединения водорода и бора имеет вид H 5 B 2 .

Значение молярной массы газа можно определить при помощи его плотности по водороду:

M gas = M(H 2) × D H2 (gas) ;

M gas = 2 × 27 = 54 г/моль.

Чтобы найти истинную формулу соединения водорода и бора найдем отношение полученных молярных масс:

M gas / M(H 5 B 2) = 54 / 27 = 2.

M(H 5 B 2) = 5 ×Ar(H) + 2 × Ar(B) = 5 ×1 + 2 × 11 = 5 + 22 = 27 г/моль.

Это означает, что все индексы в формуле H 5 B 2 следует умножить на 2. Таким образом формула вещества будет иметь вид H 10 B 4 .

Ответ Формула газа - H 10 B 4 .

ПРИМЕР 2

Задание Вычислите относительную плотность по воздуху углекислого газа CO 2 .
Решение Для того, чтобы вычислить относительную плотность одного газа по другому, надо относительную молекулярную массу первого газа разделить на относительную молекулярную массу второго газа.

Относительную молекулярную массу воздуха принимают равной 29 (с учетом содержания в воздухе азота, кислорода и других газов). Следует отметить, что понятие «относительная молекулярная масса воздуха» употребляется условно, так как воздух - это смесь газов.

D air (CO 2) = M r (CO 2) / M r (air);

D air (CO 2) = 44 / 29 = 1,52.

M r (CO 2) = A r (C) + 2 ×A r (O) = 12 + 2 × 16 = 12 + 32 = 44.

Ответ Относительная плотность по воздуху углекислого газа равна 1,52.

Гелий (лат. Helium), символ Не, химический элемент VIII группы периодической системы, относится к инертным газам; порядковый номер 2, атомная масса 4,0026; газ без цвета и запаха. Природный Гелий состоит из 2 стабильных изотопов: 3 Не и 4 Не (содержание 4 Не резко преобладает).

Историческая справка. Впервые Гелий был открыт не на Земле, где его мало, а в атмосфере Солнца. В 1868 году француз Ж. Жансен и англичанин Дж. Н. Локьер исследовали спектроскопически состав солнечных протуберанцев. Полученные ими снимки содержали яркую желтую линию (так называемую D3-линию), которую нельзя было приписать ни одному из известных в то время элементов. В 1871 Локьер объяснил ее происхождение присутствием на Солнце нового элемента, который и назвали гелием (от греч. helios - Солнце). На Земле Гелий впервые был выделен в 1895 году англичанином У. Рамзаем из радиоактивного минерала клевеита. В спектре газа, выделенного при нагревании клевеита, оказалась та же линия.

Распространение Гелия в природе. На Земле Гелия мало: 1 м 3 воздуха содержит всего 5,24 см 3 Гелия, а каждый килограмм земного материала - 0,003 мг Гелия. По распространенности же во Вселенной Гелий занимает второе место после водорода: на долю Гелия приходится около 23% космической массы.

На Земле Гелий (точнее, изотоп 4 Не) постоянно образуется при распаде урана, тория и других радиоактивных элементов (всего в земной коре содержится около 29 радиоактивных изотопов, продуцирующих 4 Не).

Примерно половина всего Гелия сосредоточена в земной коре, главным образом в ее гранитной оболочке, аккумулировавшей основные запасы радиоактивных элементов. Содержание Гелия в земной коре невелико - 3·10 -7 % по массе. Гелий накапливается в свободных газовых скоплениях недр и в нефти; такие месторождения достигают промышленного масштабов. Максимальные концентрации Гелия (10-13%) выявлены в свободных газовых скоплениях и газах урановых рудников и (20-25%) в газах, спонтанно выделяющихся из подземных вод. Чем древнее возраст газоносных осадочных пород и чем выше в них содержание радиоактивных элементов, тем больше Гелия в составе природных газов. Вулканическим газам свойственно обычно низкое содержание Гелия.

Добыча Гелия в промышленных масштабах производится из природных и нефтяных газов как углеводородного, так и азотного состава. По качеству сырья гелиевые месторождения подразделяются: на богатые (содержание Не > 0,5% по объему); рядовые (0,10-0,50) и бедные (<0,10). В СССР природный Гелий содержится во многих нефтегазовых месторождениях. Значительные его концентрации известны в некоторых месторождениях природного газа Канады, США (штаты Канзас, Техас, Нью-Мексико, Юта).

Изотопы, атом и молекула Гелия. В природном Гелий любого происхождения (атмосферном, из природных газов, из радиоактивных минералов, метеоритном и т. д.) преобладает изотоп 4 He. Содержание 3 He обычно мало (в зависимости от источника Гелия оно колеблется от 1,3·10 -4 до 2·10 -8 %) и только в Гелии, выделенном из метеоритов, достигает 17-31,5%. Скорость образования 4 He при радиоактивном распаде невелика: в 1 т гранита, содержащего, например, 3 г урана и 15 г тория, образуется 1 мг Гелия за 7,9 млн. лет; однако, поскольку этот процесс протекает постоянно, за время существования Земли он должен был бы обеспечить содержание Гелия в атмосфере, литосфере и гидросфере, значительно превышающее наличное (оно составляет около 5·10 14 м 3). Такой дефицит Гелия объясняется постоянным улетучиванием его из атмосферы. Легкие атомы Гелия, попадая в верхние слои атмосферы, постепенно приобретают там скорость выше второй космической и тем самым получают возможность преодолеть силы земного притяжения. Одновременное образование и улетучивание Гелий приводят к тому, что концентрация его в атмосфере практически постоянна.

Изотоп 3 Не, в частности, образуется в атмосфере при β-распаде тяжелого изотопа водорода - трития (Т), возникающего, в свою очередь, при взаимодействии нейтронов космического излучения с азотом воздуха:

14 7 N + 3 0 n → 12 6 C + 3 1 T.

Ядра атома 4 Не (состоящие из 2 протонов и 2 нейтронов), называется альфа-частицами или гелионами,- самые устойчивые среди составных ядер. Энергия связи нуклонов (протонов и нейтронов) в 4 He имеет максимальное по сравнению с ядрами других элементов значение (28,2937 Мэв); поэтому образование ядер 4 He из ядер водорода (протонов) 1 Н сопровождается выделением огромного количества энергии. Считают, что эта ядерная реакция:

4 1 H = 4 He + 2β + + 2n

[одновременно с 4 He образуются два позитрона (β +) и два нейтрино (ν)] служит основным источником энергии Солнца и других схожих с ним звезд. Благодаря этому процессу и накапливаются весьма значительные запасы Гелия во Вселенной.

Физические свойства Гелия. При нормальных условиях Гелий - одноатомный газ без цвета и запаха. Плотность 0,17846 г/л, t кип -268,93°С, t пл -272,2°С. Теплопроводность (при 0°С) 143,8·10 -3 Вт/(см·К) . Радиус атома Гелия, определенный различными методами, составляет от 0,85 до 1,33 Å. В 1 л воды при 20°С растворяется около 8,8 мл Гелия. Энергия первичной ионизации Гелия больше, чем у любого другого элемента, - 39,38·10 -13 Дж (24,58 эв); сродством к электрону Гелий не обладает. Жидкий Гелий, состоящий только из 4 He, проявляет ряд уникальных свойств.

Химические свойства Гелия. До настоящего времени попытки получить устойчивые химические соединения Гелия оканчивались неудачами.

Получение Гелия. В промышленности Гелий получают из гелийсодержащих природных газов (в настоящее время эксплуатируются главным образом месторождения, содержащие > 0,1% Гелия). От других газов Гелий отделяют методом глубокого охлаждения, используя то, что он сжижается труднее всех остальных газов.

Применение Гелия. Благодаря инертности Гелий широко применяют для создания защитной атмосферы при плавке, резке и сварке активных металлов. Гелий менее электропроводен, чем другой инертный газ - аргон, и поэтому электрическая дуга в атмосфере Гелия дает более высокие температуры, что значительно повышает скорость дуговой сварки. Благодаря небольшой плотности в сочетании с негорючестью Гелий применяют для наполнения стратостатов. Высокая теплопроводность Гелия, его химические инертность и крайне малая способность вступать в ядерную реакцию с нейтронами позволяют использовать Гелий для охлаждения атомных реакторов. Жидкий Гелий- самая холодная жидкость на Земле, служит хладагентом при проведении различных научных исследований. На определении содержания Гелия в радиоактивных минералах основан один из методов определения их абсолютного возраста. Благодаря тому что Гелий очень плохо растворим в крови, его используют как составную часть искусственного воздуха, подаваемого для дыхания водолазам (замена азота на Гелий предотвращает появление кессонной болезни). Изучаются возможности применения Гелия и в атмосфере кабины космического корабля.

Гелий жидкий. Относительно слабое взаимодействие атомов Гелий приводит к тому, что он остается газообразным до более низких температур, чем любой другой газ. Максимальная температура, ниже которой он может быть сжижен (его критическая температура Т к), равна 5,20 К. Жидкий Гелий - единственная незамерзающая жидкость: при нормальном давлении Гелий остается жидким при сколь угодно низких температурах и затвердевает лишь при давлениях, превышающих 2,5 Мн/м 2 (25 ат).

Гелий

ГЕ́ЛИЙ -я; м. [от греч. hēlios - солнце]. Химический элемент (He), не имеющий запаха химически инертный газ, самый лёгкий после водорода.

Ге́лиевый, -ая, -ое. Г-ое ядро.

Ге́лий

(лат. Helium), химический элемент VIII группы периодической системы, относится к благородным газам; без цвета и запаха, плотность 0,178 г/л. Сжижается труднее всех известных газов (при -268,93ºC); единственное вещество, которое не отвердевает при нормальном давлении, как бы глубоко его ни охлаждали. Жидкий гелий - квантовая жидкость, обладающая сверхтекучестью ниже 2,17ºК (-270,98ºC). В небольшом количестве гелий содержится в воздухе и земной коре, где он постоянно образуется при распаде урана и других α-радиоактивных элементов (α-частицы - это ядра атомов гелия). Значительно более распространён гелий во Вселенной, например на Солнце, где он впервые был открыт (отсюда название: от греч. hēlios - Солнце). Получают гелий из природных газов. Применяют в криогенной технике, для создания инертных сред, в аэронавтике (для заполнения стратостатов, воздушных шаров и др.).

ГЕЛИЙ

ГЕ́ЛИЙ (лат. Helium), He (читается «гелий»), химический элемент с атомным номером 2, атомная масса 4,002602. Относится к группе инертных, или благородных, газов (группа VIIIA периодической системы), находится в 1-м периоде.
Природный гелий состоит из двух стабильных нуклидов: 3 Не (0,00013% по объему) и 4 Не. Почти полное преобладание гелия-4 связано с образованием ядер этого нуклида при -радиоактивном распаде урана, тория, радия и других атомов, происходившем в течение длительной истории Земли.
Радиус нейтрального атома гелия 0,122 нм. Электронная конфигурация нейтрального невозбужденного атома 1s 2 . Энергии последовательной ионизации нейтрального атома равны, соответственно, 24,587 и 54,416 эВ (у атома гелия самая высокая среди нейтральных атомов всех элементов энергия отрыва первого электрона).
Простое вещество гелий - легкий одноатомный газ без цвета, вкуса, запаха.
История открытия
Открытие гелия началось с 1868, когда при наблюдении солнечного затмения астрономы француз П. Ж. Жансен (см. ЖАНСЕН Пьер Жюль Сезар) и англичанин Д. Н. Локьер (см. ЛОКЬЕР Джозеф Норман) независимо друг от друга обнаружили в спектре солнечной короны (см. СОЛНЕЧНАЯ КОРОНА) желтую линию (она получила название D 3 -линии), которую нельзя было приписать ни одному из известных в то время элементов. В 1871 Локьер объяснил ее происхождение присутствием на Солнце нового элемента. В 1895 англичанин У. Рамзай (см. РАМЗАЙ Уильям) выделил из природной радиоактивной руды клевеита газ, в спектре которого присутствовала та же D 3 -линия. Новому элементу Локьер дал имя, отражающее историю его открытия (греч. Helios-солнце). Поскольку Локьер полагал, что обнаруженный элемент - металл, он использовал в латинском названии элемента окончание «lim» (соответствует русскому окончанию «ий»), которое обычно употребляется в названии металлов. Таким образом, гелий задолго до своего открытия на Земле получил имя, которое окончанием отличает его от названий остальных инертных газов.
Нахождение в природе
В атмосферном воздухе содержание гелия очень мало и составляет около 5,27·10 -4 % по объему. В земной коре его 0,8·10 -6 %, в морской воде - 4·10 -10 %. Источником гелия служат нефти и гелионосные природные газы, в которых содержание гелия достигает 2-3%, а в редких случаях и 8-10% по объему. Зато в космосе гелий - второй по распространенности элемент (после водорода): на его долю приходится 23% космической массы.
Получение
Технология получения гелия очень сложна: его выделяют из природных гелионосных газов, пользуясь методом глубокого охлаждения. Месторождения таких газов имеются в России, США, Канаде и ЮАР. Гелий содержится также в некоторых минералах (монаците, торианите и других), при этом из 1 кг минерала при нагревании можно выделить до 10 л гелия.
Физические свойства
Гелий - легкий негорючий газ, плотность газообразного гелия при нормальных условиях 0,178 кг/м 3 (меньше только у газа водорода). Температура кипения гелия (при нормальном давлении) около 4,2К (или –268,93 °C, это - самая низкая температура кипения).
При нормальном давлении жидкий гелий не удается превратить в твердое вещество даже при температурах, близких к абсолютному нулю (0К). При давлении около 3,76 МПа температура плавления гелия 2,0К. Наименьшее давление, при котором наблюдается переход жидкого гелия в твердое состояние - 2,5МПа (25 ат), температура плавления гелия при этом около 1,1 К (–272,1 °C).
В 100 мл воды при 20 °C растворяется 0,86 мл гелия, в органических растворителях его растворимость еще меньше. Легкие молекулы гелия хорошо проходят (диффундируют) через различные материалы (пластмассы, стекло, некоторые металлы).
Для жидкого гелия-4, охлажденного ниже –270,97 °C, наблюдается ряд необычных эффектов, что дает основание рассматривать эту жидкость как особую, так называемую квантовую, жидкость. Эту жидкость обычно обозначают как гелий-II в отличие от жидкого гелия-I - жидкости, существующей при чуть более высоких температурах. График изменения теплоемкости жидкого гелия с изменением температуры напоминает греческую букву лямбда (l). Температура перехода гелия-I в гелий-II 2,186 К. Эту температуру часто называют l-точкой.
Жидкий гелий-II способен быстро проникать через мельчайшие отверстия и капилляры, не обнаруживая при этом вязкости (так называемая сверхтекучесть (см. СВЕРХТЕКУЧЕСТЬ) жидкого гелия-II). Кроме того, пленки гелия-II быстро перемещаются по поверхности твердых тел, в результате чего жидкость быстро покидает тот сосуд, в который она была помещена. Это свойство гелия-II называют сверхползучестью. Сверхтекучесть гелия-II открыта в 1938 советским физиком П. Л. Капицей (см. КАПИЦА Петр Леонидович) (Нобелевская премия по физике, 1978). Объяснение уникальным свойствам гелия-II дано другим советским физиком Л. Д. Ландау (см. ЛАНДАУ Лев Давидович) в 1941-1944 (Нобелевская премия по физике, 1962).
Никаких химических соединений гелий не образует. Правда, в разреженном ионизированном гелии удается обнаружить достаточно устойчивые двухатомные ионы Не 2 + .
Применение
Гелий используют для создания инертной и защитной атмосферы при сварке, резке и плавке металлов, при перекачивании ракетного топлива, для заполнения дирижаблей и аэростатов, как компонент среды гелиевых лазеров. Жидкий гелий, самая холодная жидкость на Земле, - уникальный хладагент в экспериментальной физике, позволяющий использовать сверхнизкие температуры в научных исследованиях (например, при изучении электрической сверхпроводимости (см. СВЕРХПРОВОДИМОСТЬ) ). Благодаря тому, что гелий очень плохо растворим в крови, его используют как составную часть искусственного воздуха, подаваемого для дыхания водолазам. Замена азота на гелий предотвращает кессонную болезнь (см. КЕССОННАЯ БОЛЕЗНЬ) (при вдыхании обычного воздуха азот под повышенным давлением растворяется в крови, а затем выделяется из нее в виде пузырьков, закупоривающих мелкие сосуды).


Энциклопедический словарь . 2009 .

Синонимы :

Смотреть что такое "Гелий" в других словарях:

    - (лат. Helium) Не, химический элемент VIII группы периодической системы, атомный номер 2, атомная масса 4,002602, относится к благородным газам; без цвета и запаха, плотность 0,178 г/л. Сжижается труднее всех известных газов (при 268,93 .С);… … Большой Энциклопедический словарь

    - (греч., от helyos солнце). Элементарное тело, открытое в солнечном спектре и имеющееся на земле в некоторых редких минералах; в ничтожном количестве входит в состав воздуха. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н … Словарь иностранных слов русского языка

    - (символ Не), газообразный неметаллический элемент, БЛАГОРОДНЫЙ ГАЗ, открытый в 1868 г. Впервые получили из минерала клевита (разновидности уранита) в 1895 г. В настоящее время основным источником его является природный газ. Содержится также в… … Научно-технический энциклопедический словарь

    Я, муж. , стар. Елий, я.Отч.: Гелиевич, Гелиевна.Производные: Геля (Гела); Еля.Происхождение: (От греч. hēlios солнце.)Именины: 27 июля Словарь личных имён. Гелий См. Эллий. День Ангела. Справоч … Словарь личных имен

    ГЕЛИЙ - хим. элемент, символ Не (лат. Helium), ат. н. 2, ат. м. 4,002, относится к инертным (благородным) газам; без цвета и запаха, плотность 0,178 кг/м3. В обычных условиях Г. одноатомный газ, атом которого состоит из ядра и двух электронов; образуется … Большая политехническая энциклопедия

    - (Helium), He, химический элемент VIII группы периодической системы, атомный номер 2, атомная масса 4,002602; относится к благородным газам; самое низкокипящее вещество (tкип 268,93шC), единственное не отвердевающее при нормальном давлении;… … Современная энциклопедия

    Хим. элемент восьмой гр. периодической системы, порядковый номер 2; инертный газ с ат. в. 4,003. Состоит из двух стабильных изотопов Не4 и Не3. Содер. их непостоянно и зависит от источника образования, но тяжелый изотоп всегда преобладает. В… … Геологическая энциклопедия

    Гелий - (Helium), He, химический элемент VIII группы периодической системы, атомный номер 2, атомная масса 4,002602; относится к благородным газам; самое низкокипящее вещество (tкип 268,93°C), единственное не отвердевающее при нормальном давлении;… … Иллюстрированный энциклопедический словарь

    Солнечный Словарь русских синонимов. гелий сущ., кол во синонимов: 4 газ (55) имя (1104) … Словарь синонимов



Последние материалы раздела:

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...