Решение уравнения шредингера для атома водорода. Уравнение Шредингера для атома водорода

4.4.1. Гипотеза де Бройля

Важным этапом в создании квантовой механики явилось обнаружение волновых свойств микрочастиц. Идея о волновых свойствах была первоначально высказана как гипотеза французским физиком Луи де Бройлем.

В физике в течение многих лет господствовала теория, согласно которой свет есть электромагнитная волна. Однако после работ Планка (тепловое излучение), Эйнштейна (фотоэффект) и других стало очевидным, что свет обладает корпускулярными свойствами.

Чтобы объяснить некоторые физические явления, необходимо рассматривать свет как поток частиц-фотонов. Корпускулярные свойства света не отвергают, а дополняют его волновые свойства.

Итак, фотон-элементарная частица света, обладающая волновыми свойствами.

Формула для импульса фотона

. (4.4.3)

По де Бройлю, движение частицы, например, электрона, подобно волновому процессу с длиной волны λ , определяемой формулой (4.4.3). Эти волны называют волнами де Бройля . Следовательно, частицы (электроны, нейтроны, протоны, ионы, атомы, молекулы) могут проявлять дифракционные свойства.

К.Дэвиссон и Л.Джермер впервые наблюдали дифракцию электронов на монокристалле никеля.

Может возникнуть вопрос: что происходит с отдельными частицами, как образуются максимумы и минимумы при дифракции отдельных частиц?

Опыты по дифракции пучков электронов очень малой интенсивности, то есть как бы отдельных частиц, показали, что при этом электрон не "размазывается" по разным направлениям, а ведет себя как целая частица. Однако вероятность отклонения электрона по отдельным направлениям в результате взаимодействия с объектом дифракции различная. Наиболее вероятно попадание электронов в те места, которые по расчету соответствуют максимумам дифракции, менее вероятно их попадание в места минимумов. Таким образом, волновые свойства присущи не только коллективу электронов, но и каждому электрону в отдельности.

4.4.2. Волновая функция и ее физический смысл

Так как с микрочастицей сопоставляют волновой процесс, который соответствует ее движению, то состояние частиц в квантовой механике описывается волновой функцией, зависящей от координат и времени: .

Если силовое поле, действующее на частицу, является стационарным, то есть не зависящим от времени, то ψ-функцию можно представить в виде произведения двух сомножителей, один из которых зависит от времени, а другой от координат:

Отсюда следует физический смысл волновой функции:

4.4.3. Соотношение неопределенностей

Одним из важных положений квантовой механики являются соотношения неопределенностей, предложенные В.Гейзенбергом.

Пусть одновременно измеряют положение и импульс частицы, при этом неточности в определениях абсциссы и проекции импульса на ось абсцисс равны соответственно Δx и Δр x .

В классической физике нет каких-либо ограничений, запрещающих с любой степенью точности одновременно измерить как одну, так и другую величину, то есть Δx→0 и Δр x→ 0.

В квантовой механике положение принципиально иное: Δx и Δр x , соответствующие одновременному определению x и р x , связаны зависимостью

Формулы (4.4.8), (4.4.9) называют соотношениями неопределенностей .

Поясним их одним модельным экспериментом.

При изучении явления дифракции было обращено внимание на то, что уменьшение ширины щели при дифракции приводит к увеличению ширины центрального максимума. Аналогичное явление будет и при дифракции электронов на щели в модельном опыте. Уменьшение ширины щели означает уменьшение Δ x (рис. 4.4.1), это приводит к большему "размазыванию" пучка электронов, то есть к большей неопределенности импульса и скорости частиц.


Рис. 4.4.1.Пояснение к соотношению неопределенности.

Соотношение неопределенностей можно представить в виде

, (4.4.10)

где ΔE - неопределенность энергии некоторого состояния системы; Δt -промежуток времени, в точение которого оно существует. Соотношение (4.4.10) означает, что чем меньше время существования какого-либо состояния системы, тем более неопределенно его значение энергии. Энергетические уровни Е 1 , Е 2 и т.д. имеют некоторую ширину (рис.4.4.2)), зависящую от времени пребывания системы в состоянии, соответствующем этому уровню.


Рис. 4.4.2.Энергетические уровни Е 1 , Е 2 и т.д. имеют некоторую ширину.

"Размытость" уровней приводит к неопределенности энергии ΔE излучаемого фотона и его частоты Δν при переходе системы с одного энергетического уровня на другой:

,

где m- масса частицы; ; Е и Е n -ее полная и потенциальная энергии (потенциальная энергия определяется силовым полем, в котором находится частица, и для стационарного случая не зависит от времени)

Если частица перемещается только вдоль некоторой линии, например вдоль оси ОХ (одномерный случай), то уравнение Шредингера существенно упрощается и принимает вид

(4.4.13)

Одним из наиболее простых примеров на использование уравнения Шредингера является решение задачи о движении частицы в одномерной потенциальной яме.

4.4.5. Применение уравнения Шредингера к атому водорода. Квантовые числа

Описание состояний атомов и молекул с помощью уравнения Шредингера является достаточно сложной задачей. Наиболее просто она решается для одного электрона, находящегося в поле ядра. Такие системы соответствуют атому водорода и водородоподобным ионам (однократно ионизированный атом гелия, двукратно ионизированный атом лития и т.п.). Однако и в этом случае решение задачи является сложным, поэтому ограничимся лишь качественным изложением вопроса.

Прежде всего в уравнение Шредингера (4.4.12) следует подставить потенциальную энергию, которая для двух взаимодействующих точечных зарядов - e (электрон) и Ze (ядро), - находящихся на расстоянии r в вакууме, выражается следующим образом:

Это выражение является решением уравнения Шредингера и полностью совпадает с соответствующей формулой теории Бора (4.2.30)

На рис.4.4.3 показаны уровни возможных значений полной энергии атома водорода (Е 1 , Е 2 , Е 3 и т.д.) и график зависимости потенциальной энергии Е n от расстояния r между электроном и ядром. С возрастанием главного квантового числа n увеличивается r (см.4.2.26), а полная (4.4.15) и потенциальная энергии стремятся к нулю. Кинетическая энергия также стремится к нулю. Заштрихованная область (Е>0) соответствует состоянию свободного электрона.


Рис. 4.4.3. Показаны уровни возможных значений полной энергии атома водорода
и график зависимости потенциальной энергии от расстояния r между электроном и ядром.

Второе квантовое число - орбитальное l , которое при данном n может принимать значения 0, 1, 2, …., n-1. Это число характеризует орбитальный момент импульса L i электрона относительно ядра:

Четвертое квантовое число - спиновое m s . Оно может принимать только два значения (±1/2) и характеризует возможные значения проекции спина электрона:

.(4.4.18)

Состояние электрона в атоме с заданными n и l обозначают следующим образом: 1s, 2s, 2p, 3s и т.д. Здесь цифра указывает значение главного квантового числа, а буква - орбитальное квантовое число: символам s, p, d, f, соответствуют значения l=0, 1, 2. 3 и т.д.

  • В декартовых координатах каждая прямая определяется уравнением первой степени с двумя переменными и обратно: каждое уравнение первой степени
  • Внутреннее трение (вязкость) жидкости. Уравнение Ньютона
  • Волновое уравнение и его решение. Физический смысл волнового уравнения. Скорость распространения волн в различных средах.
  • Временное и стационарное уравнение Шредингера. Решения.
  • Данное уравнение имеет следующий вид:

    Или в сферических координатах:

    представим волновую функцию в виде произведения радиальной и угловой частей и подставим в уравнение (II.99)

    (II.100)

    Приравняем левую и правую часть уравнения (II.100) одной и той же величине – . Получим два уравнения – одно для радиальной части и другое для угловой части:

    (II.100а )

    (II.100б )

    полагаем, что и тогда уравнение (II.100а ) такое же, как для жесткого ротатора. Таким образом, имеем и .

    решение уравнения (II.100б ) аналогично решению уравнения для гармонического осциллятора. Энергия n-го уровня

    , n=1,2,3… … (II.101)

    a 0 – радиус первой боровской орбиты, a 0 = 0,529177 Å.

    Сферические гармоники или угловые части выражаются, как и для жесткого ротатора через присоединенный полином Лежандра. Радиальные функции выражаются через функции Лагерра . Эти функции для функции имеют вид:

    Таким образом, мы имеем решение стационарного уравнения Шредингера для атома водорода в виде произведения угловой и радиальной частей, которые принято называть атомными орбиталями или АО. Они записываются как функции трех переменных с тремя индексами - АО.

    n – главное квантовое число и оно определяет энергию электрона

    l – орбитальное квантовое число и оно определяет форму атомной орбитали

    m – магнитное квантовое число и оно определяет в пространстве направление атомной орбитали

    (II.103)

    Волновые функции атома водорода представляют собой основные структурные единицы при построении молекулярных волновых функций. При этом важны даже не сами водородные функции, а функции родственного типа для так называемых водородоподобных атомов, которые мы и рассмотрим подробнее на конкретных примерах. Но прежде определим, какие же атомы называются водородоподобными.

    Водородоподобные атомы – это системы, состоящие из ядра с Z протонами и одного электрона. То есть это атомы с зарядом [(Z-1)e] + .

    Напишем несколько функций для водородоподобных атомов в явном виде. Сначала напишем их для радиальной части для нескольких значений l и m

    , (II.104)

    где – безразмерный параметр, , а первый и второй индексы при R обозначают l и m , соответственно.

    Максимальное количество орбиталей на энергетическом уровне или кратность вырождения определяется по формуле .

    Угловые части АО выглядят следующим образом:

    p – AO (II.105)

    d – AO

    Неудобством таких угловых функций является то, что среди них встречаются комплексные функции, которые нельзя изобразить в действительном пространстве. Однако из них можно получить удобные действительные функции – атомные орбитали, составляя линейные комбинации сферических гармоник с одинаковым квантовым числом l и одинаковым значением m .

    Например, рассмотрим линейную комбинацию:

    (II.106)

    Подставим последние две формулы в выражение для p x :

    Аналогичным способом можно построить две другие атомные орбитали с l = 1 , обозначения которых также понятны:

    (II.107)

    (II.108)

    Так же можно перейти от комплексных угловых функций для n=2 - , , к действительным АО, обозначаемым как , соответственно.

    Теперь вспомним, что атомные орбитали получаются в результате перемножения угловой и радиальной частей. И выпишем несколько нормированных волновых функций водородоподобного атома:

    В химических приложениях часто используют графическое изображение волновых функций, причем, как правило, отдельно изображаются радиальная и угловая части. Выделяют только ту часть, которая зависит только от угловых переменных и . Она имеет смысл полного выражения для АО, в котором условно принимают, что АО является произведением некоторой радиальной функции и определенной функции, зависящей от углов и . Например, для 2pz атомной орбитали эта функция имеет следующий вид: . Ее в учебниках химии изображают в виде гантели, вытянутой вдоль оси Оz, как это показано на Рис. 6а . На Рис.6 б и в показаны 2py и 2px атомные орбитали.

    Рис.6. Электронные облака p – орбиталей: а -2p z - АО, б -2p y - АО, в -2p x - АО.

    Самым замечательным успехом в истории квантовой механики было объяснение всех деталей спектров простейших атомов, а также периодичностей, обнаруженных в таблице химических элементов. В этой главе в нашем курсе квантовой механики мы наконец-то подойдем к этому важнейшему достижению и расскажем об объяснении спектра атомов водорода. Кроме того, здесь мы расскажем и о качественном объяснении таинственных свойств химических элементов. Для этого мы подробно изучим поведение электрона в атоме водорода: в первую очередь мы рассчитаем его распределения в пространстве, следуя тем представлениям, которые были развиты в гл. 14.

    Для полного описания атома водорода следовало бы учесть движения обеих частиц - как протона, так и электрона. В квантовой механике в этой задаче следуют классической идее об описании движения каждой из частиц по отношению к их центру тяжести. Однако мы не будем этого делать. Мы просто используем приближение, в котором протон считается очень тяжелым, настолько тяжелым, что он как бы закреплен в центре атома.

    Мы сделаем еще и другое приближение: забудем, что у электрона имеется спин и что его надлежит описывать законами релятивистской механики. Это потребует внесения небольших поправок в наши выкладки, поскольку мы будем пользоваться нерелятивистским уравнением Шредингера и пренебрежем магнитными эффектами. Небольшие магнитные эффекты появляются из-за того, что протон с точки зрения электрона есть циркулирующий по кругу заряд, который создает магнитное поле. В этом поле энергия электрона будет различна, смотря по тому, направлен ли его спин вверх или вниз по полю. Энергия атома должна немного сдвинуться относительно той величины, которую мы вычислим. Но мы пренебрежем этим слабым сдвигом энергии, т. е. вообразим, что электрон в точности подобен волчку, движущемуся в пространстве по кругу и сохраняющему все время одинаковое направление спина. Поскольку речь будет идти о свободном атоме в пространстве, полный момент количества движения будет сохраняться. В нашем приближении будет считаться, что момент количества движения, вызываемый спином электрона, остается неизменным, так что оставшийся момент количества движения атома (то, что обычно называют «орбитальным» моментом количества движения) тоже не будет меняться. В очень хорошем приближении можно считать, что электрон движется в атоме водорода как частица без спина - его орбитальный момент количества движения постоянен.

    В этих приближениях амплитуда того, что электрон будет обнаружен в том или ином месте пространства, может быть представлена как функция положения электрона в пространстве и времени. Обозначим амплитуду того, что электрон будет обнаружен в точке в момент через . Согласно квантовой механике, скорость изменения этой амплитуды со временем дается гамильтоновым оператором, действующим на ту же функцию. Из гл. 14 мы знаем, что

    . (17.2)

    Здесь - масса электрона, а - потенциальная энергия электрона в электростатическом поле протона. Считая на больших удалениях от протона , можно написать

    Волновая функция должна тогда удовлетворять уравнению

    . (17.3)

    Мы хотим найти состояния с определенной энергией, поэтому попробуем поискать решения, которые бы имели вид

    . (17.4)

    Тогда функция должна быть решением уравнения

    , (17.5)

    где - некоторое постоянное число (энергия атома).

    Раз потенциальная энергия зависит только от радиуса, то это уравнение лучше решать в полярных координатах. Лапласиан в прямоугольных координатах определялся так:

    .

    Вместо этого мы хотим воспользоваться координатами , , , изображенными на фиг. 17.1. Они связаны с , , формулами точки .

    Уравнение Шредингера для атома водорода

    Показал, что электрон может вращаться вокруг ядра не по любым, а лишь по определенным квантовым орбитам

    · показал, что всякое излучение либо поглощение энергии атомом связано с переходом между двумя стационарными состояниями и происходит дискретно с выделением или поглощением планковских квантов

    Ввел понятие главного квантового числа для характеристики электрона. Рассчитал спектр атома водорода, показав полное совпадение расчетных данных с эмпирическими. Заложил (1921 г.) основы первой физической теории Периодической системы элементов, в которой связал периодичность свойств элементов с формированием электронных конфигураций атомов по мере увеличения заряда ядра. Обосновал подразделение групп периодической системы на главные и побочные. Впервые объяснил подобие свойств редкоземельных элементов. Внес значительный вклад в ядерную физику. Развил (1936 г.) теорию составного ядра и теории деления ядер (1939 г.). Член многих академий наук и научных обществ. Иностранный член АН СССР (с 1929 г.). Нобелевская премия по физике (1922 г.).

    ЭЙНШТЕЙН (Einstein) Альберт (1879-1955), физик-теоретик, один из основателей совр. физики, ин.ч.-к. РАН (1922) и ин. поч. ч. АН СССР (1926). Род.в Германии, с 1893 жил в Швейцарии, с 1914 в Германии, в 1933 эмигрировал в США. Создал частную (1905) и общую (1907-16) теории относительности. Автор основополагающих тр. по квантовой теории света: ввел понятие фотона (1905), установил законы фотоэффекта, осн. закон фотохимии (закон Э.), предсказал (1917) индуцированное излучение. Развил статистич. теорию броуновского движения, заложив основы теории флуктуаций, создал квантовую статистику Бозе - Э. С 1933 работал над проблемами космологии и единой теории поля. В 30-е гг. выступал против фашизма, войны, в 40-е - против применения ядерного оружия. В 1940 подписал письмо президенту США, об опасности создания ядерного оружия в Германии, к-рое стимулировало амер. ядерные исследования.Нобелевская премия (1921), за тр. по теоретич. физике, особенно за открытие законов фотоэффекта

    Луи де БРОЙЛЬ (Broglie) (15 августа 1892 г. - 19 марта 1987 г.)

    Его отец носил титул герцога. Выросший в утонченной и привилегированной среде французской аристократии, юноша еще до поступления в лицей в Париже был увлечен различными науками. После периода интенсивных занятий он в 1913 г. получил ученую степень по физике. В Парижском университете.
    Де Бройль первым понял, что если волны могут вести себя как частицы, то и частицы могут вести себя как волны. Он применил теорию Эйнштейна - Бора о дуализме волна-частица к материальным объектам.

    В 1924 г. де Бройль представил свою работу "Исследования по квантовой теории" в качестве докторской диссертации. Его оппоненты и члены ученого совета были поражены, но настроены весьма скептически. Они рассматривали идеи де Бройля как теоретические измышления, лишенные эксперименталь-ной основы. Однако по настоянию Эйнштейна докторская степень ему все же была присуждена. На Эйнштейна работа де Бройля произвела большое впечатление, и он советовал многим физикам тщательно изучить ее. Эрвин Шредингер последовал совету Эйнштейна и положил идеи де Бройля в основу волновой механики, обобщившей квантовую теорию. В 1927 г. волновое поведение материи получило экспериментальное подтверждение.В 1928 г. он был назначен профессором теоретической физики Парижского университета.
    В 1929 г. "за открытие волновой природы электронов " де Бройль был удостоен Нобелевской премии по физике. Представляя лауреата на церемонии награждения, член Шведской королевской академии наук К.В. Озеен заметил: "Исходя из предположения о том, что свет есть одновременно и волновое движение, и поток корпускул [частиц], де Бройль открыл совершенно новый аспект природы материи, о котором ранее никто не подозревал... Блестящая догадка де Бройля разрешила давний спор, установив, что не существует двух миров, один - света и волн, другой - материи и корпускул. Есть только один общий мир ".
    В 1933 г. де Бройль был избран членом Французской академии наук, а в 1942 г. стал ее постоянным секретарем.

    Де Бройль никогда не состоял в браке. Он любил совершать пешие прогулки, читать, предаваться размышлениям и играть в шахматы.

    Вернер ГЕЙЗЕНБЕРГ (Heisenberg) (5.XII. 1901 - 1.II. 1976)

    Немецкий физик Вернер-Карл Гейзенберг родился в Дуйсбурге в семье Августа Гейзенберга, профессора древнегреческого языка Мюнхенского университета.

    В 1920 г. он поступил в Мюнхенский универ-ситет, где изучал физику под руководством знаменитого Арнольда Зоммерфельда.
    Гейзенберг был выдающимся студентом и уже в 1923 г. защитил докторскую диссерта-цию. Она была посвящена некоторым аспектам квантовой теории. Наибольший интерес у Гейзенберга вызывалинерешен-ные проблемы строения атома и все возраставшее несоответствие модели, предложенной Бором, эксперименталь-ным и теоретическим данным. В 1925 г после приступа сенной лихорадки в порыве вдохновения увидел совершенно новый подход, позволяющий применить квантовую теорию к разрешению всех трудностей в модели Бора.
    В 1927 г. Гейзенберг стал профессором теоретической физики Лейпцигского университета. В том же году он опубликовал работу, содержащую формули-ровкупринципа неопределенности . Даже теоретически электрону нельзя приписать одновременно абсолютно точно известную пространственную координату и абсолютно точно известную скорость.

    В 1933 г. Гейзенбергу была вручена Нобелевская премия по физике 1932 г. В 1941 г был назначен профессором физики Берлинского университета и директором Физического института. Хотя он не был сторонником нацист-ского режима, он, тем не менее возглавил германский проект по атомным исследованиям. Гейзенберг надеялся получить ядерную энергию, но неком-петентность правительства, его недальновидность, создали настолько серьезные препятствия на пути исследований, что участники германского атомного проекта не смогли построить даже ядерный реактор.
    После окончания войны Гейзенберг в числе других немецких физиков был взят в плен и интернирован в Великобританию. В Германию он вернулся в 1946 г. и занял пост профессора физики Геттингенского университета и директора Института Макса Планка. Исполняя эти высокие обязанности, Гейзенберг участвовал в программе получения ядерной энергии. Он был среди тех ученых, которые предупреждали мир об опасности ядерной войны.

    Уровни энергии и вид -функций атома водорода. В атоме водорода электростатически взаимодействуют ядро с зарядом и электоон с зарядом -е и массой т. Потенциальную энергию их взаимодействияподставим в уравнение Шредингера (II.8):

    Потенциальное поле, создаваемое взаимодействием электрона и протона, сферически симметрично относительно ядра, как начала координат. Важные квантово-механические характеристики атома можно найти, рассматривая движение электрона в полярной сферической системе координат. Как известно, прямоугольные координаты связаны со сферическими соотношениями:

    Угол, образованный радиусом-вектором г - угол, образованный осью х с проекцией радиус-вектора на плоскость Воспользуемся этими соотношениями и напишем уравнение Шредингера (II.9) в полярных сферических координатах *:

    собой оператор Лапласа"выраженный в сферических полярных координатах.

    Решение этого уравнения сопряжено с большими трудностями. Для упрощения задачи искомую собственную волновую функциюв уравнении (II. 10), называемую атомной орбиталью (АО), представляют в виде произведения трех функций:

    Функция R (г) называется радиальной;- азимутальной,i - широтной.

    Обычно угловая часть волновой функции обозначается. Не приводя подробного решения уравнения 11.10 *, рассмотрим лишь результаты определения радиальной и угловой частей волновой функции F.

    Решением уравнения Шредингера относительно радиальной функции является выражение:-величины,

    называемые полиномами Ляггера, представляют собой решения дифференциального уравнения:причем должно быть положительным целым числом или нулем.

    Так как / целые числа, то

    Решенияугловой функции (так называемые сферические гармоники) удовлетворяют дифференциальному уравнению:

    Для этих функций выполнены периодические граничные условия, которые вытекают из требования неизменности волновой функциипри замене

    Если выразить функцию ¥ в зависимости от радиуса г, то уравнение (11.9) приводится к виду:

    Для этого линейного дифференциального уравнения второго порядка решением является(с точностью до некоторого множителя), где постоянная а подбирается так, чтобы после подстановкив (11.11) получить тождество. Дифференцированиемнайдеми вместе сподставим в (II. 11).

    После сокращения на член е~аг

    Уравнение (11.13) выражает наименьший (основной) уровень энергии в атоме водорода (п = 1). Знак минус означает, что для разведения электрона и протона на бесконечно большое расстояние требуется затрата энергии. Величина совпадает с радиусом аналогичной орбиты в теории Бора.

    Можно показать, что уравнение Шредингера имеет и другие решения, в которых

    энергия уровня,тринимает дискретные значения при п= 2, 3,

    4... . Эти новые уровни энергии свойственны возбужденному атому водорода. Число п, определяющее энергетический уровень электрона, называется главным квантовым числом.

    Отсюда вытекает, что вид волновой функции определяется заданной совокупностью чисел п, I, т. эту функцию означают символомЧтобы различать конкретные орбитали, справа внизу у символа V

    вписывают цифрами 1, 2, 3... значения пи буквами s, р, d, f... значенияI = 0,1,

    12, 3 соответственно. Например, орбиталь с п = 2 и I = 0 записывается орбиталь имеет п = 2, 1-1.

    Таким образом, решение уравнения Шредингера для атома водорода приводит к трем взаимно связанным квантовым числам п = 1, 2, 3, 4, ..., = 0, 1, 2, 3, ...,

    п - 1 (всего п значений для каждого I); т = 0,.±1, ±2, ±3 ±1 (всего 21 + 1

    значений от -I до -И), которые характеризуют уровни энергиии соответствующие им орбитали

    Угловые части волновой функциии р-атомных орбиталей представлены в табл. 1 в зависимости от значений квантовых чисел I и т. Здесь же приведены полные волновые функцииполученные с учетом радиальных частей R (г) для тех же АО.

    Таблица 1 Нормированные волновые функции водородоподобных атомов;

    Квантовые числа, выводимые формально в ходе решения уравнения Шредингера, имеют конкретный физический смысл. Уже говорилось, что главное квантовое число п характеризует возможные уровни электронной энергии атома. Что касается орбитального квантгтого числа /, то теоретический анализ позволяет рассматривать его как величинуорбитального момента количества движения электрона относительно оси г

    Магнитное квантовое число т имеет смысл проекции орбитального момента на некоторое направление. Кактак и его проекция могут принимать лишь дискретные значения, т. е. квантуются. С числом I связывается форма электронного облака, а с числом т - ориентация облака в пространстве. Главное квантовое число п определяет не только энергию, но и размер электронного облака: увеличение п соответствует увеличению энергии и размера облака.

    Квантовые числа п, I, т недостаточны для полной характеристики энергии и состояния электрона в атоме. Изучение атомных спектров, снятых в магнитном поле, показало, что кроме трех степеней свободы движения (г, О и <р) электрон должен иметь еще и четвертую - вращение вокруг собственной оси. Проекция углового момента количества движения электрона на ось г может иметь два значенияи

    которые называются спиновыми квантовыми числами и обозначаются буквой ms.

    Спиновое квантовое число не определяет форму, размер, ориентацию, энергию (при обычных условиях) электронного облака, однако оно имеет важное значение для теории электронной структуры атома, объяснения природы ковалентной связи, парамагнетизма и т. д.



    Последние материалы раздела:

    Важность Патриотического Воспитания Через Детские Песни
    Важность Патриотического Воспитания Через Детские Песни

    Патриотическое воспитание детей является важной частью их общего воспитания и развития. Оно помогает формировать у детей чувство гордости за свою...

    Изменение вида звездного неба в течение суток
    Изменение вида звездного неба в течение суток

    Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

    Развитие критического мышления: технологии и методики
    Развитие критического мышления: технологии и методики

    Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...