Логарифм числа логарифм твору. Формули логарифмів

    Почнемо зі властивості логарифму одиниці. Його формулювання таке: логарифм одиниці дорівнює нулю, тобто, log a 1=0для будь-якого a>0, a≠1. Доказ не викликає складнощів: оскільки a 0 =1 для будь-якого a , що задовольняє зазначеним вище умовам a>0 і a≠1 , то рівність log a 1=0 відразу випливає з визначення логарифму.

    Наведемо приклади застосування розглянутої якості: log 3 1=0 , lg1=0 і .

    Переходимо до наступної властивості: логарифм числа, рівної основи, дорівнює одиниці , тобто, log a a=1при a>0, a≠1. Справді, оскільки a 1 =a для будь-якого a , то за визначенням логарифма log a a = 1 .

    Прикладами використання цієї властивості логарифмів є рівності log 5 5 = 1, log 5,6 5,6 і lne = 1 .

    Наприклад, log 2 2 7 =7 , lg10 -4 =-4 і .

    Логарифм твору двох позитивних чисел x та y дорівнює творулогарифмів цих чисел: log a (x · y) = log a x + log a y, a>0, a≠1. Доведемо властивість логарифму твору. В силу властивостей ступеня a log a x + log a y = log a x · log a y, а так як за основною логарифмічною тотожністю a log a x = x і a log a y = y, то a log a x a log a y = x y. Таким чином, a log a x + log a y = x · y, звідки за визначенням логарифму випливає рівність, що доводиться.

    Покажемо приклади використання властивості логарифму добутку: log 5 (2·3)=log 5 2+log 5 3 .

    Властивість логарифму твору можна узагальнити на твір кінцевого числа n позитивних чисел x 1 , x 2 , …, x n як log a (x 1 · x 2 · ... · x n) = log a x 1 +log a x 2 +…+log a x n . Ця рівність без проблем доводиться.

    Наприклад, натуральний логарифм твору можна замінити сумою трьох натуральних логарифмівчисел 4, e, і.

    Логарифм приватного двох позитивних чисел x та y дорівнює різницілогарифмів цих чисел. Властивості приватного логарифму відповідає формула виду , де a>0 , a≠1 , x і y – деякі позитивні числа. Справедливість цієї формули доводиться як і формула логарифму твору: оскільки , то щодо визначення логарифму .

    Наведемо приклад використання цієї властивості логарифму: .

    Переходимо до властивості логарифму ступеня. Логарифм ступеня дорівнює добутку показника ступеня на логарифм модуля основи цього ступеня. Запишемо цю властивість логарифму ступеня у вигляді формули: log a b p = log a | b |, де a>0 , a≠1 , b та p такі числа, що ступінь b p має сенс і b p >0 .

    Спочатку доведемо цю властивість для позитивних b. Основне логарифмічне тотожність дозволяє нам уявити число b як a log a b тоді b p = (a log a b) p , а отримане вираз в силу властивість ступеня дорівнює a p · log a b . Так ми приходимо до рівності b p = a p · log a b , з якого за визначенням логарифму укладаємо, що log a b p = p · log a b .

    Залишилося довести цю властивість для негативних b. Тут зауважуємо, що вираз log a b p при негативних b має сенс лише при парних показниках ступеня p (оскільки значення ступеня b p має бути більше нуля, інакше логарифм нічого очікувати мати сенсу), а цьому разі b p =|b| p. Тоді b p = | b | p = (a log a | b |) p = a p · log a | b |, Звідки log a b p = p log a | b | .

    Наприклад, і ln(-3) 4 =4·ln|-3|=4·ln3 .

    Із попередньої властивості випливає властивість логарифму з кореня: логарифм кореня n -ого ступеня дорівнює добутку дробу 1/n на логарифм підкореного виразу, тобто, , де a>0, a≠1, n – натуральне число, більше одиниці, b>0.

    Доказ базується на рівності (дивіться ), яка справедлива для будь-яких позитивних b і властивості логарифму ступеня: .

    Ось приклад використання цієї властивості: .

    Тепер доведемо формулу переходу до нової основи логарифмувиду . Для цього достатньо довести справедливість рівності log c b = log a b log c a . Основне логарифмічне тотожність дозволяє нам число b уявити як a log a b тоді log c b = log c a log a b . Залишилося скористатися властивістю логарифму ступеня: log ca log ab = log a b log c a. Так доведено рівність log c b = log a b log ca , а значить, доведено і формулу переходу до нової основи логарифму.

    Покажемо кілька прикладів застосування цієї властивості логарифмів: і .

    Формула переходу до нової основи дозволяє переходити до роботи з логарифмами, що мають «зручну» основу. Наприклад, з її допомогою можна перейти до натуральних або десяткових логарифмів, щоб можна було обчислити значення логарифму таблиці логарифмів. Формула переходу до нової основи логарифму також дозволяє в деяких випадках знаходити значення логарифму, коли відомі значення деяких логарифмів з іншими основами.

    Часто використовується окремий випадокформули початку нової основи логарифма при c=b виду . Звідси видно, що log ab і log ba – . Наприклад, .

    Також часто використовується формула яка зручна при знаходженні значень логарифмів. Для підтвердження своїх слів покажемо, як з її допомогою обчислюється значення логарифму . Маємо . Для доказу формули достатньо скористатися формулою переходу до нової основи логарифму a: .

    Залишилося довести властивості порівняння логарифмів.

    Доведемо, що для будь-яких позитивних чисел b1 і b2, b1 log a b 2 , а за a>1 – нерівність log a b 1

    Нарешті, залишилося довести останню з перерахованих властивостей логарифмів. Обмежимося доказом його першої частини, тобто доведемо, що якщо a 1 >1 , a 2 >1 і a 1 1 справедливо log a 1 b> log a 2 b . Інші твердження цієї властивості логарифмів доводяться за аналогічним принципом.

    Скористаємося методом від неприємного. Припустимо, що за a 1 >1 , a 2 >1 і a 1 1 справедливо log a 1 b≤log a 2 b . За властивостями логарифмів ці нерівності можна переписати як і відповідно, а з них випливає, що log b a 1 ≤ log b a 2 і log b a 1 ≥ log b a 2 відповідно. Тоді за властивостями ступенів з однаковими основами повинні виконуватися рівності b log b a 1 b log b a 2 і b log b a 1 b log b a 2 , тобто, a 1 a 2 . Так ми дійшли суперечності умові a 1

Список літератури.

  • Колмогоров А.М., Абрамов А.М., Дудніцин Ю.П. та ін Алгебра та початку аналізу: Підручник для 10 - 11 класів загальноосвітніх установ.
  • Гусєв В.А., Мордкович А.Г. Математика (посібник для вступників до технікумів).

Одним із елементів алгебри примітивного рівня є логарифм. Назва походить з грецької мови від слова "число" або "ступінь" і означає ступінь, в який необхідно звести число, що знаходиться на підставі, для знаходження підсумкового числа.

Види логарифмів

  • log a b – логарифм числа b на підставі a (a > 0, a ≠ 1, b > 0);
  • lg b – десятковий логарифм (логарифм на підставі 10, a = 10);
  • ln b - натуральний логарифм (логарифм на основі e, a = e).

Як вирішувати логарифми?

Логари́м числа b за основою a є показником ступеня, який вимагає, щоб у число b звели основу а. Отриманий результат вимовляється так: "логарифм b на підставі а". Рішення логарифмічних завдань полягає в тому, що вам необхідно визначити цей ступінь за числами за вказаними числами. Існують деякі основні правила, щоб визначити чи вирішити логарифм, а також перетворити сам запис. Використовуючи їх, здійснюється рішення логарифмічних рівнянь, знаходяться похідні, вирішуються інтеграли та здійснюються багато інших операцій. В основному, рішенням самого логарифму є його спрощений запис. Нижче наведено основні формули та властивості:

Для будь-яких a; a > 0; a ≠ 1 і для будь-яких x; y > 0.

  • a log a b = b – основна логарифмічна тотожність
  • log a 1 = 0
  • log a a = 1
  • log a (x · y) = log a x + log a y
  • log a x / y = log a x - log a y
  • log a 1/x = -log a x
  • log a x p = p log a x
  • log a k x = 1/k · log a x , при k ≠ 0
  • log a x = log a c x c
  • log a x = log b x / log b a – формула переходу до нової основи
  • log a x = 1/log x a


Як вирішувати логарифми – покрокова інструкція рішення

  • Спочатку запишіть необхідне рівняння.

Зверніть увагу: якщо в логарифмі з основи стоїть 10 , запис укорочується, виходить десятковий логарифм. Якщо стоїть натуральне число е, записуємо, скорочуючи до натурального логарифму. Мається на увазі, що результат всіх логарифмів - ступінь, в який зводиться число підстав до отримання числа b.


Безпосередньо рішення і полягає у обчисленні цього ступеня. Перш ніж вирішити вираз із логарифмом, його необхідно спростити за правилом, тобто, користуючись формулами. Основні тотожності ви зможете знайти, повернувшись трохи назад у статті.

Складаючи та віднімаючи логарифми з двома різними числами, але з однаковими підставами, замінюйте одним логарифмом з добутком чи розподілом чисел b та з відповідно. У такому разі можна застосувати формулу переходу до іншої основи (див. вище).

Якщо ви використовуєте вирази для спрощення логарифму, необхідно враховувати деякі обмеження. Тобто: основа логарифму а – лише позитивне число, але з рівне одиниці. Число b, як і а, має бути більшим за нуль.

Є випадки, коли спростивши вираз, ви не зможете обчислити логарифм у числовому вигляді. Буває, що такий вираз не має сенсу, адже багато ступенів – ірраціональні числа. За такої умови залиште рівень числа у вигляді запису логарифму.



Логарифмом числа N на підставі а називається показник ступеня х , в яку потрібно звести а , щоб отримати число N

За умови, що
,
,

З визначення логарифму випливає, що
, тобто.
- ця рівність є основною логарифмічною тотожністю.

Логарифми на підставі 10 називаються десятковими логарифмами. Замість
пишуть
.

Логарифми на підставі e називаються натуральними та позначаються
.

Основні властивості логарифмів.

    Логарифм одиниці за будь-якої підстави дорівнює нулю

    Логарифм добутку дорівнює сумі логарифмів співмножників.

3) Логарифм приватного дорівнює різниці логарифмів


Множник
називається модулем переходу від логарифмів на підставі a до логарифмів на підставі b .

За допомогою властивостей 2-5 часто вдається звести логарифм складного виразу результату простих арифметичних дій над логарифмами.

Наприклад,

Такі перетворення логарифму називаються логарифмуванням. Перетворення зворотні логарифмування називаються потенціюванням.

Розділ 2. Елементи вищої математики.

1. Межі

Межею функції
є кінцеве число А, якщо при прагненні xx 0 для кожного наперед заданого
, знайдеться таке число
, що як тільки
, то
.

Функція, що має межу, відрізняється від нього на нескінченно малу величину:
, де -б.м.в., тобто.
.

приклад. Розглянемо функцію
.

При прагненні
, функція y прагне до нуля:

1.1. Основні теореми про межі.

    Межа постійної величини дорівнює цій постійній величині

.

    Межа суми (різниці) кінцевого числа функцій дорівнює сумі (різниці) меж цих функцій.

    Межа добутку кінцевого числа функцій дорівнює добутку меж цих функцій.

    Межа частки двох функцій дорівнює приватній межі цих функцій, якщо межа знаменника не дорівнює нулю.

Чудові межі

,
, де

1.2. Приклади обчислення меж

Однак не всі межі обчислюються так просто. Найчастіше обчислення межі зводиться до розкриття невизначеності типу: або .

.

2. Похідна функції

Нехай ми маємо функцію
, безперервну на відрізку
.

Аргумент отримав деякий приріст
. Тоді і функція отримає збільшення
.

Значення аргументу відповідає значення функції
.

Значення аргументу
відповідає значення функції.

Отже, .

Знайдемо межу цього відношення при
. Якщо ця межа існує, то вона називається похідною цієї функції.

Визначення 3Виробної даної функції
за аргументом називається межа відношення збільшення функції до збільшення аргументу, коли збільшення аргументу довільним чином прагне до нуля.

Похідна функції
може бути позначена таким чином:

; ; ; .

Визначення 4Операція знаходження похідної від функції називається диференціюванням.

2.1. Механічний сенс похідної.

Розглянемо прямолінійний рух деякого твердого тіла чи матеріальної точки.

Нехай у певний момент часу точка, що рухається
знаходилась на відстані від початкового становища
.

Через деякий проміжок часу
вона перемістилася на відстань
. Ставлення =- Середня швидкість матеріальної точки
. Знайдемо межу цього відношення, враховуючи що
.

Отже визначення миттєвої швидкості руху матеріальної точки зводиться до знаходження похідної від шляху за часом.

2.2. Геометричне значення похідної

Нехай ми маємо графічно задану деяку функцію
.

Мал. 1. Геометричний зміст похідної

Якщо
, то крапка
, буде переміщатися кривою, наближаючись до точки
.

Отже
, тобто. значення похідної за даного значення аргументу чисельно дорівнює тангенсу кута утвореного дотичної в даній точці з позитивним напрямом осі
.

2.3. Таблиця основних формул диференціювання.

Ступінна функція

Показова функція

Логарифмічна функція

Тригонометрична функція

Зворотна тригонометрична функція

2.4. Правила диференціювання.

Похідна від

Похідна суми (різниці) функцій


Похідна робота двох функцій


Похідна приватного двох функцій


2.5. Похідна від складної функції.

Нехай дана функція
така, що її можна подати у вигляді

і
, де змінна є проміжним аргументом, тоді

Похідна складної функції дорівнює добутку похідної цієї функції за проміжним аргументом на похідну проміжного аргументу по x.

Приклад1.

Приклад2.

3. Диференціал функції.

Нехай є
, що диференціюється на деякому відрізку
і нехай у цієї функції є похідна

,

тоді можна записати

(1),

де - нескінченно мала величина,

так як при

Помножуючи всі члени рівності (1) на
маємо:

Де
- Б.М.В. вищого ладу.

Величина
називається диференціалом функції
і позначається

.

3.1. Геометричне значення диференціалу.

Нехай дана функція
.

Рис.2. Геометричний зміст диференціала.

.

Очевидно, що диференціал функції
дорівнює приросту ординати дотичної в цій точці.

3.2. Похідні та диференціали різних порядків.

Якщо є
тоді
називається першою похідною.

Похідна від першої похідної називається похідною другого порядку та записується
.

Похідний n-го порядку від функції
називається похідна (n-1)-го порядку та записується:

.

Диференціал від диференціалу функції називається другим диференціалом чи диференціалом другого порядку.

.

.

3.3 Розв'язання біологічних завдань із застосуванням диференціювання.

Задача1. Дослідження показали, що зростання колонії мікроорганізмів підпорядковується закону
, де N – чисельність мікроорганізмів (у тис.), t -Час (Дні).

б) Чи буде в цей період чисельність колонії збільшуватися чи зменшуватись?

Відповідь. Чисельність колонії збільшуватиметься.

Задача 2. Вода в озері періодично тестується контролю вмісту хвороботворних бактерій. Через t днів після тестування концентрація бактерій визначається співвідношенням

.

Коли в озері настане мінімальна концентрація бактерій і чи можна буде в ньому купатися?

РішенняФункція досягає max або min, коли її похідна дорівнює нулю.

,

Визначимо max чи min буде через 6 днів. Для цього візьмемо другу похідну.


Відповідь: Через 6 днів буде мінімальна концентрація бактерій.

Сьогодні ми поговоримо про формулах логарифміві дамо показові приклади рішення.

Самі собою мають на увазі шаблони рішення відповідно до основних властивостей логарифмів. Перш за все застосовувати формули логарифмів для вирішення нагадаємо для вас, спочатку всі властивості:

Тепер на основі цих формул (властивостей), покажемо приклади вирішення логарифмів.

Приклади розв'язання логарифмів виходячи з формул.

Логарифмпозитивного числа b на підставі a (позначається log a b) - це показник ступеня, в який треба звести a щоб отримати b, при цьому b > 0, a > 0, а 1.

Відповідно до визначення log a b = x, що рівносильно a x = b, тому log a a x = x.

Логарифми, Приклади:

log 28 = 3, т.к. 2 3 = 8

log 7 49 = 2, т.к. 7 2 = 49

log 5 1/5 = -1, т.к. 5 -1 = 1/5

Десятковий логарифм- це звичайний логарифм, на основі якого знаходиться 10. Позначається як lg.

log 10100 = 2, т.к. 10 2 = 100

Натуральний логарифм- також звичайний логарифм логарифм, але з підставою е (е = 2,71828... - ірраціональне число). Позначається як ln.

Формули чи властивості логарифмів бажано запам'ятати, тому що вони знадобляться нам надалі при розв'язанні логарифмів, логарифмічних рівнянь та нерівностей. Давайте ще раз відпрацюємо кожну формулу на прикладах.

  • Основне логарифмічне тотожність
    a log a b = b

    8 2log 8 3 = (8 2log 8 3) 2 = 3 2 = 9

  • Логарифм твору дорівнює сумі логарифмів.
    log a (bc) = log a b + log a c

    log 3 8,1 + log 3 10 = log 3 (8,1 * 10) = log 3 81 = 4

  • Логарифм приватного дорівнює різниці логарифмів
    log a (b/c) = log a b - log a c

    9 log 5 50 / 9 log 5 2 = 9 log 5 50 - log 5 2 = 9 log 5 25 = 9 2 = 81

  • Властивості ступеня логарифмованого числа та основи логарифму

    Показник ступеня логарифмованого числа log a b m = mlog a b

    Показник ступеня основи логарифму log a n b =1/n*log a b

    log a n b m = m/n*log a b,

    якщо m = n, отримаємо log a n b n = log a b

    log 4 9 = log 2 2 3 2 = log 2 3

  • Перехід до нової основи
    log a b = log c b/log c a,

    якщо c = b, отримаємо log b b = 1

    тоді log a b = 1/log b a

    log 0,8 3*log 3 1,25 = log 0,8 3*log 0,8 1,25/log 0,8 3 = log 0,8 1,25 = log 4/5 5/4 = -1

Як бачите, формули логарифмів не такі складні як здаються. Тепер розглянувши приклади розв'язання логарифмів, ми можемо переходити до логарифмічних рівнянь. Приклади розв'язання логарифмічних рівнянь ми докладніше розглянемо у статті: " ". НЕ пропустіть!

Якщо у вас залишилися питання щодо вирішення, пишіть їх у коментарях до статті.

Замітка: вирішили здобути освіту іншого класу навчання за кордоном як варіант розвитку подій.

\(a^(b)=c\) \(\Leftrightarrow\) \(\log_(a)(c)=b\)

Пояснимо простіше. Наприклад, \(\log_(2)(8)\) дорівнює ступеня, в яку треба звести \(2\), щоб отримати \(8\). Звідси відомо, що (log_(2)(8)=3).

Приклади:

\(\log_(5)(25)=2\)

т.к. \(5^(2)=25\)

\(\log_(3)(81)=4\)

т.к. \ (3 ^ (4) = 81 \)

\(\log_(2)\)\(\frac(1)(32)\) \(=-5\)

т.к. \(2^(-5)=\)\(\frac(1)(32)\)

Аргумент та основа логарифму

Будь-який логарифм має таку «анатомію»:

Аргумент логарифму зазвичай пишеться з його рівні, а основа - підрядковим шрифтом ближче до знаку логарифму. А читається цей запис так: «логарифм двадцяти п'яти на підставі п'ять».

Як визначити логарифм?

Щоб обчислити логарифм – потрібно відповісти на запитання: в який ступінь слід звести основу, щоб отримати аргумент?

Наприклад, обчисліть логарифм: а) \(\log_(4)(16)\) б) \(\log_(3)\)\(\frac(1)(3)\) в) \(\log_(\sqrt (5))(1)\) г) \(\log_(\sqrt(7))(\sqrt(7))\) д) \(\log_(3)(\sqrt(3))\)

а) В який ступінь треба звести (4), щоб отримати (16)? Вочевидь у другу. Тому:

\(\log_(4)(16)=2\)

\(\log_(3)\)\(\frac(1)(3)\) \(=-1\)

в) В який ступінь треба звести (sqrt(5)), щоб отримати (1)? А який рівень робить будь-яке число одиницею? Нуль, звичайно!

\(\log_(\sqrt(5))(1)=0\)

г) В який ступінь треба звести \(\sqrt(7)\), щоб отримати \(\sqrt(7)\)? У першу - будь-яке число в першому ступені дорівнює самому собі.

\(\log_(\sqrt(7))(\sqrt(7))=1\)

д) В який ступінь треба звести (3), щоб отримати (sqrt (3))? З ми знаємо, що - це дробовий ступінь, і значить квадратний корінь - це ступінь \(\frac(1)(2)\).

\(\log_(3)(\sqrt(3))=\)\(\frac(1)(2)\)

приклад : Обчислити логарифм \(\log_(4\sqrt(2))(8)\)

Рішення :

\(\log_(4\sqrt(2))(8)=x\)

Нам треба знайти значення логарифму, позначимо його за ікс. Тепер скористаємося визначенням логарифму:
\(\log_(a)(c)=b\) \(\Leftrightarrow\) \(a^(b)=c\)

\((4\sqrt(2))^(x)=8\)

Що пов'язує \(4\sqrt(2)\) і \(8\)? Двійка, тому що і те, і інше число можна уявити двійки:
\(4=2^(2)\) \(\sqrt(2)=2^(\frac(1)(2))\) \(8=2^(3)\)

\(((2^(2)\cdot2^(\frac(1)(2))))^(x)=2^(3)\)

Зліва скористаємось властивостями ступеня: \(a^(m)\cdot a^(n)=a^(m+n)\) та \((a^(m))^(n)=a^(m\cdot n)\)

\(2^(\frac(5)(2)x)=2^(3)\)

Підстави рівні, переходимо до рівності показників

\(\frac(5x)(2)\) \(=3\)


Помножимо обидві частини рівняння на \(\frac(2)(5)\)


Корінь, що вийшов, і є значення логарифму

Відповідь : \(\log_(4\sqrt(2))(8)=1,2\)

Навіщо вигадали логарифм?

Щоб це зрозуміти, розв'яжемо рівняння: \(3^(x)=9\). Просто підберіть \(x\), щоб рівність спрацювала. Звісно, ​​(x=2).

А тепер розв'яжіть рівняння: \(3^(x)=8\).Чому дорівнює ікс? Ось у тому й справа.

Найдогадливіші скажуть: «ікс трохи менше двох». А як точно записати це число? Для відповіді це питання і придумали логарифм. Завдяки йому відповідь тут можна записати як \(x=\log_(3)(8)\).

Хочу наголосити, що \(\log_(3)(8)\), як і будь-який логарифм - це просто число. Так, виглядає незвично, зате коротко. Тому що, якби ми захотіли записати його у вигляді десяткового дробу, воно виглядало б ось так: \(1,892789260714.....\)

приклад : Розв'яжіть рівняння \(4^(5x-4)=10\)

Рішення :

\(4^(5x-4)=10\)

\(4^(5x-4)\) і \(10\) жодної підстави не привести. Значить, тут не обійтися без логарифму.

Скористаємося визначенням логарифму:
\(a^(b)=c\) \(\Leftrightarrow\) \(\log_(a)(c)=b\)

\(\log_(4)(10)=5x-4\)

Дзеркально перевернемо рівняння, щоб ікс був ліворуч

\(5x-4=\log_(4)(10)\)

Перед нами . Перенесемо (4) праворуч.

І не лякайтеся логарифму, ставтеся до нього як до звичайного числа.

\(5x=\log_(4)(10)+4\)

Поділимо рівняння на 5

\(x=\)\(\frac(\log_(4)(10)+4)(5)\)


Ось наш корінь. Так, виглядає незвично, але відповіді не обирають.

Відповідь : \(\frac(\log_(4)(10)+4)(5)\)

Десятковий та натуральний логарифми

Як зазначено у визначенні логарифму, його основою може бути будь-яке позитивне число, крім одиниці ((a>0, a\neq1)). І серед усіх можливих підстав є два такі часто, що для логарифмів з ними придумали особливий короткий запис:

Натуральний логарифм: логарифм, у якого основа - число Ейлера (e) (рівне приблизно (2,7182818 ...)), і записується такий логарифм як (ln (a)).

Тобто, \(\ln(a)\) це те саме, що і \(\log_(e)(a)\)

Десятковий логарифм: логарифм, у якого основа дорівнює 10, записується \(\lg(a)\).

Тобто, \(\lg(a)\) це те саме, що і \(\log_(10)(a)\), де (a) - деяке число.

Основне логарифмічне тотожність

У логарифмів є багато властивостей. Одне з них носить назву «Основна логарифмічна тотожність» і виглядає так:

\(a^(\log_(a)(c))=c\)

Ця властивість випливає безпосередньо з визначення. Подивимося, як саме ця формула з'явилася.

Згадаймо короткий запис визначення логарифму:

якщо \(a^(b)=c\), то \(\log_(a)(c)=b\)

Тобто, \(b\) - це теж саме, що \(\log_(a)(c)\). Тоді ми можемо у формулі \(a^(b)=c\) написати \(\log_(a)(c)\) замість \(b\). Вийшло \(a^(\log_(a)(c))=c\) – основна логарифмічна тотожність.

Інші властивості логарифмів ви можете знайти. З їх допомогою можна спрощувати та обчислювати значення виразів з логарифмами, які «в лоб» порахувати складно.

приклад : Знайдіть значення виразу \(36^(\log_(6)(5))\)

Рішення :

Відповідь : \(25\)

Як записати число у вигляді логарифму?

Як було сказано вище – будь-який логарифм це число. Вірно і зворотне: будь-яке число може бути записане як логарифм. Наприклад, ми знаємо, що \(\log_(2)(4)\) дорівнює двом. Тоді можна замість двійки писати \(\log_(2)(4)\).

Але \(\log_(3)(9)\) теж дорівнює \(2\), значить, також можна записати \(2=\log_(3)(9)\). Аналогічно і з (log_(5)(25)\), і з (log_(9)(81)\), і т.д. Тобто виходить

\(2=\log_(2)(4)=\log_(3)(9)=\log_(4)(16)=\log_(5)(25)=\log_(6)(36)=\ log_(7)(49)...\)

Таким чином, якщо нам потрібно, ми можемо будь-де (хоч у рівнянні, хоч у виразі, хоч у нерівності) записувати двійку як логарифм з будь-якою основою – просто як аргумент пишемо основу в квадраті.

Так само і з трійкою – її можна записати як \(\log_(2)(8)\), або як \(\log_(3)(27)\), або як \(\log_(4)(64) \) ... Тут ми як аргумент пишемо основу в кубі:

\(3=\log_(2)(8)=\log_(3)(27)=\log_(4)(64)=\log_(5)(125)=\log_(6)(216)=\ log_(7)(343)...\)

І з четвіркою:

\(4=\log_(2)(16)=\log_(3)(81)=\log_(4)(256)=\log_(5)(625)=\log_(6)(1296)=\ log_(7)(2401)...\)

І з мінус одиницею:

\(-1=\) \(\log_(2)\)\(\frac(1)(2)\) \(=\) \(\log_(3)\)\(\frac(1)( 3)\) \(=\) \(\log_(4)\)\(\frac(1)(4)\) \(=\) \(\log_(5)\)\(\frac(1) )(5)\) \(=\) \(\log_(6)\)\(\frac(1)(6)\) \(=\) \(\log_(7)\)\(\frac (1)(7)\) \(...\)

І з однієї третьої:

\(\frac(1)(3)\) \(=\log_(2)(\sqrt(2))=\log_(3)(\sqrt(3))=\log_(4)(\sqrt( 4))=\log_(5)(\sqrt(5))=\log_(6)(\sqrt(6))=\log_(7)(\sqrt(7))...\)

Будь-яке число \(a\) може бути представлене як логарифм з основою \(b\): \(a=\log_(b)(b^(a))\)

приклад : Знайдіть значення виразу \(\frac(\log_(2)(14))(1+\log_(2)(7))\)

Рішення :

Відповідь : \(1\)



Останні матеріали розділу:

Федір Ємельяненко розкритикував турнір у грізному за бої дітей Омеляненко висловився про бої в чечні
Федір Ємельяненко розкритикував турнір у грізному за бої дітей Омеляненко висловився про бої в чечні

Заява уславленого спортсмена та президента Союзу ММА Росії Федора Омеляненка про неприпустимість дитячих боїв після бою дітей Рамзана Кадирова...

Саша пивоварова - біографія, інформація, особисте життя
Саша пивоварова - біографія, інформація, особисте життя

Ті часи, коли моделлю обов'язково мала бути дівчина з ляльковим личком, суворо відповідна параметрам 90-60-90, давно минули.

Міфологічні картини.  Головні герої та символи.  Картини на сюжет з історії стародавньої греції.
Міфологічні картини. Головні герої та символи. Картини на сюжет з історії стародавньої греції.

Вік вищого розквіту скульптури в період класики був і віком розквіту грецького живопису. Саме до цього часу відноситься чудове...