Різниця арифметичної прогресії дорівнює 4 сума 651. Як знайти різницю арифметичної прогресії: формули та приклади рішень

Тема "прогресія арифметична" вивчається в загальному курсіалгебри у школах у 9 класі. Ця тема є важливою для подальшого поглибленого вивченняматематики числових рядів. У цій статті познайомимося з арифметичною прогресією, її різницею, а також з типовими завданнями, з якими можуть зіткнутися школярі.

Поняття про алгебраїчну прогресію

Числова прогресія є послідовністю чисел, в якій кожен по наступний елементможна отримати з попереднього, якщо застосувати деякий математичний закон. Відомо два простих видупрогресії: геометрична та арифметична, яку називають також алгебраїчною. Зупинимося на ній докладніше.

Уявімо деяке раціональне число, позначимо його символом a 1 , де індекс вказує його порядковий номер у ряді, що розглядається. Додамо до a 1 деяке інше число, позначимо його d. Тоді другий елемент ряду можна відобразити так: a 2 = a 1 +d. Тепер додамо d ще раз, отримаємо: a 3 = a 2 +d. Продовжуючи цю математичну операцію, можна отримати цілий рядчисел, який називатиметься прогресією арифметичної.

Як можна зрозуміти з викладеного вище, щоб знайти n-ий елемент цієї послідовності, необхідно скористатися формулою: a n = a 1 + (n-1) * d. Справді, підставляючи n=1 у вираз, ми отримаємо a 1 = a 1 якщо n = 2, тоді з формули випливає: a 2 = a 1 + 1*d, і так далі.

Наприклад, якщо різниця прогресії арифметичної дорівнює 5, а a 1 = 1, це означає, що числовий рядРозглянутого типу має вигляд: 1, 6, 11, 16, 21, ... Як видно, кожен його член більший за попередній на 5.

Формули різниці прогресії арифметичної

З наведеного вище визначення ряду чисел, що розглядається, слід, що для його визначення необхідно знати два числа: a 1 і d. Останнє називається різницею цієї прогресії. Воно однозначно визначає поведінку всього ряду. Справді, якщо d буде позитивним, то числовий ряд постійно зростатиме, навпаки, у разі d негативного, відбуватиметься зростання чисел у ряду лише за модулем, абсолютне ж їх значення буде зменшуватися зі зростанням номера n.

Чому дорівнює різниця прогресії арифметичної? Розглянемо дві основні формули, що використовуються для обчислення цієї величини:

  1. d = a n+1 -a n , ця формула випливає безпосередньо з визначення ряду чисел, що розглядається.
  2. d = (-a 1 +a n)/(n-1), цей вираз виходить, якщо виразити d із формули, наведеної у попередньому пункті статті. Зауважимо, що це вираз перетворюється на невизначеність (0/0), якщо n=1. Пов'язано це з тим, що потрібне знання як мінімум 2-х елементів ряду, щоб визначити його різницю.

Ці дві основні формули використовуються для вирішення будь-яких завдань на знаходження різниці прогресії. Однак існує ще одна формула, про яку також потрібно знати.

Сума перших елементів

Формула, за допомогою якої можна визначити суму будь-якої кількості членів алгебраїчної прогресії, відповідно історичним свідченням, була вперше отримана "принцом" математики XVIII століття Карлом Гаусом. Німецький вчений, ще будучи хлопчиком у початкових класахсільської школи, зауважив, що для того, щоб скласти натуральні числа в ряду від 1 до 100, необхідно спочатку підсумувати перший елемент і останній (отримане значення дорівнюватиме сумі передостаннього і другого, передпередостаннього і третього елементів, і так далі), а потім це число слід помножити кількість цих сум, тобто на 50.

Формулу, яка відображає викладений результат на окремому прикладі, можна узагальнити на довільний випадок. Вона матиме вигляд: S n = n/2*(a n +a 1). Зауважимо, що знаходження вказаної величини, знання різниці d не потрібно, якщо відомі два члени прогресії (a n і a 1).

Приклад №1. Визначте різницю, знаючи два члени ряду a1 і an

Покажемо, як застосовувати зазначені вище статті формули. Наведемо простий приклад: різниця прогресії арифметичної невідома, необхідно визначити, чому вона дорівнюватиме, якщо a 13 = -5,6 і a 1 = -12,1.

Оскільки нам відомі значення двох елементів числової послідовності, при цьому один з них є першим числом, можна скористатися формулою №2 для визначення різниці d. Маємо: d = (-1 * (-12,1) + (-5,6)) / 12 = 0,54167. У виразі ми використовували значення n=13, оскільки відомий член з цим порядковим номером.

Отримана різниця свідчить про те, що прогресія є зростаючою, незважаючи на те, що дані за умови завдання елементи мають негативне значення. Очевидно, що a 13 >a 1 , хоча |a 13 |<|a 1 |.

Приклад №2. Позитивні члени прогресії у прикладі №1

Скористаємося отриманим у попередньому прикладі результатом, щоб вирішити нове завдання. Вона формулюється так: з якого порядкового номера елементи прогресії у прикладі №1 почнуть набувати позитивних значень?

Як було показано, прогресія, в якій a 1 = -12,1 та d = 0,54167 є зростаючою, тому з деякого номера числа почнуть набувати лише позитивних значень. Щоб визначити цей номер n, необхідно вирішити просту нерівність, яка математично записується так: a n >0 або, використовуючи відповідну формулу, перепишемо нерівність: a 1 + (n-1)*d>0. Необхідно знайти невідоме n, виразимо його: n>-1*a 1 /d + 1. Тепер залишилося підставити відомі значеннярізниці та першого члена послідовності. Отримуємо: n>-1 * (-12,1) / 0,54167 + 1 = 23,338 або n> 23,338. Оскільки n може набувати лише цілочисельних значень, з отриманої нерівності випливає, що будь-які члени ряду, які матимуть номер більше 23, будуть позитивними.

Перевіримо отриману відповідь, скориставшись наведеною вище формулою, щоб розрахувати 23 та 24 елементи цієї арифметичної прогресії. Маємо: a 23 = -12,1 + 22 * ​​0,54167 = -0,18326 (негативне число); a 24 = -12,1 + 23 * 0,54167 = 0,3584 ( позитивне значення). Таким чином, отриманий результат є вірним: починаючи з n=24 всі члени числового ряду будуть більше нуля.

Приклад №3. Скільки колод поміститься?

Наведемо одне цікаве завдання: під час заготівлі лісу було вирішено спиляні колоди укладати один на одного так, як це показано на малюнку нижче. Скільки колод можна укласти таким чином, знаючи, що всього поміститься 10 рядів?

У такому способі складання колод можна помітити одну цікаву річ: кожен наступний ряд міститиме на одну колоду менше, ніж попередній, тобто має місце алгебраїчна прогресія, різниця якої d=1. Вважаючи, що число колод кожного ряду - це член цієї прогресії, а також з огляду на те, що a 1 = 1 (на самому верху поміститься тільки одна колода), знайдемо число a 10 . Маємо: a 10 = 1 + 1 * (10-1) = 10. Тобто в 10-му ряду, що лежить на землі, буде знаходитися 10 колод.

Загальну суму цієї "пірамідальної" конструкції можна отримати, якщо скористатися формулою Гауса. Отримуємо: S 10 = 10/2 * (10 +1) = 55 колод.

Увага!
До цієї теми є додаткові
матеріали у розділі 555.
Для тих, хто сильно "не дуже..."
І для тих, хто "дуже навіть...")

Арифметична прогресія - це ряд чисел, в якому кожне число більше (або менше) попереднього на одну й ту саму величину.

Ця тема часто представляється складною і незрозумілою. Індекси у літер, n-й членпрогресії, різниця прогресії - все це якось бентежить, так ... Розберемося зі змістом арифметичної прогресіїі все відразу налагодиться.)

Концепція арифметичної прогресії.

Арифметична прогресія - поняття дуже просте та чітке. Сумніваєтесь? Даремно.) Дивіться самі.

Я напишу незакінчений ряд чисел:

1, 2, 3, 4, 5, ...

Чи зможете продовжити цей ряд? Які числа підуть далі, за п'ятіркою? Кожен... е-е-е..., коротше, кожен зрозуміє, що далі підуть числа 6, 7, 8, 9 тощо.

Ускладнимо завдання. Даю незакінчений ряд чисел:

2, 5, 8, 11, 14, ...

Чи зможете вловити закономірність, продовжити ряд, і назвати сьомеЧисло ряду?

Якщо зрозуміли, що це число 20 – я вас вітаю! Ви не тільки відчули ключові моментиарифметичної прогресії,але й успішно вжили їх у справу! Якщо не зрозуміли – читаємо далі.

А тепер переведемо ключові моменти із відчуттів у математику.)

Перший ключовий момент.

Арифметична прогресія має справу з рядами чисел.Це і бентежить спочатку. Ми звикли рівняння вирішувати, графіки будувати і таке інше... А тут продовжити ряд, знайти число ряду...

Нічого страшного. Просто прогресії – це перше знайомство з новим розділом математики. Розділ називається "Ряди" і працює саме з рядами чисел та виразів. Звикайте.)

Другий ключовий момент.

В арифметичній прогресії будь-яке число відрізняється від попереднього на одну й ту саму величину.

У першому прикладі ця різниця – одиниця. Яке число не візьми, воно більше попереднього на один. У другому – трійка. Будь-яке число більше попереднього на трійку. Власне, саме цей момент дає нам можливість вловити закономірність і розрахувати наступні числа.

Третій ключовий момент.

Цей момент не впадає у вічі, так... Але дуже, дуже важливий. Ось він: кожне число прогресіїстоїть на своєму місці.Є перше число, є сьоме, є сорок п'яте і т.д. Якщо їх переплутати абияк, закономірність зникне. Зникне й арифметична прогресія. Залишиться просто ряд чисел.

Ось і вся суть.

Зрозуміло, в новій теміз'являються нові терміни та позначення. Їх треба знати. Інакше й завдання не зрозумієш. Наприклад, доведеться вирішувати, що-небудь, типу:

Випишіть перші шість членів арифметичної прогресії (a n), якщо a 2 = 5, d = -2,5.

Вселяє?) Літери, індекси якісь... А завдання, між іншим - простіше нікуди. Просто потрібно зрозуміти зміст термінів та позначень. Зараз ми цю справу опануємо і повернемося до завдання.

Терміни та позначення.

Арифметична прогресія- це ряд чисел, у якому кожне число відрізняється від попереднього на одну й ту саму величину.

Ця величина називається . Розберемося з цим поняттям детальніше.

Різниця арифметичної прогресії.

Різниця арифметичної прогресії- це величина, на яку будь-яке число прогресії більшепопереднього.

Один важливий момент. Прошу звернути увагу на слово "Більше".Математично це означає, що кожне число прогресії виходить додаткомрізниці арифметичної прогресії до попереднього числа.

Для розрахунку, скажімо, другогочисла ряду, треба до першомучислу додатицю саму різницю арифметичної прогресії. Для розрахунку п'ятого- Різниця треба додатидо четвертому,ну і т.п.

Різниця арифметичної прогресіїможе бути позитивною,тоді кожне число ряду вийде реально більше за попередній.Така прогресія називається зростаючою.Наприклад:

8; 13; 18; 23; 28; .....

Тут кожне число виходить додаткомпозитивного числа +5 до попереднього.

Різниця може бути і негативною,тоді кожне число ряду вийде менше за попередній.Така прогресія називається (ви не повірите!) спадаючою.

Наприклад:

8; 3; -2; -7; -12; .....

Тут кожне число виходить теж додаткомдо попереднього, але негативного числа, -5.

До речі, під час роботи з прогресією дуже корисно буває відразу визначити її характер - зростаюча вона, чи спадна. Це чудово допомагає зорієнтуватися у вирішенні, засікти свої помилки та виправити їх, поки не пізно.

Різниця арифметичної прогресіїпозначається, як правило, літерою d.

Як знайти d? Дуже просто. Треба від будь-якого числа ряду відібрати попереднєчисло. Відняти. До речі, результат віднімання називається "різниця".)

Визначимо, наприклад, dдля зростаючої арифметичної прогресії:

2, 5, 8, 11, 14, ...

Беремо будь-яке число ряду, яке хочемо, наприклад, 11. Віднімаємо від нього попереднє число,тобто. 8:

Це правильна відповідь. Для цієї арифметичної прогресії різниця дорівнює трьом.

Брати можна саме будь-яке число прогресії,т.к. для конкретної прогресії d -завжди одне й те саме.Хоч десь на початку ряду, хоч у середині, хоч де завгодно. Брати не можна тільки перше число. Просто тому, що у першого числа немає попереднього.)

До речі, знаючи, що d = 3знайти сьоме число цієї прогресії дуже просто. Додамо 3 до п'ятого числа - отримаємо шосте, це буде 17. Додамо до шостого числа трійку, отримаємо сьоме - двадцять.

Визначимо dдля спадної арифметичної прогресії:

8; 3; -2; -7; -12; .....

Нагадую, що, незалежно від символів, для визначення dтреба від будь-якого числа відібрати попереднє.Вибираємо будь-яку кількість прогресії, наприклад -7. Попереднє у нього – число -2. Тоді:

d = -7 - (-2) = -7 + 2 = -5

Різниця арифметичної прогресії може бути будь-яким числом: цілим, дрібним, ірраціональним, всяким.

Інші терміни та позначення.

Кожне число ряду називається членом арифметичної прогресії.

Кожен член прогресії має свій номер.Номери йдуть строго по порядку, без жодних фокусів. Перший, другий, третій, четвертий і т.д. Наприклад, у прогресії 2, 5, 8, 11, 14, ... двійка - це перший член, п'ятірка - другий, одинадцять - четвертий, ну, ви зрозуміли...) Прошу чітко усвідомити - самі числаможуть бути абсолютно будь-які, цілі, дробові, негативні, які завгодно, але нумерація чисел- суворо по порядку!

Як записати прогресію в загальному вигляді? Не питання! Кожне число ряду записується як букви. Для позначення арифметичної прогресії використовується, як правило, літера a. Номер члена вказується індексом внизу праворуч. Члени пишемо через кому (або крапку з комою), ось так:

a 1, a 2, a 3, a 4, a 5, .....

a 1- це перше число, a 3- третє, тощо. Нічого хитрого. Записати цей ряд коротко можна ось так: (a n).

Прогресії бувають кінцеві та нескінченні.

Кінцевапрогресія має обмежену кількість членів. П'ять, тридцять вісім, скільки завгодно. Але - кінцеве число.

Нескінченнапрогресія - має безліч членів, як можна здогадатися.)

Записати кінцеву прогресію через ряд можна ось так, всі члени та крапка в кінці:

a 1 , 2 , 3 , 4 , 5 .

Або так, якщо членів багато:

a 1 , a 2 , ... a 14 , a 15 .

У короткого записудоведеться додатково вказувати кількість членів. Наприклад (для двадцяти членів), ось так:

(a n), n = 20

Нескінченну прогресію можна дізнатися по трьома крапками в кінці ряду, як у прикладах цього уроку.

Тепер можна вирішити завдання. Завдання нескладні, чисто розуміння сенсу арифметичної прогресії.

Приклади завдань з арифметичної прогресії.

Розберемо детально завдання, що наведено вище:

1. Випишіть перші шість членів арифметичної прогресії (a n), якщо a 2 = 5, d = -2,5.

Перекладаємо завдання на зрозуміла мова. Дана нескінченна арифметична прогресія. Відоме друге число цієї прогресії: a 2 = 5.Відома різниця прогресії: d = -2,5.Потрібно знайти перший, третій, четвертий, п'ятий та шостий члени цієї прогресії.

Для наочності запишу ряд за умовою завдання. Перші шість членів, де другий член – п'ятірка:

a 1, 5, a 3, a 4, a 5, a 6,....

a 3 = a 2 + d

Підставляємо у вираз a 2 = 5і d = -2,5. Не забуваймо про мінус!

a 3=5+(-2,5)=5 - 2,5 = 2,5

Третій член вийшов менше другого. Все логічно. Якщо число більше попереднього на негативнувеличину, отже, саме число вийде менше попереднього. Прогресія – спадна. Гаразд, врахуємо.) Вважаємо четвертий член нашого ряду:

a 4 = a 3 + d

a 4=2,5+(-2,5)=2,5 - 2,5 = 0

a 5 = a 4 + d

a 5=0+(-2,5)= - 2,5

a 6 = a 5 + d

a 6=-2,5+(-2,5)=-2,5 - 2,5 = -5

Так, члени з третього до шостого вирахували. Вийшов такий ряд:

a 1, 5, 2,5, 0, -2,5, -5, ....

Залишається знайти перший член a 1по відомому другому. Це крок в інший бік, вліво.) Отже, різниця арифметичної прогресії dтреба не додати до a 2, а відібрати:

a 1 = a 2 - d

a 1=5-(-2,5)=5 + 2,5=7,5

Ось і всі справи. Відповідь завдання:

7,5, 5, 2,5, 0, -2,5, -5, ...

Принагідно зауважу, що це завдання ми вирішували рекурентнимспособом. Це страшне словоозначає, лише пошук члена прогресії за попереднім (сусіднім) числом.Інші методи роботи з прогресією ми розглянемо далі.

З цього простого завдання можна зробити один важливий висновок.

Запам'ятовуємо:

Якщо нам відомий хоча б один член та різниця арифметичної прогресії, ми можемо знайти будь-який член цієї прогресії.

Запам'ятали? Цей нескладний висновок дозволяє вирішувати більшість завдань шкільного курсупо цій темі. Всі завдання крутяться навколо трьох головнихпараметрів: член арифметичної прогресії, різницю прогресії, номер члена прогресії.Всі.

Зрозуміло, вся попередня алгебра не скасовується.) До прогресії причіплюються і нерівності, і рівняння, та інші речі. Але по самій прогресії- все крутиться довкола трьох параметрів.

Наприклад розглянемо деякі популярні завдання з цієї теми.

2. Запишіть кінцеву арифметичну прогресію у вигляді ряду, якщо n=5, d = 0,4 та a 1 = 3,6.

Тут все просто. Все вже дано. Потрібно згадати, як вважаються члени арифметичної прогресії, порахувати та й записати. Бажано не пропустити слова за умови завдання: "кінцеву" і " n=5". Щоб не рахувати до повного посиніння.) У цій прогресії всього 5 (п'ять) членів:

a 2 = a 1 + d = 3,6 + 0,4 = 4

a 3 = a 2 + d = 4 + 0,4 = 4,4

a 4 = a 3 + d = 4,4 + 0,4 = 4,8

a 5 = a 4 + d = 4,8 + 0,4 = 5,2

Залишається записати відповідь:

3,6; 4; 4,4; 4,8; 5,2.

Ще завдання:

3. Визначте, чи буде число 7 членом арифметичної прогресії (a n), якщо a 1 = 4,1; d = 1,2.

Хм... Хто ж його знає? Як визначити?

Як-не-як... Та записати прогресію у вигляді ряду і подивитися, буде там сімка, чи ні! Вважаємо:

a 2 = a 1 + d = 4,1 + 1,2 = 5,3

a 3 = a 2 + d = 5,3 + 1,2 = 6,5

a 4 = a 3 + d = 6,5 + 1,2 = 7,7

4,1; 5,3; 6,5; 7,7; ...

Зараз чітко видно, що сімку ми просто проскочилиміж 6,5 та 7,7! Не потрапила сімка до нашого ряду чисел, і, отже, сімка не буде членом заданої прогресії.

Відповідь: ні.

А ось завдання на основі реального варіантуДІА:

4. Виписано кілька послідовних членів арифметичної прогресії:

...; 15; х; 9; 6; ...

Тут записаний ряд без кінця та початку. Немає ні номерів членів, ні різниці d. Нічого страшного. Аби вирішити завдання досить розуміти сенс арифметичної прогресії. Дивимося і розуміємо, що можна дізнатисяіз цього ряду? Які параметри із трьох головних?

Номери членів? Немає тут жодного номера.

Зате є три числа і – увага! - Слово "послідовних"за умови. Це означає, що числа йдуть по порядку, без перепусток. А чи є в цьому ряду два сусідніх відомих числа? Так є! Це 9 і 6. Отже, ми можемо обчислити різницю арифметичної прогресії! Від шістки віднімаємо попереднєчисло, тобто. дев'ятку:

Залишилися дрібниці. Яка кількість буде попередньою для ікса? П'ятнадцять. Отже, ікс можна легко знайти простим додаванням. До 15 додати різницю арифметичної прогресії:

От і все. Відповідь: х = 12

Наступні завдання вирішуємо самостійно. Зауваження: ці завдання - не так на формули. Чисто на розуміння сенсу арифметичної прогресії.) Просто записуємо ряд з числами-літерами, дивимось і розуміємо.

5. Знайдіть перший позитивний член арифметичної прогресії, якщо a 5 = -3; d = 1,1.

6. Відомо, що число 5,5 є членом арифметичної прогресії (a n), де a 1 = 1,6; d = 1,3. Визначте номер n цього члена.

7. Відомо, що у арифметичній прогресії a 2 = 4; a 5 = 15,1. Знайдіть a3.

8. Виписано кілька послідовних членів арифметичної прогресії:

...; 15,6; х; 3,4; ...

Знайдіть член прогресії, позначений літерою х.

9. Потяг почав рух від станції, поступово збільшуючи швидкість на 30 метрів за хвилину. Якою буде швидкість поїзда через п'ять хвилин? Відповідь дайте за км/год.

10. Відомо, що в арифметичній прогресії a 2 = 5; a 6 = -5. Знайдіть a 1.

Відповіді (безладно): 7,7; 7,5; 9,5; 9; 0,3; 4.

Все вийшло? Чудово! Можна освоювати арифметичну прогресію на рівні, у наступних уроках.

Чи не все вийшло? Не біда. У Особливому розділі 555 всі ці завдання розібрані по кісточках.) І, звичайно, описаний простий практичний прийом, Який відразу висвічує вирішення подібних завдань чітко, ясно, як на долоні!

До речі, у завданні про поїзд є дві проблемки, на яких нерідко спотикається народ. Одна – чисто за прогресією, а друга – загальна для будь-яких завдань з математики, та й фізики теж. Це переклад розмірності з однієї в іншу. В показано, як треба ці проблеми вирішувати.

У цьому вся уроці ми розглянули елементарний сенс арифметичної прогресії та її основні параметри. Цього достатньо для вирішення практично всіх завдань на цю тему. Додай dдо числа, пиши ряд, все і вирішиться.

Рішення "на пальцях" добре підходить для дуже коротких шматочків ряду, як у прикладах цього уроку. Якщо ряд довше, обчислення ускладнюються. Наприклад, якщо в задачі 9 у питанні замінити "п'ять хвилин"на "тридцять п'ять хвилин",завдання стане значно зліше.)

А ще бувають завдання прості по суті, але несусвітні за обчисленнями, наприклад:

Дана арифметична прогресія (a n). Знайти a 121 якщо a 1 =3, а d=1/6.

І що, будемо багато разів додавати по 1/6?! Це ж убитися можна!

Можна.) Якщо не знати просту формулу, За якою вирішувати подібні завдання можна за хвилину. Ця формула буде у наступному уроці. І завдання ця там вирішена. За хвилину.)

Якщо Вам подобається цей сайт...

До речі, у мене є ще кілька цікавих сайтів для Вас.)

Можна потренуватися у вирішенні прикладів та дізнатися свій рівень. Тестування з миттєвою перевіркою. Вчимося – з інтересом!)

можна познайомитися з функціями та похідними.

Багато хто чув про арифметичну прогресію, але не всі добре уявляють, що це таке. У даній статті дамо відповідне визначення, а також розглянемо питання, як знайти різницю арифметичної прогресії, і наведемо ряд прикладів.

Математичне визначення

Отже, якщо мова йдепро прогресію арифметичної чи алгебраїчної (ці поняття визначають одне й те саме), це означає, що є певний числовий ряд, що задовольняє наступного закону: кожні два сусідні числа в ряду відрізняються на те саме значення. Математично це записується так:

Тут n означає номер елемента a n у послідовності, а число d - це різниця прогресії (її назва випливає з представленої формули).

Про що говорить знання різниці d? Про те, як "далеко" один від одного відстоять сусідні числа. Однак знання d є необхідним, але не достатньою умовоювизначення (відновлення) всієї прогресії. Необхідно знати ще одне число, яким може бути абсолютно будь-який елемент ряду, наприклад, a 4 , a10, але, як правило, використовують перше число, тобто a 1 .

Формули для визначення елементів прогресії

Загалом інформації вище вже достатньо, щоб переходити до рішення конкретних завдань. Проте до того, як буде дана арифметична прогресія, і знайти різницю її буде необхідно, наведемо пару корисних формул, полегшивши цим подальший процес вирішення завдань.

Нескладно показати, що будь-який елемент послідовності з номером n може бути знайдений так:

a n = a 1 + (n - 1) * d

Дійсно, перевірити цю формулу може кожен простим перебором: якщо підставити n = 1, то вийде перший елемент, якщо підставити n = 2, тоді вираз видає суму першого числа та різниці, і так далі.

Умови багатьох завдань складаються таким чином, що за відомою парою чисел, номери яких у послідовності також дано, необхідно відновити весь числовий ряд (знайти різницю та перший елемент). Зараз ми вирішимо це завдання у загальному вигляді.

Отже, нехай дані два елементи з номерами n і m. Користуючись отриманою формулою, можна скласти систему з двох рівнянь:

a n = a 1 + (n - 1) * d;

a m = a 1 + (m - 1) * d

Для знаходження невідомих величин скористаємося відомим простим прийомомрішення такої системи: віднімемо попарно ліву та праву частини, рівність при цьому залишиться справедливою. Маємо:

a n = a 1 + (n - 1) * d;

a n - a m = (n - 1) * d - (m - 1) * d = d * (n - m)

Таким чином ми виключили одну невідому (a 1). Тепер можна записати остаточний вираз визначення d:

d = (a n - a m) / (n - m), де n > m

Ми отримали дуже просту формулу: щоб обчислити різницю d відповідно до умов завдання, необхідно лише взяти відношення різниць самих елементів та їх порядкових номерів. Слід звернути на один важливий момент увагу: різниці беруться між "старшим" і "молодшим" ​​членами, тобто n > m ("старший" - мається на увазі вартий далі від початку послідовності, його абсолютне значенняможе бути як більше, так і менше "молодшого" елемента).

Вираз для різниці d прогресії слід підставити на будь-яке з рівнянь на початку розв'язання задачі, щоб отримати значення першого члена.

У наш вік розвитку комп'ютерних технологійбагато школярів намагаються знайти рішення для своїх завдань в Інтернеті, тому часто виникають такі питання: знайти різницю арифметичної прогресії онлайн. За подібним запитом пошуковик видасть ряд web-сторінок, перейшовши на які, потрібно буде ввести відомі з умови дані (це можуть бути як два члени прогресії, так і сума деякого їх числа) і миттєво отримати відповідь. Проте такий підхід до вирішення завдання є непродуктивним у плані розвитку школяра та розуміння суті поставленого перед ним завдання.

Рішення без використання формул

Вирішимо перше завдання, при цьому не будемо використовувати жодні з наведених формул. Нехай дані елементи ряду: а6 = 3, а9 = 18. Знайти різницю прогресії арифметичної.

Відомі елементи стоять близько один до одного в ряду. Скільки разів потрібно додати різницю d до найменшого, щоб отримати найбільше? Три рази (вперше додавши d, ми отримаємо 7-й елемент, другий раз - восьмий, нарешті, втретє - дев'ятий). Яке число потрібно додати до трьох разів, щоб отримати 18? Це число п'ять. Дійсно:

Таким чином, невідома різниця d=5.

Звичайно ж, рішення можна було виконати із застосуванням відповідної формули, але цього не було зроблено навмисно. Детальне поясненнярозв'язання задачі має стати зрозумілим та яскравим прикладом, що таке арифметична прогресія

Завдання, подібне до попереднього

Тепер вирішимо схоже завдання, але змінимо вхідні дані. Отже, слід знайти, якщо а3 = 2, а9 = 19.

Звичайно, можна вдатися знову до методу рішення "в лоб". Але оскільки дані елементи ряду, які стоять відносно далеко один від одного, такий метод стане не зовсім зручним. А ось використання отриманої формули швидко приведе нас до відповіді:

d = (а 9 - а 3) / (9 - 3) = (19 - 2) / (6) = 17 / 6 ≈ 2,83

Тут ми округлили кінцеве число. Наскільки це округлення спричинило помилку, можна судити, перевіривши отриманий результат:

a 9 = a 3 + 2,83 + 2,83 + 2,83 + 2,83 + 2,83 + 2,83 = 18,98

Цей результат відрізняється лише на 0,1 % від значення, даного за умови. Тому використане округлення до сотих можна вважати успішним вибором.

Завдання застосування формули для an члена

Розглянемо класичний прикладзадачі визначення невідомої d: знайти різницю прогресії арифметичної, якщо а1 = 12, а5 = 40.

Коли дано два числа невідомої послідовності алгебри, причому одним з них є елемент a 1 , тоді не потрібно довго думати, а слід відразу ж застосувати формулу для a n члена. У даному випадкумаємо:

a 5 = a 1 + d * (5 - 1) => d = (a 5 - a 1) / 4 = (40 - 12) / 4 = 7

Ми отримали точне число під час поділу, тому немає сенсу перевіряти точність розрахованого результату, як це було зроблено в попередньому пункті.

Вирішимо ще одне аналогічне завдання: слід знайти різницю арифметичної прогресії, якщо а1 = 16, а8 = 37.

Використовуємо аналогічний попередній підхід та отримуємо:

a 8 = a 1 + d * (8 - 1) => d = (a 8 - a 1) / 7 = (37 - 16) / 7 = 3

Що ще слід знати про арифметичну прогресію

Крім завдань на знаходження невідомої різниці або окремих елементівчасто необхідно вирішувати проблеми суми перших членів послідовності. Розгляд цих завдань виходить за межі теми статті, проте для повноти інформації наведемо загальну формулудля суми n чисел ряду:

∑ n i = 1 (a i) = n * (a 1 + a n) / 2

Інструкція

Арифметична прогресія – це послідовність виду a1, a1+d, a1+2d..., a1+(n-1)d. Число d кроком прогресії.Очевидно, що загальна довільного n-го члена арифметичної прогресіїмає вигляд: An = A1 + (n-1) d. Тоді знаючи один із членів прогресіїчлен прогресіїта крок прогресії, Можна, тобто номер члена прогресу. Очевидно, він визначатиметься за формулою n = (An-A1+d)/d.

Нехай тепер відомий m-ий член прогресіїі інший член прогресії- n, але n, як і в попередньому випадку, але відомо, що n і m не збігаються. прогресіїможе бути обчислений за такою формулою: d = (An-Am)/(n-m). Тоді n = (An-Am+md)/d.

Якщо відома сума кількох елементів арифметичної прогресії, а також її перший і останній, то кількість цих елементів теж можна визначити. Сума арифметичної прогресіїдорівнюватиме: S = ((A1+An)/2)n. Тоді n = 2S/(A1+An) - чденів прогресії. Використовуючи той факт, що An = A1+(n-1)d, цю формулу можна переписати у вигляді: n = 2S/(2A1+(n-1)d). З цієї можна виразити n, вирішуючи квадратне рівняння.

Арифметичною послідовністю називають такий упорядкований набір чисел, кожен член якого, крім першого, відрізняється від попереднього на одну й ту саму величину. Ця постійна величинаназивається різницею прогресії або її кроком і може бути розрахована за відомими членами арифметичної прогресії.

Інструкція

Якщо з умов завдання відомі значення першого і другого або будь-якої іншої пари сусідніх членів, для обчислення різниці (d) просто відніміть від наступного члена попередній. Величина, що вийшла, може бути як позитивним, так і негативним числом- це залежить від того, чи є прогресія зростання. У загальної формирішення для довільно взятої пари (aᵢ та aᵢ₊₁) сусідніх членів прогресії запишіть так: d = aᵢ₊₁ - aᵢ.

Для пари членів такої прогресії, один з яких є першим (a₁), а інший - будь-яким іншим довільно обраним, також можна скласти формулу знаходження різниці (d). Однак у цьому випадку обов'язково має бути відомий порядковий номер (i) довільного обраного члена послідовності. Для обчислення різниці складіть обидва числа, а отриманий результат розділіть на порядковий номер довільного члена, що зменшився на одиницю. Загалом цю формулу запишіть так: d = (a₁+ aᵢ)/(i-1).

Якщо крім довільного члена арифметичної прогресії з порядковим номером i відомий інший член з порядковим номером u, змініть формулу з попереднього крокувідповідним чином. У цьому випадку різницею (d) прогресії буде сума цих двох членів, поділена на різницю їх порядкових номерів: d = (a + + a) / (i-v).

Формула обчислення різниці (d) дещо ускладниться, якщо в умовах завдання дано значення першого її члена (a₁) та сума (Sᵢ) заданого числа(i) перших членів арифметичної послідовності. Для отримання потрібного значення розділіть суму на кількість членів, що її склали, відніміть значення першого числа в послідовності, а результат подвоїть. Велику величину розділіть на зменшене на одиницю число членів, що склали суму. Загалом формулу обчислення дискримінанта запишіть так: d = 2*(Sᵢ/i-a₁)/(i-1).


Так, так: арифметична прогресія – це вам не іграшки:)

Що ж, друзі, якщо ви читаєте цей текст, то внутрішній кеп-очевидність підказує мені, що ви поки що не знаєте, що таке арифметична прогресія, але дуже (ні, ось так: ТОВООЧЕНЬ!) хочете дізнатися. Тому не мучитиму вас довгими вступами і відразу перейду до справи.

Для початку кілька прикладів. Розглянемо кілька наборів чисел:

  • 1; 2; 3; 4; ...
  • 15; 20; 25; 30; ...
  • $\sqrt(2);\ 2\sqrt(2);\ 3\sqrt(2);...$

Що спільного в усіх цих наборів? На перший погляд – нічого. Але насправді дещо є. А саме: кожен наступний елемент відрізняється від попереднього на те саме число.

Судіть самі. Перший набір — це числа, що просто йдуть поспіль, кожне наступне на одиницю більше попереднього. У другому випадку різниця між рядом вартими числамивже дорівнює п'яти, але ця різниця все одно стала. У третьому випадку взагалі коріння. Проте $2sqrt(2)=sqrt(2)+sqrt(2)$, а $3sqrt(2)=2sqrt(2)+sqrt(2)$, тобто. і в цьому випадку кожен наступний елемент просто зростає на $ sqrt (2) $ (і нехай вас не лякає, що це число - ірраціональне).

Так от: усі такі послідовності якраз і називаються арифметичними прогресіями. Дамо суворе визначення:

Визначення. Послідовність чисел, в якій кожне наступне відрізняється від попереднього рівно на одну й ту саму величину, називається арифметичною прогресією. Сама величина, яку відрізняються числа, називається різницею прогресії і найчастіше позначається буквою $d$.

Позначення: $\left(((a)_(n)) \right)$ - сама прогресія, $ d$ - її різницю.

І одразу парочка важливих зауважень. По-перше, прогресією вважається лише упорядкованапослідовність чисел: їх можна читати строго в тому порядку, в якому вони записані — і ніяк інакше. Переставляти та міняти місцями числа не можна.

По-друге, сама послідовність може бути як кінцевою, і нескінченної. Наприклад, набір (1; 2; 3) - це, очевидно, кінцева арифметична прогресія. Але якщо записати щось на кшталт (1; 2; 3; 4; ...) — це вже нескінченна прогресія. Три крапки після четвірки ніби натякає, що далі йде ще досить багато чисел. Безкінечно багато, наприклад.:)

Ще хотів би відзначити, що прогресії бувають зростаючими та спадаючими. Зростаючі ми вже бачили той самий набір (1; 2; 3; 4; ...). А ось приклади спадних прогресій:

  • 49; 41; 33; 25; 17; ...
  • 17,5; 12; 6,5; 1; −4,5; −10; ...
  • $\sqrt(5);\ \sqrt(5)-1;\ \sqrt(5)-2;\ \sqrt(5)-3;...$

Добре Добре: останній прикладможе здатися надто складним. Але решта, думаю, вам зрозуміла. Тому введемо нові визначення:

Визначення. Арифметична прогресія називається:

  1. зростаючою, якщо кожен наступний елемент більший за попередній;
  2. спадної, якщо, навпаки, кожен наступний елемент менший за попередній.

Крім того, існують так звані «стаціонарні» послідовності — вони складаються з одного і того ж числа, що повторюється. Наприклад, (3; 3; 3; ...).

Залишається лише одне питання: як відрізнити зростаючу прогресію від спадної? На щастя, тут все залежить лише від того, яким є знак числа $d$, тобто. різниці прогресії:

  1. Якщо $d \gt 0$, то прогресія зростає;
  2. Якщо $d \lt 0$, то прогресія, очевидно, зменшується;
  3. Нарешті, є випадок $d = 0 $ - у цьому випадку вся прогресія зводиться до стаціонарної послідовності однакових чисел: (1; 1; 1; 1; ...) і т.д.

Спробуємо розрахувати різницю $d$ для трьох спадних прогресій, наведених вище. Для цього достатньо взяти будь-які два сусідні елементи (наприклад, перший і другий) і відняти з числа, що стоїть праворуч, число, що стоїть зліва. Виглядати це буде ось так:

  • 41−49=−8;
  • 12−17,5=−5,5;
  • $\sqrt(5)-1-\sqrt(5)=-1$.

Як бачимо, у всіх трьох випадкахрізниця справді вийшла негативною. І тепер, коли ми більш-менш розібралися з визначеннями, настав час розібратися з тим, як описуються прогресії і які у них властивості.

Члени прогресії та рекурентна формула

Оскільки елементи наших послідовностей не можна міняти місцями, їх можна пронумерувати:

\[\left(((a)_(n)) \right)=\left\( ((a)_(1)),\ ((a)_(2)),((a)_(3 )),... \right\)\]

Окремі елементи цього набору називають членами прогресії. Там так і вказують за допомогою номера: перший член, другий член і т.д.

Крім того, як ми вже знаємо, сусідні члени прогресії пов'язані формулою:

\[((a)_(n))-((a)_(n-1))=d\Rightarrow ((a)_(n))=((a)_(n-1))+d \]

Коротше кажучи, щоб знайти $n$-й член прогресії, потрібно знати $n-1$-й член і різницю $d$. Така формула називається рекурентною, оскільки з її допомогою можна знайти будь-яке число, лише знаючи попереднє (а за фактом – усі попередні). Це дуже незручно, тому існує хитріша формула, яка зводить будь-які обчислення до першого члена та різниці:

\[((a)_(n))=((a)_(1))+\left(n-1 \right)d\]

Напевно, ви вже зустрічалися з цією формулою. Її люблять давати у всяких довідниках та решібниках. Та й у будь-якому тлумачному підручнику з математики вона йде однією з перших.

Проте пропоную трохи потренуватись.

Завдання №1. Випишіть перші три члени арифметичної прогресії $\left(((a)_(n)) \right)$, якщо $((a)_(1))=8,d=-5$.

Рішення. Отже, нам відомий перший член $((a)_(1))=8$ і різницю прогресії $d=-5$. Скористаємося щойно наведеною формулою і підставимо $n=1$, $n=2$ і $n=3$:

\[\begin(align) & ((a)_(n))=((a)_(1))+\left(n-1 \right)d; \& ((a)_(1))=((a)_(1))+\left(1-1 \right)d=((a)_(1))=8; \\ ((a)_(2))=((a)_(1))+\left(2-1 \right)d=((a)_(1))+d=8-5= 3; \\ & ((a)_(3))=((a)_(1))+\left(3-1 \right)d=((a)_(1))+2d=8-10= -2. \\ \end(align)\]

Відповідь: (8; 3; −2)

От і все! Зверніть увагу: наша прогресія – спадна.

Звичайно, $ n = 1 $ можна було і не підставляти перший член нам і так відомий. Проте, підставивши одиницю, ми переконалися, що навіть для першого члена наша формула працює. У решті випадків все звелося до банальної арифметики.

Завдання №2. Випишіть перші три члени арифметичної прогресії, якщо її сьомий член дорівнює –40, а сімнадцятий член дорівнює –50.

Рішення. Запишемо умову завдання у звичних термінах:

\[((a)_(7))=-40;\quad ((a)_(17))=-50.\]

\[\left\( \begin(align) & ((a)_(7))=((a)_(1))+6d \\ ((a)_(17))=((a) _(1))+16d \\\end(align) \right.\]

\[\left\( \begin(align) & ((a)_(1))+6d=-40 \\ & ((a)_(1))+16d=-50 \\\end(align) \right.\]

Знак системи я поставив тому, що ці вимоги мають виконуватися одночасно. А тепер зауважимо, якщо відняти з другого рівняння перше (ми маємо право це зробити, тому що у нас система), то отримаємо ось що:

\[\begin(align) & ((a)_(1))+16d-\left(((a)_(1))+6d \right)=-50-\left(-40 \right); \& ((a)_(1))+16d-((a)_(1))-6d=-50+40; \ & 10d=-10; \&d=-1. \\ \end(align)\]

Ось так просто ми знайшли різницю прогресії! Залишилося підставити знайдене число у будь-яке з рівнянь системи. Наприклад, у перше:

\[\begin(matrix) ((a)_(1))+6d=-40;\quad d=-1 \\ \Downarrow \\ ((a)_(1))-6=-40; \((a)_(1))=-40+6=-34. \\ \end(matrix)\]

Тепер, знаючи перший член і різницю, залишилося знайти другий і третій член:

\[\begin(align) & ((a)_(2))=((a)_(1))+d=-34-1=-35; \&((a)_(3))=((a)_(1))+2d=-34-2=-36. \\ \end(align)\]

Готово! Завдання вирішено.

Відповідь: (−34; −35; −36)

Зверніть увагу на цікаву властивість прогресії, яку ми виявили: якщо взяти $n$-й і $m$-й члени і відняти їх один від одного, то ми отримаємо різницю прогресії, помножену на число $n-m$:

\[((a)_(n))-((a)_(m))=d\cdot \left(n-m \right)\]

Просте, але дуже корисна властивість, яке обов'язково треба знати - з його допомогою можна значно прискорити вирішення багатьох завдань щодо прогресу. Ось яскравий томуприклад:

Завдання №3. П'ятий член арифметичної прогресії дорівнює 8,4, та її десятий член дорівнює 14,4. Знайдіть п'ятнадцятий член цієї прогресії.

Рішення. Оскільки $((a)_(5))=8,4$, $((a)_(10))=14,4$, а потрібно знайти $((a)_(15))$, то зауважимо наступне:

\[\begin(align) & ((a)_(15))-((a)_(10))=5d; \\ ((a)_(10))-((a)_(5))=5d. \\ \end(align)\]

Але за умовою $((a)_(10))-((a)_(5))=14,4-8,4=6$, тому $5d=6$, звідки маємо:

\[\begin(align) & ((a)_(15))-14,4 = 6; \ & ((a)_(15)) = 6 +14,4 = 20,4. \\ \end(align)\]

Відповідь: 20,4

От і все! Нам не потрібно складати якісь системи рівнянь і вважати перший член і різницю - все зважилося буквально в пару рядків.

Тепер розглянемо інший вид завдань — пошук негативних і позитивних членів прогресії. Не секрет, що й прогресія зростає, у своїй перший член у неї негативний, то рано чи пізно у ній з'являться позитивні члени. І навпаки: члени спадної прогресії рано чи пізно стануть негативними.

При цьому далеко не завжди можна намацати цей момент "в лоб", послідовно перебираючи елементи. Найчастіше завдання складено так, що без знання формул обчислення зайняли б кілька аркушів — ми б просто заснули, поки знайшли відповідь. Тому спробуємо вирішити ці завдання швидшим способом.

Завдання №4. Скільки негативних членів в арифметичній прогресії -38,5; −35,8; …?

Рішення. Отже, $((a)_(1))=-38,5$, $((a)_(2))=-35,8$, звідки відразу знаходимо різницю:

Зауважимо, що різницю позитивна, тому прогресія зростає. Перший член негативний, тому дійсно в якийсь момент ми натрапимо на позитивні числа. Питання лише у тому, коли це станеться.

Спробуємо з'ясувати: доки (тобто до якого натурального числа$n$) зберігається негативність членів:

\[\begin(align) & ((a)_(n)) \lt 0\Rightarrow ((a)_(1))+\left(n-1 \right)d \lt 0; \\ & -38,5+\left(n-1 \right)\cdot 2,7 \lt 0;\quad \left| \cdot 10 \right. &-385+27cdot \left(n-1 \right) \lt 0; &-385+27n-27 \lt 0; \ & 27n \lt 412; \ & n \lt 15\frac(7)(27)\Rightarrow ((n)_(\max ))=15. \\ \end(align)\]

Останній рядок вимагає пояснення. Отже, відомо, що $n \lt 15\frac(7)(27)$. З іншого боку, нас влаштують лише цілі значення номера (більше того: $n\in \mathbb(N)$), тому найбільший допустимий номер - саме $n=15$, а в жодному разі не 16.

Завдання №5. В арифметичній прогресії $(()_(5))=-150,(()_(6))=-147$. Знайдіть номер першого позитивного членацієї прогресії.

Це була б точнісінько така ж задача, як і попередня, проте нам невідомо $((a)_(1))$. Зате відомі сусідні члени: $((a)_(5))$ і $((a)_(6))$, тому ми легко знайдемо різницю прогресії:

Крім того, спробуємо висловити п'ятий член через перший і різницю за стандартною формулою:

\[\begin(align) & ((a)_(n))=((a)_(1))+\left(n-1 \right)\cdot d; \\ ((a)_(5))=((a)_(1))+4d; \\ & -150=((a)_(1))+4\cdot 3; \&((a)_(1))=-150-12=-162. \\ \end(align)\]

Тепер чинимо за аналогією з попереднім завданням. З'ясовуємо, коли в нашій послідовності виникнуть позитивні числа:

\[\begin(align) & ((a)_(n))=-162+\left(n-1 \right)\cdot 3 \gt 0; &-162+3n-3 \gt 0; \ & 3n \gt 165; \n n \gt 55\Rightarrow ((n)_(\min ))=56. \\ \end(align)\]

Мінімальне цілечисленне розв'язання цієї нерівності - число 56.

Зверніть увагу: в останньому завданні все звелося до суворої нерівностітому варіант $n=55$ нас не влаштує.

Тепер, коли ми навчилися вирішувати прості завдання, перейдемо до складніших. Але для початку давайте вивчимо ще одну дуже корисну властивість арифметичних прогресій, яка в майбутньому заощадить нам купу часу та нерівних клітин.

Середнє арифметичне та рівні відступи

Розглянемо кілька послідовних членів зростання арифметичної прогресії $\left(((a)_(n)) \right)$. Спробуємо відзначити їх на числовій прямій:

Члени арифметичної прогресії на числовій прямій

Я спеціально відзначив довільні члени $((a)_(n-3)),...,((a)_(n+3))$, а не якісь $((a)_(1)) ,\((a)_(2)),\((a)_(3))$ і т.д. Тому що правило, про яке я зараз розповім, однаково працює для будь-яких відрізків.

А правило дуже просте. Давайте згадаємо рекурентну формулуі запишемо її всім відзначених членів:

\[\begin(align) & ((a)_(n-2))=((a)_(n-3))+d; \&((a)_(n-1))=((a)_(n-2))+d; \((a)_(n))=((a)_(n-1))+d; \& ((a)_(n+1))=((a)_(n))+d; \((a)_(n+2))=((a)_(n+1))+d; \\ \end(align)\]

Однак ці рівності можна переписати інакше:

\[\begin(align) & ((a)_(n-1))=((a)_(n))-d; \&((a)_(n-2))=((a)_(n))-2d; \&((a)_(n-3))=((a)_(n))-3d; \& ((a)_(n+1))=((a)_(n))+d; \& ((a)_(n+2))=((a)_(n))+2d; \& ((a)_(n+3))=((a)_(n))+3d; \\ \end(align)\]

Ну, і що з того? А те, що члени $((a)_(n-1))$ і $((a)_(n+1))$ лежать на тій самій відстані від $((a)_(n)) $. І ця відстань дорівнює $d$. Те саме можна сказати про члени $((a)_(n-2))$ і $((a)_(n+2))$ — вони теж віддалені від $((a)_(n))$ на однакову відстань, що дорівнює $2d$. Продовжувати можна до нескінченності, але сенс добре ілюструє картинка


Члени прогресії лежать однаково від центру

Що це означає для нас? Це означає, що можна знайти $((a)_(n))$, якщо відомі числа-сусіди:

\[((a)_(n))=\frac(((a)_(n-1))+((a)_(n+1)))(2)\]

Ми вивели чудове твердження: кожен член арифметичної прогресії дорівнює середньому арифметичному сусідніх членів! Більше того: ми можемо відступити від нашого $((a)_(n))$ ліворуч і праворуч не на один крок, а на $k$ кроків — і все одно формула буде вірною:

\[((a)_(n))=\frac(((a)_(n-k))+((a)_(n+k)))(2)\]

Тобто. ми спокійно можемо знайти якесь $((a)_(150))$, якщо знаємо $((a)_(100))$ і $((a)_(200))$, тому що $(( a)_(150))=\frac(((a)_(100))+((a)_(200)))(2)$. На перший погляд може здатися, що цей факт не дає нам нічого корисного. Однак на практиці багато завдань спеціально «заточено» під використання середнього арифметичного. Погляньте:

Завдання №6. Знайдіть усі значення $x$, при яких числа $-6((x)^(2))$, $x+1$ і $14+4((x)^(2))$ є послідовними членами арифметичної прогресії (у вказаному порядку).

Рішення. Оскільки вказані числає членами прогресії, їм виконується умова середнього арифметичного: центральний елемент$x+1$ можна виразити через сусідні елементи:

\[\begin(align) & x+1=\frac(-6((x)^(2))+14+4((x)^(2)))(2); \& x+1=\frac(14-2((x)^(2)))(2); \& x+1=7-((x)^(2)); \ \ & ((x) ^ (2)) + x-6 = 0. \\ \end(align)\]

Вийшло класичне квадратне рівняння. Його коріння: $ x = 2 $ і $ x = -3 $ - це і є відповіді.

Відповідь: −3; 2.

Завдання №7. Знайдіть значення $$, у яких числа $-1;4-3;(()^(2))+1$ становлять арифметичну прогресію (у зазначеному порядку).

Рішення. Знову висловимо середній членчерез середнє арифметичне сусідніх членів:

\[\begin(align) & 4x-3=\frac(x-1+((x)^(2))+1)(2); \\ & 4x-3=\frac(((x)^(2))+x)(2);\quad \left| \cdot 2 \right.; \\ & 8x-6=((x)^(2))+x; \((x)^(2))-7x+6=0. \\ \end(align)\]

Знову квадратне рівняння. І знову два корені: $ x = 6 $ і $ x = 1 $.

Відповідь: 1; 6.

Якщо в процесі розв'язання задачі у вас вилазять якісь звірячі числа, або ви не до кінця впевнені в правильності знайдених відповідей, то є чудовий прийом, що дозволяє перевірити: чи ми вирішили завдання?

Припустимо, у задачі №6 ми отримали відповіді −3 та 2. Як перевірити, що ці відповіді вірні? Давайте просто підставимо їх у вихідну умову та подивимося, що вийде. Нагадаю, що у нас є три числа ($-6(()^(2))$, $+1$ і $14+4(()^(2))$), які мають становити арифметичну прогресію. Підставимо $x=-3$:

\[\begin(align) & x=-3\Rightarrow \\ & -6((x)^(2))=-54; \ & x+1=-2; \ & 14 + 4 ((x) ^ (2)) = 50. \end(align)\]

Отримали числа -54; −2; 50, які відрізняються на 52 — безперечно, це арифметична прогресія. Те саме відбувається і при $x=2$:

\[\begin(align) & x=2\Rightarrow \\ & -6((x)^(2))=-24; \ & x + 1 = 3; \ & 14 + 4 ((x) ^ (2)) = 30. \end(align)\]

Знову прогресія, але з різницею 27. Отже, завдання вирішено правильно. Бажаючі можуть перевірити друге завдання самостійно, але одразу скажу: там теж все правильно.

В цілому, вирішуючи останні завдання, ми натрапили на ще один цікавий факт, який також необхідно запам'ятати:

Якщо три числа такі, що друге є середнім арифметичним першогоі останнього, то ці числа утворюють арифметичну прогресію.

У майбутньому розуміння цього твердження дозволить нам буквально «конструювати» потрібні прогресії, спираючись умову завдання. Але перш ніж ми займемося подібним конструюванням, слід звернути увагу на ще один факт, який прямо випливає з вже розглянутого.

Угруповання та сума елементів

Давайте ще раз повернемося до числової осі. Зазначимо там кілька членів прогресії, між якими можливо. коштує дуже багато інших членів:

На числовій прямій відзначено 6 елементів

Спробуємо виразити "лівий хвіст" через $((a)_(n))$ і $d$, а "правий хвіст" через $((a)_(k))$ і $d$. Це дуже просто:

\[\begin(align) & ((a)_(n+1))=((a)_(n))+d; \& ((a)_(n+2))=((a)_(n))+2d; \&((a)_(k-1))=((a)_(k))-d; \&((a)_(k-2))=((a)_(k))-2d. \\ \end(align)\]

А тепер зауважимо, що рівні такі суми:

\[\begin(align) & ((a)_(n))+((a)_(k))=S; \((a)_(n+1))+((a)_(k-1))=((a)_(n))+d+((a)_(k))-d= S; \& ((a)_(n+2))+((a)_(k-2))=((a)_(n))+2d+((a)_(k))-2d= S. \end(align)\]

Простіше кажучи, якщо ми розглянемо як старт два елементи прогресії, які в сумі дорівнюють якомусь числу $S$, а потім почнемо крокувати від цих елементів в протилежні сторони(Назустріч один одному або навпаки на видалення), то суми елементів, на які ми натикатимемося, теж будуть рівні$S$. Найбільш наочно це можна уявити графічно:


Однакові відступи дають рівні суми

Розуміння даного фактудозволить нам вирішувати завдання принципово більше високого рівняскладності, ніж ті, що ми розглядали вище. Наприклад, такі:

Завдання №8. Визначте різницю арифметичної прогресії, у якій перший член дорівнює 66, а твір другого та дванадцятого членів є найменшим із можливих.

Рішення. Запишемо все, що нам відомо:

\[\begin(align) & ((a)_(1))=66; \&d=? \\ ((a)_(2))\cdot ((a)_(12))=\min . \end(align)\]

Отже, нам невідома різниця прогресії $d$. Власне, навколо різниці і будуватиметься все рішення, оскільки добуток $((a)_(2))\cdot ((a)_(12))$ можна переписати так:

\[\begin(align) & ((a)_(2))=((a)_(1))+d=66+d; \& ((a)_(12))=((a)_(1))+11d=66+11d; \& ((a)_(2))\cdot ((a)_(12))=\left(66+d \right)\cdot \left(66+11d \right)= \\ & =11 \cdot \left(d+66 \right)\cdot \left(d+6 \right). \end(align)\]

Для тих, хто у танку: я виніс загальний множник 11 із другої дужки. Таким чином, шуканий твір є квадратичною функцією щодо змінної $d$. Тому розглянемо функцію $ f \ left (d \ right) = 11 \ left (d + 66 \ right) \ left (d + 6 \ right) $ - її графіком буде парабола гілками вгору, т.к. якщо розкрити дужки, ми отримаємо:

\[\begin(align) & f\left(d \right)=11\left(((d)^(2))+66d+6d+66\cdot 6 \right)= \\ & =11(( d)^(2))+11cdot 72d+11cdot 66cdot 6 \end(align)\]

Як бачимо, коефіцієнт при старшому доданку дорівнює 11 - це додатне числотому дійсно маємо справу з параболою гілками вгору:


графік квадратичні функції- Парабола

Зверніть увагу: мінімальне значенняця парабола приймає у своїй вершині з абсцисою $((d)_(0))$. Звичайно, ми можемо порахувати цю абсцису за стандартною схемою (є ж формула $((d)_(0))=(-b)/(2a)\;$), але куди розумніше буде помітити, що вершина, що шукається, лежить на осі симетрії параболи, тому точка $((d)_(0))$ рівновіддалена від коренів рівняння $f\left(d \right)=0$:

\[\begin(align) & f\left(d \right)=0; \ \ & 11 \ cdot \ left (d +66 \ right) \ cdot \ left (d +6 \ right) = 0; \&((d)_(1))=-66;\quad((d)_(2))=-6. \\ \end(align)\]

Саме тому я не надто поспішав розкривати дужки: у вихідному вигляді коріння було знайти дуже і дуже просто. Отже, абсцис дорівнює середньому арифметичному чисел−66 та −6:

\[((d)_(0))=\frac(-66-6)(2)=-36\]

Що нам дає виявлене число? При ньому необхідний твір приймає найменше значення(ми, до речі, так і не вважали $((y)_(\min ))$ — від нас це не потрібно). Водночас це число є різницею вихідної прогресії, тобто. ми знайшли відповідь.:)

Відповідь: −36

Завдання №9. Між числами $-\frac(1)(2)$ і $-\frac(1)(6)$ вставте три числа так, щоб вони разом з цими числами склали арифметичну прогресію.

Рішення. По суті нам потрібно скласти послідовність з п'яти чисел, причому перше і останнє число вже відомо. Позначимо недостатні числа змінними $x$, $y$ і $z$:

\[\left(((a)_(n)) \right)=\left\( -\frac(1)(2);x;y;z;-\frac(1)(6) \right\ )\]

Зазначимо, що число $y$ є "серединою" нашої послідовності - воно рівновіддалено і від чисел $x$ і $z$, і від чисел $-\frac(1)(2)$ і $-\frac(1)( 6) $. І якщо з чисел $x$ і $z$ ми в Наразіне можемо отримати $y$, то ось з кінцями прогресії справа інакша. Згадуємо про середнє арифметичне:

Тепер, знаючи $y$, ми знайдемо числа, що залишилися. Зауважимо, що $x$ лежить між числами $-\frac(1)(2)$ і щойно знайденим $y=-\frac(1)(3)$. Тому

Аналогічно розмірковуючи, знаходимо число, що залишилося:

Готово! Ми знайшли усі три числа. Запишемо їх у відповіді у тому порядку, в якому вони мають бути вставлені між вихідними числами.

Відповідь: $-\frac(5)(12);\ -\frac(1)(3);\ -\frac(1)(4)$

Завдання №10. Між числами 2 і 42 вставте кілька чисел, які разом із даними числами утворюють арифметичну прогресію, якщо відомо, що сума першого, другого та останнього із вставлених чисел дорівнює 56.

Рішення. Ще більше складна задача, Яка, однак, вирішується за тією ж схемою, що й попередні - через середнє арифметичне. Проблема в тому, що нам невідомо скільки конкретно чисел треба вставити. Тому припустимо для певності, що після вставки всього буде рівно $n$ чисел, причому перше з них - це 2, а останнє - 42. У цьому випадку шукана арифметична прогресія представима у вигляді:

\[\left(((a)_(n)) \right)=\left\( 2;((a)_(2));((a)_(3));...;(( a)_(n-1));42 \right\)\]

\[((a)_(2))+((a)_(3))+((a)_(n-1))=56\]

Зауважимо, проте, що числа $((a)_(2))$ і $((a)_(n-1))$ виходять із чисел 2 і 42, що стоять по краях, шляхом одного кроку назустріч один одному, тобто . до центру послідовності. А це означає, що

\[((a)_(2))+((a)_(n-1))=2+42=44\]

Але тоді записане вище вираз можна переписати так:

\[\begin(align) & ((a)_(2))+((a)_(3))+((a)_(n-1))=56; \\ & \left(((a)_(2))+((a)_(n-1)) \right)+((a)_(3))=56; \ & 44+((a)_(3))=56; \ & ((a)_(3)) = 56-44 = 12. \\ \end(align)\]

Знаючи $((a)_(3))$ і $((a)_(1))$, ми легко знайдемо різницю прогресії:

\[\begin(align) & ((a)_(3))-((a)_(1))=12-2=10; \& ((a)_(3))-((a)_(1))=\left(3-1 \right)\cdot d=2d; \ & 2d = 10 \ Rightarrow d = 5. \\ \end(align)\]

Залишилося лише знайти інші члени:

\[\begin(align) & ((a)_(1))=2; \ & ((a)_(2))=2+5=7; \ & ((a)_(3)) = 12; \ & ((a)_(4)) = 2 +3 \ cdot 5 = 17; \ & ((a)_(5))=2+4\cdot 5=22; \ & ((a)_(6))=2+5\cdot 5=27; \ & ((a)_(7))=2+6\cdot 5=32; \ & ((a)_(8)) = 2 +7 \ cdot 5 = 37; \ & ((a)_(9)) = 2 +8 \ cdot 5 = 42; \\ \end(align)\]

Таким чином, вже на 9-му кроці ми прийдемо в лівий кінець послідовності — число 42. Усього потрібно було вставити лише 7 чисел: 7; 12; 17; 22; 27; 32; 37.

Відповідь: 7; 12; 17; 22; 27; 32; 37

Текстові завдання з прогресіями

На закінчення хотілося б розглянути парочку щодо простих завдань. Ну, як простих: для більшості учнів, які вивчають математику в школі і не читали того, що написано вище, ці завдання можуть здатися жерстю. Проте саме такі завдання трапляються в ОДЕ та ЄДІ з математики, тому рекомендую ознайомитися з ними.

Завдання №11. Бригада виготовила у січні 62 деталі, а кожного наступного місяця виготовляла на 14 деталей більше, ніж у попередній. Скільки деталей виготовила бригада у листопаді?

Рішення. Очевидно, кількість деталей, розписана по місяцях, буде зростаючою арифметичним прогресом. Причому:

\[\begin(align) & ((a)_(1))=62;\quad d=14; \\ ((a)_(n))=62+\left(n-1 \right)\cdot 14. \\ \end(align)\]

Листопад - це 11-й місяць на рік, тому нам потрібно знайти $((a)_(11))$:

\[((a)_(11))=62+10\cdot 14=202\]

Отже, у листопаді буде виготовлено 202 деталі.

Завдання №12. Палітурна майстерня переплела в січні 216 книг, а кожного наступного місяця вона переплітала на 4 книги більше, ніж у попередній. Скільки книг переплела майстерня у грудні?

Рішення. Все теж саме:

$\begin(align) & ((a)_(1))=216;\quad d=4; \\ ((a)_(n))=216+\left(n-1 \right)\cdot 4. \\ \end(align)$

Грудень - це останній, 12-й місяць на рік, тому шукаємо $((a)_(12))$:

\[((a)_(12))=216+11\cdot 4=260\]

Це і є відповідь – 260 книг буде переплетено у грудні.

Що ж, якщо ви дочитали до сюди, поспішаю вас привітати: «курс молодого бійця» з арифметичних прогресій ви успішно пройшли. Можна сміливо переходити до наступного уроку, де ми вивчимо формулу суми прогресії, а також важливі та дуже корисні наслідки з неї.



Останні матеріали розділу:

Список відомих масонів Закордонні знамениті масони
Список відомих масонів Закордонні знамениті масони

Присвячується пам'яті митрополита Санкт-Петербурзького та Ладозького Іоанна (Сничева), який благословив мою працю з вивчення підривної антиросійської...

Що таке технікум - визначення, особливості вступу, види та відгуки Чим відрізняється інститут від університету
Що таке технікум - визначення, особливості вступу, види та відгуки Чим відрізняється інститут від університету

25 Московських коледжів увійшли до рейтингу "Топ-100" найкращих освітніх організацій Росії. Дослідження проводилося міжнародною організацією...

Чому чоловіки не стримують своїх обіцянок Невміння говорити «ні»
Чому чоловіки не стримують своїх обіцянок Невміння говорити «ні»

Вже довгий час серед чоловіків ходить закон: якщо назвати його таким можна, цього не може знати ніхто, чому ж вони не стримують свої обіцянки. По...