Обчислення площі криволінійної трапеції. Певний інтеграл (інтеграл Рімана) Площа криволінійної трапеції

Завдання 1(про обчислення площі криволінійної трапеції).

У декартовій прямокутної системикоординат xOy дана фігура (див. малюнок), обмежена віссю х, прямими х = a, х = b (a криволінійною трапецією. Потрібно обчислити площу криволінійної трапеції.
Рішення.Геометрія дає нам рецепти для обчислення площ багатокутників та деяких частин кола (сектора, сегмента). Використовуючи геометричні міркування, ми зможемо визначити лише наближене значення шуканої площі, розмірковуючи так.

Розіб'ємо відрізок [а; b] (підстава криволінійної трапеції) на n рівних частин; це розбиття здійснимо за допомогою точок x 1 x 2 ... x k ... x n-1. Проведемо через ці точки прямі, паралельні осіу. Тоді задана криволінійна трапеція розіб'ється на n елементів, на n вузьких стовпчиків. Площа всієї трапеції дорівнює сумі площ стовпчиків.

Розглянемо окремо k-ий стовпчик, тобто. криволінійну трапецію, основою якої є відрізок . Замінимо його прямокутником з тією самою основою і висотою, що дорівнює f(x k) (див. рисунок). Площа прямокутника дорівнює \(f(x_k) \ cdot \ Delta x_k \), де \ ( \ Delta x_k \) - Довжина відрізка ; Звичайно вважати складене твір наближеним значенням площі k-го стовпчика.

Якщо тепер зробити те саме з усіма іншими стовпчиками, то прийдемо до наступного результату: площа S заданої криволінійної трапеції приблизно дорівнює площі S n ступінчастої фігури, складеної з n прямокутників (див. малюнок):
\(S_n = f(x_0)\Delta x_0 + \dots + f(x_k)\Delta x_k + \dots + f(x_(n-1))\Delta x_(n-1) \)
Тут заради однаковості позначень ми вважаємо, що a = х 0 b = x n ; \(\Delta x_0 \) - Довжина відрізка , \(\Delta x_1 \) - Довжина відрізка, і т.д; при цьому, як ми домовилися вище, \(\Delta x_0 = \dots = \Delta x_(n-1) \)

Отже, (S \approx S_n \), причому це наближена рівність тим точніше, чим більше n.
За визначенням вважають, що потрібна площа криволінійної трапеції дорівнює межі послідовності (S n):
$$ S = \lim_(n \to \infty) S_n $$

Завдання 2(Про переміщення точки)
По прямій рухається матеріальна точка. Залежність швидкості від часу виражається формулою v = v(t). Знайти переміщення точки за проміжок часу [а; b].
Рішення.Якби рух був рівномірним, то завдання вирішувалося дуже просто: s = vt, тобто. s = v(b-а). Для нерівномірного руху доводиться використовувати самі ідеї, у яких було засновано рішення попередньої завдання.
1) Розділимо проміжок часу [а; b] на n рівних частин.
2) Розглянемо проміжок часу і вважатимемо, що у цей проміжок часу швидкість була постійною, такою, як у момент часу t k . Отже, ми вважаємо, що v = v (t k).
3) Знайдемо наближене значення переміщення точки за проміжок часу, це наближене значення позначимо s k
\(s_k = v(t_k) \Delta t_k \)
4) Знайдемо наближене значення переміщення s:
\(s \approx S_n \) де
\(S_n = s_0 + \dots + s_(n-1) = v(t_0)\Delta t_0 + \dots + v(t_(n-1)) \Delta t_(n-1) \)
5) Переміщення, що шукається, дорівнює межі послідовності (S n):
$$ s = \lim_(n \to \infty) S_n $$

Підведемо підсумки. Рішення різних завданьзвелися до однієї і тієї ж математичної моделі. Багато завдань з різних галузей науки і техніки приводять у процесі вирішення такої ж моделі. Значить, цю математичну модельтреба спеціально вивчити.

Поняття певного інтегралу

Дамо математичний опистієї моделі, яка була побудована в трьох розглянутих задачах для функції y = f(x), безперервної (але необов'язково невід'ємної, як передбачалося в розглянутих задачах) на відрізку [а; b]:
1) розбиваємо відрізок [а; b] на n рівних частин;
2) складаємо суму $$ S_n = f(x_0)\Delta x_0 + f(x_1)\Delta x_1 + \dots + f(x_(n-1))\Delta x_(n-1) $$
3) обчислюємо $$ \lim_(n \to \infty) S_n $$

В курсі математичного аналізудоведено, що ця межа у разі безперервної (або шматково-безперервної) функції існує. Його називають певним інтегралом від функції y = f(x) за відрізком [а; b]і позначають так:
\(\int\limits_a^b f(x) dx \)
Числа a та b називають межами інтегрування (відповідно нижнім та верхнім).

Повернемося до розглянутих вище завдань. Визначення площі, дане в задачі 1, тепер можна переписати так:
\(S = \int\limits_a^b f(x) dx \)
тут S - площа криволінійної трапеції, зображеної на малюнку вище. У цьому полягає геометричний зміст певного інтегралу.

Визначення переміщення точки, що рухається по прямій зі швидкістю v = v(t), за проміжок часу від t = a до t = b, дане в задачі 2, можна переписати так:

Формула Ньютона - Лейбніца

Спочатку відповімо питанням: який зв'язок між певним інтегралом і первообразной?

Відповідь можна знайти в задачі 2. З одного боку, переміщення точки s, що рухається по прямій зі швидкістю v = v(t), за проміжок часу від t = а до t = b і обчислюється за формулою
\(S = \int\limits_a^b v(t) dt \)

З іншого боку, координата точки, що рухається, є первісна для швидкості - позначимо її s(t); отже, переміщення s виражається формулою s = s(b) - s(a). У результаті отримуємо:
\(S = \int\limits_a^b v(t) dt = s(b)-s(a) \)
де s(t) - первісна для v(t).

У курсі математичного аналізу доведено таку теорему.
Теорема. Якщо функція y = f(x) безперервна на відрізку [а; b], то справедлива формула
\(S = \int\limits_a^b f(x) dx = F(b)-F(a) \)
де F(x) - первісна для f(x).

Наведену формулу зазвичай називають формулою Ньютона - Лейбніцана честь англійського фізика Ісаака Ньютона (1643-1727) та німецького філософа Готфріда Лейбніца (1646-1716), які отримали її незалежно один від одного і практично одночасно.

Насправді замість запису F(b) - F(a) використовують запис \(\left. F(x)\right|_a^b \) (її називають іноді подвійною підстановкою) і, відповідно, переписують формулу Ньютона - Лейбніца в такому вигляді:
\(S = \int\limits_a^b f(x) dx = \left. F(x)\right|_a^b \)

Обчислюючи певний інтеграл, спочатку знаходять первісну, а потім здійснюють подвійну підстановку.

Маючи формулу Ньютона - Лейбніца, можна отримати дві властивості певного інтеграла.

Властивість 1.Інтеграл від суми функцій дорівнює суміінтегралів:
\(\int\limits_a^b (f(x) + g(x))dx = \int\limits_a^b f(x)dx + \int\limits_a^b g(x)dx \)

Властивість 2. Постійний множникможна винести за знак інтегралу:
\(\int\limits_a^b kf(x)dx = k \int\limits_a^b f(x)dx \)

Обчислення площ плоских фігур за допомогою певного інтегралу

За допомогою інтегралу можна обчислювати площі не тільки криволінійних трапецій, а й плоских фігур. складного виглядунаприклад такого, який представлений на малюнку. Фігура Р обмежена прямими х = а, х = b та графіками безперервних функцій y = f(x), y = g(x), причому на відрізку [а; b] виконується нерівність \(g(x) \leq f(x) \). Щоб обчислити площу S такої фігури, будемо діяти так:
\(S = S_(ABCD) = S_(aDCb) - S_(aABb) = \int\limits_a^b f(x) dx - \int\limits_a^b g(x) dx = \)
\(= \int\limits_a^b (f(x)-g(x))dx \)

Отже, площа фігури S, обмеженої прямими х = а, х = b і графіками функцій y = f(x), y = g(x), безперервних на відрізку і таких, що для будь-якого x з відрізка [а; b] виконується нерівність \(g(x) \leq f(x) \), обчислюється за формулою
\(S = \int\limits_a^b (f(x)-g(x))dx \)

Таблиця невизначених інтегралів (первоподібних) деяких функцій

$$ \int 0 \cdot dx = C $$ $$ \int 1 \cdot dx = x+C $$ $$ \int x^n dx = \frac(x^(n+1))(n+1 ) + C \; \; (n \neq -1) $$ $$ \int \frac(1)(x) dx = \ln |x| +C $$ $$ \int e^x dx = e^x +C $$ $$ \int a^x dx = \frac(a^x)(\ln a) +C \;\; (a>0, \;\; a \neq 1) $$ $$ \int \cos x dx = \sin x +C $$ $$ \int \sin x dx = -\cos x +C $$ $ $ \int \frac(dx)(\cos^2 x) = \text(tg) x +C $$ $$ \int \frac(dx)(\sin^2 x) = -\text(ctg) x +C $$ $$ \int \frac(dx)(\sqrt(1-x^2)) = \text(arcsin) x +C $$ $$ \int \frac(dx)(1+x^2 ) = \text(arctg) x +C $$ $$ \int \text(ch) x dx = \text(sh) x +C $$ $$ \int \text(sh) x dx = \text(ch) ) x + C $$

Приклад1 . Обчислити площу фігури, обмеженою лініями: х + 2у - 4 = 0, у = 0, х = -3, і х = 2


Виконаємо побудову фігури (див. рис.) Будуємо пряму х + 2у – 4 = 0 за двома точками А(4;0) та В(0;2). Виразивши у через х отримаємо у = -0,5х + 2. За формулою (1), де f(x) = -0,5х + 2, а = -3, в = 2, знаходимо

S = = [-0,25 = 11,25 кв. од

приклад 2. Обчислити площу фігури, обмеженою лініями: х – 2у + 4 = 0, х + у – 5 = 0 та у = 0.

Рішення. Виконаємо побудову фігури.

Побудуємо пряму х - 2у + 4 = 0: у = 0, х = - 4, А (-4; 0); х = 0, у = 2, (0; 2).

Побудуємо пряму х + у - 5 = 0: у = 0, х = 5, С (5; 0), х = 0, у = 5, D (0; 5).

Знайдемо точку перетину прямих, розв'язавши систему рівнянь:

х = 2, у = 3; М(2; 3).

Для обчислення шуканої площі розіб'ємо трикутник АМС на два трикутники АМN і NМС, тому що при зміні х від А до N площа обмежена прямою, а при зміні х від N до С - прямий


Для трикутника АМN маємо: ; у = 0,5 х + 2, тобто f(x) = 0,5 х + 2, a = - 4, b = 2.

Для трикутника NМС маємо: y = – x + 5, тобто f(x) = – x + 5, a = 2, b = 5.

Обчисливши площу кожного з трикутників та склавши результати, знаходимо:

кв. од.

кв. од.

9+4,5 = 13,5 кв. од. Перевірка: = 0,5 АС = 0,5 кв. од.

приклад 3. Обчислити площу фігури, обмеженою лініями: y = x 2 , y = 0, x = 2, x = 3

У даному випадкупотрібно обчислити площу криволінійної трапеції, обмеженою параболою y = x 2 , Прямими x = 2 і x = 3і віссю Ох(див. рис.) За формулою (1) знаходимо площу криволінійної трапеції


= = 6кв. од.

приклад 4. Обчислити площу фігури, обмеженою лініями: у = - x 2 + 4 та у = 0

Виконаємо побудову фігури. Шукана площа укладена між параболою у = - x 2 + 4 та віссю Ох.


Знайдемо точки перетину параболи із віссю Ох. Вважаючи у = 0, знайдемо х = Так як ця фігура симетрична щодо осі Оу, то обчислимо площу фігури, розташованої праворуч від осі Оу, і отриманий результат вдвох: = +4x] кв. од. 2 = 2 кв. од.

Приклад 5. Обчислити площу фігури, обмеженою лініями: y 2 = x, yx = 1, x = 4

Тут потрібно обчислити площу криволінійної трапеції, обмеженою верхньою гілкою параболиy 2 = x, віссю Ох і прямими x = 1x = 4 (див. рис.)


За формулою (1), де f(x) = a = 1 та b = 4 маємо = (= кв. од.

Приклад 6 . Обчислити площу фігури, обмеженої лініями: y = sinx, y = 0, x = 0, x = .

Шукана площа обмежена напівхвильової синусоїди та віссю Ох (див. рис.).


Маємо – cosx = – cos = 1 + 1 = 2 кв. од.

Приклад 7. Обчислити площу фігури, обмеженої лініями: y = - 6х, у = 0 та х = 4.

Фігура розташована під віссю Ох (див. мал.).

Отже, її площу знаходимо за формулою (3)


= =

Приклад 8. Обчислити площу фігури, обмеженої лініями: y = і х = 2. Криву y = збудуємо за точками (див. рис.). Таким чином, площу фігури знаходимо за формулою (4)

Приклад 9 .

х 2 + у 2 = r 2 .

Тут потрібно обчислити площу, обмежену колом х 2 + у 2 = r 2 , тобто площа кола радіуса r з центром на початку координат. Знайдемо четверту частину цієї площі, взявши межі інтегрування від 0

доr; маємо: 1 = = [

Отже, 1 =

приклад 10. Обчислити площу фігури, обмеженою лініями: у = х 2 і у = 2х

Ця фігураобмежена параболою у = х 2 та прямий у = 2х (див. рис.) Для визначення точок перетину заданих лінійрозв'яжемо систему рівнянь:х 2 - 2х = 0 х = 0 і х = 2


Використовуючи для знаходження площі формулу (5), отримаємо

= }

Останні матеріали розділу:

Дати та події великої вітчизняної війни
Дати та події великої вітчизняної війни

О 4-й годині ранку 22 червня 1941 року війська фашистської Німеччини (5,5 млн осіб) перейшли кордони Радянського Союзу, німецькі літаки (5 тис) почали...

Все, що ви повинні знати про радіацію Джерела радіації та одиниці її виміру
Все, що ви повинні знати про радіацію Джерела радіації та одиниці її виміру

5. Дози випромінювання та одиниці виміру Дія іонізуючих випромінювань є складним процесом. Ефект опромінення залежить від величини...

Мізантропія, або Що робити, якщо я ненавиджу людей?
Мізантропія, або Що робити, якщо я ненавиджу людей?

Шкідливі поради: Як стати мізантропом і всіх радісно ненавидіти Ті, хто запевняє, що людей треба любити незалежно від обставин або...