Як визначити найменше значення функції без відрізка. Як знайти найменше значення функції

Дорогі друзі! До групи завдань, пов'язаних з похідною, входять завдання — в умові дано графік функції, кілька точок на цьому графіку і стоїть питання:

У якій точці значення похідної найбільше (найменше)?

Коротко повторимо:

Похідна в точці дорівнює кутовому коефіцієнтудотичної проходить черезцю точку графіка.

Уголовний коефіцієнт дотичної у свою чергу дорівнює тангенсукута нахилу цієї дотичної.

*Мається на увазі кут між дотичною та віссю абсцис.

1. На інтервалах зростання функції похідна має позитивне значення.

2. На інтервалах її спадання похідна має від'ємне значення.


Розглянемо наступний ескіз:


У точках 1,2,4 похідна функції має негативне значення, оскільки ці точки належать інтервалам спадання.

У точках 3,5,6 похідна функції має позитивне значення, оскільки ці точки належать інтервалам зростання.

Як бачимо, зі значенням похідної все ясно, тобто визначити який вона має знак (позитивний чи негативний) у певній точці графіка зовсім нескладно.

При чому, якщо ми подумки побудуємо дотичні в цих точках, то побачимо, що прямі кути, що проходять через точки 3, 5 і 6 утворюють з віссю оХ, що лежать в межах від 0 до 90 про, а прямі проходять через точки 1, 2 і 4 утворюють з віссю оХ кути в межах від 90 до 180 о.

*Взаємозв'язок зрозумілий: дотичні проходять через точки, що належать інтервалам зростання, функції утворюють з віссю оХ гострі кути, дотичні проходять через точки належать інтервалам зменшення функції утворюють з віссю оХ тупі кути.

Тепер важливе питання!

А як змінюється значення похідної? Адже щодо в різних точкахграфіка безперервної функції утворює різні кути, Залежно від того, через яку точку графіка вона проходить.

*Або, кажучи простою мовою, дотична розташована як би «горизонтальніше» або «вертикальніше». Подивіться:

Прямі утворюють з віссю оХ кути в межах від 0 до 90 о


Прямі утворюють з віссю оХ кути в межах від 90 до 180 о


Тому, якщо стоятимуть питання:

— в якій із точок графіка значення похідної має найменше значення?

— у якій із точок графіка значення похідної має найбільше значення?

то для відповіді необхідно розуміти, як змінюється значення тангенсу кута дотичної в межах від 0 до 180 о.

*Як уже сказано, значення похідної функції в точці дорівнює тангенсу кута нахилу дотичної до осі оХ.

Значення тангенсу змінюється так:

При зміні кута нахилу прямої від 0 до 90 про значення тангенса, а значить і похідної, змінюється відповідно від 0 до +∞;

При зміні кута нахилу прямий від 90 до 180 значення тангенса, а значить і похідної, змінюється відповідно –∞ до 0.

Наочно це видно за графіком функції тангенсу:

Говорячи простою мовою:

При куті нахилу дотичної від 0 до 90 про

Чим він ближче до 0о, тим більше значення похідної буде близько до нуля (з позитивного боку).

Чим кут ближче до 90о, тим більше значення похідної буде збільшуватися до +∞.

При куті нахилу дотичної від 90 до 180 про

Чим він ближчий до 90 про, тим більше значення похідної зменшуватиметься до –∞.

Чим кут буде ближче до 180 про, тим більше значення похідної буде близько до нуля (з негативного боку).

317543. На малюнку зображено графік функції y = f(x) та відзначені точки–2, –1, 1, 2. У якій із цих точок значення похідної найбільше? У відповіді вкажіть цю точку.


Маємо чотири точки: дві з них належать інтервалам на яких функція зменшується (це точки -1 і 1) і два інтервалам на яких функція зростає (це точки -2 і 2).

Можемо відразу зробити висновок у тому, що у точках –1 і 1 похідна має негативне значення, у точках –2 і 2 вона має позитивне значення. Отже в даному випадкунеобхідно проаналізувати точки –2 і 2 і визначити у якій їх значенні буде найбільшим. Побудуємо дотичні, що проходять через зазначені точки:


Значення тангенсу кута між прямою a і віссю абсцис буде більшим за значення тангенса кута між прямою b і цією віссю. Це означає, що значення похідної у точці –2 буде найбільшим.

Відповімо на таке запитання: у якій із точок –2, –1, 1 чи 2 значення похідної є найбільшим негативним? У відповіді вкажіть цю точку.

Похідна матиме негативне значення в точках, що належать інтервалам спадання, тому розглянемо точки -2 і 1. Побудуємо дотичні проходять через них:


Бачимо, що тупий кутміж прямою b і віссю оХ знаходиться «ближче» до 180про , Тому його тангенс буде більше тангенса кута, утвореного прямою а і віссю ОХ.

Таким чином, у точці х = 1 значення похідної буде найбільшим негативним.

317544. На малюнку зображено графік функції y = f(x) та відзначені точки–2, –1, 1, 4. У якій із цих точок значення похідної найменше? У відповіді вкажіть цю точку.


Маємо чотири точки: дві з них належать інтервалам, на яких функція зменшується (це точки –1 та 4) та дві інтервалам, на яких функція зростає (це точки –2 та 1).

Можемо відразу зробити висновок у тому, що у точках –1 і 4 похідна має негативне значення, у точках –2 і 1 вона має позитивне значення. Отже, у разі необхідно проаналізувати точки –1 і 4 і визначити – у якому їх значенні буде найменшим. Побудуємо дотичні, що проходять через зазначені точки:


Значення тангенсу кута між прямою a і віссю абсцис буде більшим за значення тангенса кута між прямою b і цією віссю. Це означає, що значення похідної у точці х = 4 буде найменшим.

Відповідь: 4

Сподіваюся, що «не перенавантажив» вас кількістю написаного. Насправді все дуже просто, варто тільки зрозуміти властивості похідної, її геометричний змісті як змінюється значення тангенсу кута від 0 до 180 о.

1. Спочатку визначте знаки похідної в даних точках (+ або -) та оберіть необхідні точки (залежно від поставленого питання).

2. Побудуйте дотичні у цих точках.

3. Користуючись графіком тангесоїди, схематично позначте кути та відобразітьА Олександр.

PS: Буду вдячний Вам, якщо розповісте про сайт у соціальних мережах.

Іноді завдання B14 трапляються «погані» функції, котрим складно знайти похідну. Раніше таке було лише на пробниках, але зараз ці завдання настільки поширені, що вже не можуть бути ігноровані під час підготовки до ЄДІ. І тут працюють інші прийоми, одне із яких монотонність. Визначення Функція f (x) називається монотонно зростаючою на відрізку , якщо для будь-яких точок x 1 і x 2 цього відрізка виконується таке: x 1


Визначення. Функція f (x) називається монотонно спадаючою на відрізку , якщо для будь-яких точок x 1 і x 2 цього відрізка виконується таке: x 1 f (x 2). Іншими словами, для зростання функції чим більше x, тим більше f (x). Для спадної функції все навпаки: що більше x, то менше f(x).


приклади. Логарифм монотонно зростає, якщо основа a > 1, і монотонно зменшується, якщо 0 0. f(x) = log a x (a > 0; a 1; x > 0) 1 і монотонно зменшується, якщо 0 0. f (x) = log a x (a > 0; a 1; x > 0)"> 1, і монотонно зменшується, якщо 0 0. f (x) = log a x (a > 0; a 1; x > 0)"> 1, і монотонно зменшується, якщо 0 0. f (x) = log a x (a > 0; a 1; x > 0)" title="Приклади .Логарифм монотонно зростає, якщо основа a > 1, і монотонно убуває, якщо 0 0. f(x) = log a x (a > 0; a 1; x > 0)"> title="приклади. Логарифм монотонно зростає, якщо основа a > 1, і монотонно зменшується, якщо 0 0. f(x) = log a x (a > 0; a 1; x > 0)"> !}


приклади. Показова функціяповодиться аналогічно логарифму: росте при a > 1 і зменшується при 0 0: 1 і убуває при 0 0:"> 1 і убуває при 0 0:"> 1 і убуває при 0 0:" title="Приклади. Показова функція поводиться аналогічно логарифму: росте при a > 1 і убуває при 0 0:"> title="приклади. Показова функція поводиться аналогічно логарифму: зростає при a > 1 і зменшується при 0 0:"> !}






0) або вниз (a 0) або вниз (a 9Координати вершини параболи Найчастіше аргумент функції замінюється на квадратний тричленвиду Його графік стандартна парабола, в якій нас цікавлять гілки: Гілки параболи можуть йти вгору (при a > 0) або вниз (a 0) або найбільше (a 0) або вниз (a 0) або вниз (a 0) або найбільше ( a 0) або вниз (a 0) або вниз (a title="Координати вершини параболи Найчастіше аргумент функції замінюється на квадратний тричлен виду Його графік стандартна парабола, в якій нас цікавлять гілки: Гілки параболи можуть йти вгору (при a > 0) або вниз (a








Відрізок за умови завдання відсутня. Отже, обчислювати f(a) та f(b) не потрібно. Залишається розглянути лише точки екстремуму; Але таких точок лише одна це вершина параболи x 0, координати якої обчислюються буквально усно і без будь-яких похідних.


Таким чином, розв'язання задачі різко спрощується і зводиться до двох кроків: Виписати рівняння параболи і знайти її вершину за формулою: Знайти значення вихідної функції в цій точці: f (x 0). Якщо жодних додаткових умовні, це і буде відповіддю.



0. Вершина параболи: x 0 = b/(2a) = 6/(2 · 1) = 6/2 = 3" title="Знайди найменше значенняфункції: Рішення: Під коренем стоїть квадратична функціяГрафік цієї функції парабола гілками вгору, оскільки коефіцієнт a = 1 > 0. Вершина параболи: x 0 = b/(2a) = 6/(2 · 1) = 6/2 = 3" 18Знайдіть найменше значення функції: Рішення: Під коренем стоїть квадратична функція Графік цієї функції парабола гілками вгору, оскільки коефіцієнт a = 1 > 0. Вершина параболи: x 0 = b/(2a) = 6/(2 · 1) = 6/2 = 3 0. Вершина параболи: x 0 = b/(2a) = 6/(2 · 1) = 6/2 = 3"> 0. Вершина параболи: x 0 = b/(2a) = 6/(2 · 1) = 6/2 = 3"> 0. Вершина параболи: x 0 = b/(2a) = 6/(2 · 1) = 6/2 = 3" title="Знайди найменше значення функції: Рішення: Під коренем стоїть квадратична функція Графік цієї функції парабола гілками вгору, оскільки коефіцієнт a = 1 > 0. Вершина параболи: x 0 = b/(2a) = 6/(2 · 1) = 6/2 = 3"> title="Знайдіть найменше значення функції: Рішення: Під коренем стоїть квадратична функція Графік цієї функції парабола гілками вгору, оскільки коефіцієнт a = 1 > 0. Вершина параболи: x 0 = b/(2a) = 6/(2 · 1) = 6/2 = 3"> !}


Знайдіть найменше значення функції: Рішення Під логарифмом знову квадратична функція. Графік парабола гілками вгору, т.к. a = 1 > 0. Вершина параболи: x 0 = b/(2a) = 2/(2 · 1) = 2/2 = 1 0. Вершина параболи: x 0 = b/(2a) = 2/(2 · 1) = 2/2 = 1"> 0. Вершина параболи: x 0 = b/(2a) = 2/(2 · 1) = 2/2 = 1"> 0. Вершина параболи: x 0 = b/(2a) = 2/(2 · 1) = 2/2 = 1" title="Знайди найменше значення функції: Рішення Під логарифмом знову квадратична функція. Графік парабола гілками вгору, тому що a = 1 > 0. Вершина параболи: x 0 = b/(2a) = 2/(2 · 1) = 2/2 = 1"> title="Знайдіть найменше значення функції: Рішення Під логарифмом знову квадратична функція. Графік парабола гілками вгору, т.к. a = 1 > 0. Вершина параболи: x 0 = b/(2a) = 2/(2 · 1) = 2/2 = 1"> !}


Знайдіть найбільше значення функції: Рішення: У показнику стоїть квадратична функція Перепишемо її в нормальному вигляді: Очевидно, що графік цієї функції парабола, гілки вниз (a = 1



Наслідки з області визначення функції Іноді для вирішення завдання B14 недостатньо просто знайти вершину параболи. Шукане значення може лежати на кінці відрізка, а зовсім не в точці екстремуму. Якщо завдання взагалі не вказаний відрізок, дивимося на область допустимих значеньвихідної функції. А саме:


0 2. Арифметичний квадратний коріньіснує тільки з невід'ємних чисел: 3.Знаменник дробу не повинен дорівнювати нулю:" тільки з невід'ємних чисел: 3.Знаменник дробу не повинен дорівнювати нулю:" class="link_thumb"> 26 !} 1. Аргумент логарифму має бути позитивним: y = log a f (x) f (x) > 0 2. Арифметичний квадратний корінь існує тільки з невід'ємних чисел: 3.Знаменник дробу не повинен дорівнювати нулю: 0 2. Арифметичний квадратний корінь існує тільки з невід'ємних чисел: 3.Знаменник дробу не повинен дорівнювати нулю:"> 0 2. Арифметичний квадратний корінь існує тільки з невід'ємних чисел: 3.Знаменник дробу не повинен дорівнювати нулю:"> 0 2.Арифметичний квадратний корінь існує тільки з невід'ємних чисел: 3.Знаменник дробу не повинен дорівнювати нулю:" корінь існує тільки з невід'ємних чисел: 3.Знаменник дробу не повинен дорівнювати нулю:"> title="1. Аргумент логарифму має бути позитивним: y = log a f (x) f (x) > 0 2. Арифметичний квадратний корінь існує тільки з невід'ємних чисел: 3.Знаменник дробу не повинен дорівнювати нулю:"> !}


Рішення Під коренем знову квадратична функція. Її графік парабола, але гілки спрямовані вниз, оскільки a = 1
Тепер знайдемо вершину параболи: x 0 = b/(2a) = (2)/(2 · (1)) = 2/(2) = 1 Точка x 0 = 1 належить відрізку ОДЗ і це добре. Тепер вважаємо значення функції в точці x 0, а також на кінцях ОДЗ: y(3) = y(1) = 0 Отже, отримали числа 2 і 0. Нас просять знайти найбільше число 2. Відповідь: 2



Зверніть увагу: нерівність сувора, тому кінці не належать ОДЗ. Цим логарифм відрізняється від кореня, де кінці нас повністю влаштовують. Шукаємо вершину параболи: x 0 = b/(2a) = 6/(2 · (1)) = 6/(2) = 3 Вершина параболи підходить за ОДЗ: x 0 = 3 (1; 5). Але оскільки кінці відрізка нас не цікавлять, вважаємо значення функції лише у точці x 0:


Y min = y(3) = log 0,5 (6 ·) = = log 0,5 (18 9 5) = log 0,5 4 = 2 Відповідь: -2

На уроці на тему «Застосування похідної для знаходження найбільшого та найменшого значень безперервної функції на проміжку» будуть розглянуті відносно прості завдання на знаходження найбільшого та найменшого значень функції на заданому проміжку за допомогою похідної.

Тема: Похідна

Урок: Застосування похідної знаходження найбільшого і найменшого значень безперервної функції на проміжку

На цьому занятті розглянемо більше просте завдання, А саме, буде заданий проміжок, буде задана безперервна функціяна цьому проміжку. Потрібно дізнатися найбільше та найменше значення заданої функціїна заданому проміжку.

№32.1 (б). Дано: , . Намалюємо графік функції (див. рис.1).

Мал. 1. Графік функції.

Відомо, що ця функція зростає на проміжку, отже, вона зростає і на відрізку. Отже, якщо визначити значення функції в точках і , то будуть відомі межі зміни цієї функції, її найбільше і найменше значення.

Коли аргумент збільшується від до 8, функція збільшується від до .

Відповідь: ; .

№ 32.2 (а) Дано: Знайти найбільше та найменше значення функції на заданому проміжку.

Побудуємо графік цієї функції (див. рис.2).

Якщо аргумент змінюється на проміжку , то функція збільшується від -2 до 2. Якщо аргумент збільшується від , то функція зменшується від 2 до 0.

Мал. 2. Графік функції.

Знайдемо похідну.

, . Якщо , то це значення належить заданому відрізку . Якщо то . Легко перевірити, якщо набуває інших значень, відповідні стаціонарні точки виходять за межі заданого відрізка. Порівняємо значення функції на кінцях відрізка та у відібраних точках, у яких похідна дорівнює нулю. Знайдемо

;

Відповідь: ;.

Отже, відповідь отримано. Похідну в даному випадку можна використовувати, можна не використовувати, застосувати властивості функції, які були вивчені раніше. Так буває не завжди, іноді застосування похідної – це єдиний метод, який дозволяє вирішувати подібні завдання.

Дано: , . Знайти найбільше та найменше значення функції на даному відрізку.

Якщо в попередньому випадку можна було обійтися без похідної - ми знали, як поводиться функція, то в даному випадку функція досить складна. Тому ту методику, яку ми згадали на попередньому завданні, застосуємо в повному обсязі.

1. Знайдемо похідну. Знайдемо критичні точки, звідси - критичні точки. З них вибираємо ті, що належать даному відрізку: . Порівняємо значення функції у точках , , . Для цього знайдемо

Проілюструємо результат малюнку (див. рис.3).

Мал. 3. Межі зміни значень функції

Бачимо, якщо аргумент змінюється від 0 до 2, функція змінюється не більше від -3 до 4. Функція змінюється не монотонно: вона або зростає, або зменшується.

Відповідь: ;.

Отже, на трьох прикладах було продемонстровано загальна методиказнаходження найбільшого та найменшого значення функції на проміжку, в даному випадку – на відрізку.

Алгоритм розв'язання задачі на знаходження найбільшого та найменшого значень функції:

1. Знайти похідну функцію.

2. Знайти критичні точки функції та відібрати ті точки, що знаходяться на заданому відрізку.

3. Знайти значення функції на кінцях відрізка та у відібраних точках.

4. Порівняти ці значення, і вибрати найбільше та найменше.

Розглянемо ще один приклад.

Знайти найбільше та найменше значення функції , .

Раніше було розглянуто графік цієї функції (див. рис.4).

Мал. 4. Графік функції.

На проміжку область значення цієї функції . Крапка - точка максимуму. При – функція зростає, при – функція зменшується. З креслення видно, що - не існує.

Отже, на уроці розглянули завдання про найбільше та найменше значення функції, коли заданим проміжком є ​​відрізок; сформулювали алгоритм розв'язання таких завдань.

1. Алгебра та початку аналізу, 10 клас (у двох частинах). Підручник для загальноосвітніх установ (профільний рівень) за ред. А. Г. Мордковіча. -М: Менімозіна, 2009.

2. Алгебра та початку аналізу, 10 клас (у двох частинах). Задачник для загальноосвітніх установ (профільний рівень) за ред. А. Г. Мордковіча. -М: Менімозіна, 2007.

3. Віленкін Н.Я., Івашев-Мусатов О.С., Шварцбурд С.І. Алгебра та математичний аналіздля 10 класу ( навчальний посібникдля учнів шкіл та класів з поглибленим вивченнямматематики).-М.: Просвітництво, 1996.

4. Галицький М.Л., Мошкович М.М., Шварцбурд С.І. Поглиблене вивчення алгебри та математичного анализа.-М.: Просвітництво, 1997.

5. Збірник завдань з математики для вступників до ВТУЗи (під ред. М.І.Сканаві).-М.: Вища школа, 1992.

6. Мерзляк А.Г., Полонський В.Б., Якір М.С. Алгебраїчний тренажер.-К.: А.С.К., 1997.

7. ЗвавичЛ.І., Капелюшник Л.Я., Чинкіна Алгебра та початку аналізу. 8-11 кл.: Посібник для шкіл та класів з поглибленим вивченням математики (дидактичні матеріали).-М.: Дрофа, 2002.

8. Саакян С.М., Гольдман А.М., Денисов Д.В. Завдання з алгебри та початку аналізу (посібник учнів 10-11 класів общеобразов. установ).-М.: Просвітництво, 2003.

9. Карп А.П. Збірник завдань з алгебри та початків аналізу: навч. посібник для 10-11 кл. з поглибл. вивч. математики.-М.: Просвітництво, 2006.

10. Глейзер Г.І. Історія математики у школі. 9-10 класи (посібник для вчителів).-М.: Просвітництво, 1983

Додаткові веб-ресурси

2. Портал Природних наук ().

Зроби вдома

№ 46.16, 46.17 (в) (Алгебра та початки аналізу, 10 клас (у двох частинах). Задачник для загальноосвітніх установ (профільний рівень) під ред. А. Г. Мордковича. -М.: Мнемозіна, 2007.)

Насправді часто доводиться використовувати похідну у тому, щоб обчислити найбільше і найменше значення функції. Ми виконуємо цю дію тоді, коли з'ясовуємо, як мінімізувати витрати, збільшити прибуток, розрахувати оптимальне навантаження виробництва та ін., тобто у випадках, коли потрібно визначити оптимальне значеннябудь-якого параметра. Щоб вирішити такі завдання правильно, треба добре розуміти, що таке найбільше та найменше значення функції.

Yandex.RTB R-A-339285-1

Зазвичай ми визначаємо ці значення в рамках деякого інтервалу x , який може своєю чергою відповідати всій області визначення функції або її частини. Це може бути як відрізок [a; b ] , і відкритий інтервал (a ; b) , (a ; b ) , [ a ; b) , нескінченний інтервал (a ; b) , (a ; b ) , [ a ; b) чи нескінченний проміжок - ∞ ; a , (- ∞ ; a ) , [ a ; + ∞) , (- ∞ ; + ∞) .

У цьому матеріалі ми розповімо, як обчислюється найбільше та найменше значення явно заданої функціїз однією змінною y = f (x) y = f (x).

Основні визначення

Почнемо, як завжди, із формулювання основних визначень.

Визначення 1

Найбільше значення функції y = f (x) на деякому проміжку x – це значення m a x y = f (x 0) x ∈ X , яке за будь-якого значення x x ∈ X , x ≠ x 0 робить справедливою нерівність f (x) ≤ f (x 0).

Визначення 2

Найменше значення функції y = f (x) на деякому проміжку x – це значення m i n x ∈ X y = f (x 0) , яке за будь-якого значення x ∈ X , x ≠ x 0 робить справедливою нерівність f(X f (x) ≥ f(x0) .

Ці визначення є досить очевидними. Ще простіше можна сказати так: найбільше значення функції – це її саме велике значенняна відомому інтервалі при абсцисі x 0 , а найменше - це найменше значення, що приймається на тому ж інтервалі при x 0 .

Визначення 3

Стаціонарними точками називаються такі значення аргументу функції, у яких її похідна звертається до 0 .

Для чого нам потрібно знати, що таке стаціонарні точки? Для відповіді це питання треба згадати теорему Ферма. З неї випливає, що стаціонарна точка – це така точка, в якій знаходиться екстремум функції, що диференціюється (тобто її локальний мінімум або максимум). Отже, функція прийматиме найменше або найбільше значення на певному проміжку саме в одній зі стаціонарних точок.

p align="justify"> Ще функція може приймати найбільше або найменше значення в тих точках, в яких сама функція є певною, а її першої похідної не існує.

Перше питання, яке виникає при вивченні цієї теми: чи у всіх випадках ми можемо визначити найбільше чи найменше значення функції на заданому відрізку? Ні, ми не можемо цього зробити тоді, коли межі заданого проміжку збігатимуться з межами області визначення, або якщо ми маємо справу з нескінченним інтервалом. Буває і так, що функція в заданому відрізку або на нескінченності прийматиме нескінченно малі або нескінченно великі значення. У цих випадках визначити найбільше та/або найменше значення неможливо.

Зрозумілішими ці моменти стануть після зображення на графіках:

Перший малюнок показує нам функцію, яка набуває найбільшого і найменшого значення (m a x y і m i n y) в стаціонарних точках, розташованих на відрізку [ - 6 ; 6].

Докладно розберемо випадок, зазначений на другому графіку. Змінимо значення відрізка на [1; 6] і отримаємо, що найбільше значення функції досягатиметься в точці з абсцисою у правій межі інтервалу, а найменше – у стаціонарній точці.

На третьому малюнку абсциси точок являють собою граничні точки відрізка [-3; 2]. Вони відповідають найбільшому та найменшому значенню заданої функції.

Тепер подивимось на четвертий малюнок. У ньому функція приймає m a x y (найбільше значення) і m i n y (найменше значення) у стаціонарних точках на відкритому інтервалі (-6; 6).

Якщо ми візьмемо інтервал [1; 6) то можна сказати, що найменше значення функції на ньому буде досягнуто в стаціонарній точці. Найбільшого значення нам буде невідомо. Функція могла б прийняти найбільше значення при x , що дорівнює 6 якщо б x = 6 належала інтервалу. Саме цей випадок намальовано на графіку 5 .

На графіку 6 найменше значення дана функціянабуває в правій межі інтервалу (- 3; 2], а про найбільше значення ми не можемо зробити певних висновків.

На малюнку 7 бачимо, що функція буде мати m a x y в стаціонарній точці, що має абсцису, рівну 1 . Найменшого значення функція досягне межі інтервалу з правого боку. На мінус нескінченності значення функції асимптотично наближатимуться до y = 3 .

Якщо ми візьмемо інтервал x ∈ 2; + ∞ , то побачимо, що задана функція не прийматиме на ньому ні найменшого, ні найбільшого значення. Якщо x прагне 2 , то значення функції прагнутимуть мінус нескінченності, оскільки пряма x = 2 – це вертикальна асимптота. Якщо ж абсцис прагне до плюс нескінченності, то значення функції асимптотично наближатимуться до y = 3 . Саме це випадок зображено малюнку 8 .

У цьому пункті ми наведемо послідовність дій, яку потрібно виконати знаходження найбільшого чи найменшого значення функції на певному відрізку.

  1. Спочатку знайдемо область визначення функції. Перевіримо, чи входить до неї заданий за умови відрізок.
  2. Тепер обчислимо точки, що містяться в даному відрізку, в яких немає першої похідної. Найчастіше їх можна зустріти у функцій, аргумент яких записаний під знаком модуля, або у статечних функційпоказник яких є дробово раціональним числом.
  3. Далі з'ясуємо, які стаціонарні точки потраплять у заданий відрізок. Для цього треба обчислити похідну функції, потім прирівняти її до 0 і вирішити рівняння, що вийшло в результаті, після чого вибрати відповідне коріння. Якщо у нас не вийде жодної стаціонарної точки або вони не потраплятимуть у заданий відрізок, ми переходимо до наступного кроку.
  4. Визначимо, які значення прийматиме функція в заданих стаціонарних точках (якщо вони є), або в тих точках, в яких не існує першої похідної (якщо вони є), або обчислюємо значення для x = a і x = b.
  5. 5. У нас вийшов ряд значень функції, з яких тепер потрібно вибрати найбільше і найменше. Це й будуть найбільше та найменше значення функції, які нам потрібно знайти.

Подивимося, як правильно застосувати цей алгоритм під час вирішення завдань.

Приклад 1

Умова:задана функція y = x3+4x2. Визначте її найбільше та найменше значення на відрізках [1; 4] і [-4; -1].

Рішення:

Почнемо з знаходження області визначення цієї функції. У цьому випадку їй буде багато всіх дійсних чиселкрім 0 . Іншими словами, D (y) : x ∈ (- ∞ ; 0) ∪ 0 ; + ∞. Обидва відрізки, задані в умові, будуть знаходитися всередині області визначення.

Тепер обчислюємо похідну функції згідно з правилом диференціювання дробу:

y " = x 3 + 4 x 2 " = x 3 + 4 " · x 2 - x 3 + 4 · x 2 " x 4 = = 3 x 2 · x 2 - (x 3 - 4) · 2 x x 4 = x 3 - 8 x 3

Ми дізналися, що похідна функції існуватиме у всіх точках відрізків [1; 4] і [-4; -1].

Тепер треба визначити стаціонарні точки функції. Зробимо це за допомогою рівняння x 3 – 8 x 3 = 0 . У нього є лише один дійсний корінь, рівний 2 . Він буде стаціонарною точкою функції і потрапить у перший відрізок [1; 4].

Обчислимо значення функції кінцях першого відрізка й у цій точці, тобто. для x = 1, x = 2 і x = 4:

y(1) = 1 3 + 4 1 2 = 5 y (2) = 2 3 + 4 2 2 = 3 y (4) = 4 3 + 4 4 2 = 4 1 4

Ми отримали, що найбільше значення функції m a x y x ∈ [1; 4 ] = y (2) = 3 буде досягнуто за x = 1 , а найменше m i n y x ∈ [ 1 ; 4 ] = y (2) = 3 – за x = 2 .

Другий відрізок не включає жодної стаціонарної точки, тому нам треба обчислити значення функції тільки на кінцях заданого відрізка:

y(-1) = (-1) 3 + 4 (-1) 2 = 3

Значить, m a x y x ∈ [- 4; - 1] = y (- 1) = 3, m i n y x ∈ [- 4; - 1] = y(-4) = - 3 3 4 .

Відповідь:Для відрізка [1; 4] - m a x y x ∈ [1; 4 ] = y (2) = 3 , m i n y x ∈ [ 1 ; 4 ] = y (2) = 3 для відрізка [ - 4 ; - 1 ] - m a x y x ∈ [ - 4; - 1] = y (- 1) = 3, m i n y x ∈ [- 4; - 1] = y(-4) = - 3 3 4 .

на малюнку:


Перед тим як вивчити даний спосіб, радимо вам повторити, як правильно обчислювати односторонню межу і межу на нескінченності, а також дізнатися про основні методи їх знаходження. Щоб знайти найбільше та/або найменше значення функції на відкритому або нескінченному інтервалі, виконуємо послідовно такі дії.

  1. Для початку потрібно перевірити, чи буде заданий інтервал бути підмножиною області визначення цієї функції.
  2. Визначимо всі точки, які містяться в потрібному інтервалі та в яких не існує першої похідної. Зазвичай вони бувають у функцій, де аргумент укладений у знаку модуля, і у статечних функцій з дрібно раціональним показником. Якщо ж ці точки відсутні, можна переходити до наступного кроку.
  3. Тепер визначимо, які стаціонарні точки потраплять до заданого проміжку. Спочатку прирівняємо похідну до 0, розв'яжемо рівняння і підберемо відповідне коріння. Якщо у нас немає жодної стаціонарної точки або вони не потрапляють у заданий інтервал, то одразу переходимо до подальшим діям. Їх визначає вигляд інтервалу.
  • Якщо інтервал має вигляд [a; b) то нам треба обчислити значення функції в точці x = a і односторонній межа lim x → b – 0 f (x) .
  • Якщо інтервал має вигляд (a; b], то нам треба обчислити значення функції в точці x = b і одностороння межа lim x → a + 0 f (x).
  • Якщо інтервал має вигляд (a; b), то нам треба обчислити односторонні межі lim x → b - 0 f (x), lim x → a + 0 f (x).
  • Якщо інтервал має вигляд [a; + ∞) , то треба обчислити значення в точці x = a і межа плюс нескінченності lim x → + ∞ f (x) .
  • Якщо інтервал виглядає як (- ∞ ; b ) , обчислюємо значення в точці x = b і межа на мінус нескінченності lim x → - ∞ f (x) .
  • Якщо - ∞; b , то вважаємо односторонню межу lim x → b - 0 f (x) і межу на мінус нескінченності lim x → - ∞ f (x)
  • Якщо ж - ∞; + ∞ , то вважаємо межі на мінус і плюс нескінченності lim x → + f (x) , lim x → - ∞ f (x) .
  1. Наприкінці потрібно зробити висновок на основі отриманих значень функції та меж. Тут можлива безліч варіантів. Так, якщо одностороння межа дорівнює мінус нескінченності або плюс нескінченності, то відразу зрозуміло, що про найменше і найбільше значення функції сказати нічого не можна. Нижче ми розберемо один типовий приклад. Детальний описдопоможуть вам зрозуміти, що до чого. За потреби можна повернутися до малюнків 4 - 8 у першій частині матеріалу.
Приклад 2

Умова: дана функція y = 3 e 1 x 2 + x - 6 - 4 . Обчисліть її найбільше та найменше значення в інтервалах - ∞ ; - 4, - ∞; - 3, (-3; 1], (-3; 2), [1; 2), 2; + ∞, [4; + ∞).

Рішення

Насамперед знаходимо область визначення функції. У знаменнику дробу стоїть квадратний тричлен, який не повинен звертатися до 0:

x 2 + x - 6 = 0 D = 1 2 - 4 · 1 · (- 6) = 25 x 1 = - 1 - 5 2 = - 3 x 2 = - 1 + 5 2 = 2 ⇒ D (y) : x ∈ (- ∞ ; - 3) ∪ (- 3 ; 2) ∪ (2 ; + ∞)

Ми отримали область визначення функції, до якої належать всі зазначені в інтервалі.

Тепер виконаємо диференціювання функції та отримаємо:

y " = 3 e 1 x 2 + x - 6 - 4 " = 3 · e 1 x 2 + x - 6 " = 3 · e 1 x 2 + x - 6 · 1 x 2 + x - 6 " = = 3 · e 1 x 2 + x - 6 · 1 " · x 2 + x - 6 - 1 · x 2 + x - 6 "(x 2 + x - 6) 2 = - 3 · (2 ​​x + 1) · e 1 x 2 + x - 6 x 2 + x - 6 2

Отже, похідні функції існують по всій області її визначення.

Перейдемо до знаходження стаціонарних точок. Похідна функції звертається до 0 при x = - 1 2 . Це стаціонарна точка, яка знаходиться в інтервалах (-3; 1] і (-3; 2).

Обчислимо значення функції при x = - 4 для проміжку (- ∞ ; - 4 ] , а також межа на мінус нескінченності:

y (- 4) = 3 e 1 (- 4) 2 + (- 4) - 6 - 4 = 3 e 1 6 - 4 ≈ - 0 . 456 lim x → - ∞ 3 e 1 x 2 + x - 6 = 3 e 0 - 4 = - 1

Оскільки 3 e 1 6 - 4 > - 1 , значить, m a x y x ∈ (- ∞ ; - 4 ) = y (- 4) = 3 e 1 6 - 4. Це не дає нам можливості однозначно визначити найменше значення функції. зробити висновок, що внизу є обмеження - 1, оскільки саме до цього значення функція наближається асимптотично до мінус нескінченності.

Особливістю другого інтервалу є те, що в ньому немає жодної стаціонарної точки та жодної суворої межі. Отже, ні найбільшого, ні найменшого значення функції ми не зможемо обчислити. Визначивши межу на мінус нескінченності та при прагненні аргументу до - 3 з лівого боку, ми отримаємо лише інтервал значень:

lim x → - 3 - 0 3 e 1 x 2 + x - 6 - 4 = lim x → - 3 - 0 3 e 1 (x + 3) (x - 3) - 4 = 3 e 1 (- 3 - 0 + 3) (- 3 - 0 - 2) - 4 = = 3 e 1 (+ 0) - 4 = 3 e + ∞ - 4 = + ∞ lim x → - ∞ 3 e 1 x 2 + x - 6 - 4 = 3 e 0 - 4 = - 1

Значить значення функції будуть розташовані в інтервалі - 1 ; + ∞

Щоб знайти найбільше значення функції у третьому проміжку, визначимо її значення стаціонарної точці x = - 1 2 , якщо x = 1 . Також нам треба буде знати односторонню межу для того випадку, коли аргумент прагне до - 3 з правого боку:

y - 1 2 = 3 e 1 - 1 2 2 + - 1 2 - 6 - 4 = 3 e 4 25 - 4 ≈ - 1 . 444 y (1) = 3 e 1 1 2 + 1 - 6 - 4 ≈ - 1 . 644 lim x → - 3 + 0 3 e 1 x 2 + x - 6 - 4 = lim x → - 3 + 0 3 e 1 (x + 3) (x - 2) - 4 = 3 e 1 - 3 + 0 + 3 (-3 + 0 - 2) - 4 = = 3 e 1 (- 0) - 4 = 3 e - ∞ - 4 = 3 · 0 - 4 = - 4

У нас вийшло, що найбільше значення функція набуде в стаціонарній точці m a x y x ∈ (3 ; 1 ] = y - 1 2 = 3 e - 4 25 - 4. Що стосується найменшого значення, то його ми не можемо визначити. Все, що нам відомо , – це наявність обмеження знизу до -4.

Для інтервалу (-3; 2) візьмемо результати попереднього обчислення і ще раз підрахуємо, чому дорівнює одностороння межа при прагненні до 2 з лівого боку:

y - 1 2 = 3 e 1 - 1 2 2 + - 1 2 - 6 - 4 = 3 e - 4 25 - 4 ≈ - 1 . 444 lim x → - 3 + 0 3 e 1 x 2 + x - 6 - 4 = - 4 lim x → 2 - 0 3 e 1 x 2 + x - 6 - 4 = lim x → - 3 + 0 3 e 1 (x + 3) (x - 2) - 4 = 3 e 1 (2 - 0 + 3) (2 - 0 - 2) - 4 = = 3 e 1 - 0 - 4 = 3 e - ∞ - 4 = 3 · 0 - 4 = - 4

Значить, m a x y x ∈ (- 3 ; 2) = y - 1 2 = 3 e - 4 25 - 4 а найменше значення визначити неможливо, і значення функції обмежені знизу числом - 4 .

Виходячи з того, що у нас вийшло у двох попередніх обчисленнях, ми можемо стверджувати, що на інтервалі [1; 2) найбільше значення функція прийме при x = 1, а знайти найменше неможливо.

На проміжку (2 ; + ∞) функція досягне ні найбільшого, ні найменшого значення, тобто. вона прийматиме значення з проміжку - 1; + ∞.

lim x → 2 + 0 3 e 1 x 2 + x - 6 - 4 = lim x → - 3 + 0 3 e 1 (x + 3) (x - 2) - 4 = 3 e 1 (2 + 0 + 3 ) (2 + 0 - 2) - 4 = = 3 e 1 (+ 0) - 4 = 3 e + ∞ - 4 = + ∞ lim x → + ∞ 3 e 1 x 2 + x - 6 - 4 = 3 e 0 - 4 = - 1

Обчисливши, чому дорівнює значення функції при x = 4 , з'ясуємо, що m a x y x ∈ [ 4 ; + ∞) = y (4) = 3 e 1 14 - 4 і задана функція на плюс нескінченності буде асимптотично наближатися до прямої y = - 1 .

Порівняємо те, що в нас вийшло в кожному обчисленні, з графіком заданої функції. На малюнку асимптоти показано пунктиром.

Це все, що ми хотіли розповісти про знаходження найбільшого та найменшого значення функції. Ті послідовності дій, які ми привели, допоможуть зробити необхідні обчислення максимально швидко та просто. Але пам'ятайте, що часто буває корисно спочатку з'ясувати, на яких проміжках функція зменшуватиметься, а на яких зростатиме, після чого можна робити подальші висновки. Так можна більш точно визначити найбільше та найменше значення функції та обґрунтувати отримані результати.

Якщо ви помітили помилку в тексті, будь ласка, виділіть її та натисніть Ctrl+Enter

Процес пошуку найменшого і максимального значення функції на відрізку нагадує цікавий обліт об'єкта (графіка функції) на гелікоптері з обстрілом з далекобійної гармати певних точок і вибором з цих точок дуже особливих точок для контрольних пострілів. Крапки вибираються певним чином і по певним правилам. За якими правилами? Про це ми далі й поговоримо.

Якщо функція y = f(x) безперервна на відрізку [ a, b] , то вона досягає на цьому відрізку найменшого і найбільшого значень . Це може статися або в точках екстремуму, або кінцях відрізка. Тому для знаходження найменшого і найбільшого значень функції , безперервний на відрізку [ a, b], потрібно обчислити її значення у всіх критичних точкахі на кінцях відрізка, а потім вибрати з них найменше та найбільше.

Нехай, наприклад, потрібно визначити найбільше значення функції f(x) на відрізку [ a, b]. Для цього слід знайти всі її критичні точки, що лежать на [ a, b] .

Критичною точкою називається точка, в якій функція визначена, а її похіднаабо дорівнює нулю, або немає. Потім слід обчислити значення функції критичних точках. І, нарешті, слід порівняти між собою за величиною значення функції в критичних точках і кінцях відрізка ( f(a) та f(b)). Найбільше з цих чисел і буде найбільшим значенням функції на відрізку [a, b] .

Аналогічно вирішуються завдання на перебування найменших значень функції .

Шукаємо найменше та найбільше значення функції разом

Приклад 1. Знайти найменше та найбільше значення функції на відрізку [-1, 2] .

Рішення. Знаходимо похідну цієї функції. Прирівняємо похідну нулю () та отримаємо дві критичні точки: і . Для знаходження найменшого та найбільшого значень функції на заданому відрізку достатньо обчислити її значення на кінцях відрізка і в точці, оскільки точка не належить відрізку [-1, 2]. Ці значення функції - такі: , , . З цього виходить що найменше значення функції(на графіці нижче позначено червоним), що дорівнює -7, досягається на правому кінці відрізка - у точці , а найбільше(теж червоне на графіці), дорівнює 9, - у критичній точці .

Якщо функція безперервна в деякому проміжку і цей проміжок не є відрізком (а є, наприклад, інтервалом; різниця між інтервалом та відрізком: граничні точки інтервалу не входять до інтервалу, а граничні точки відрізка входять у відрізок), то серед значень функції може і не бути найменшого та найбільшого. Так, наприклад, функція, зображена на малюнку нижче, безперервна на ]-∞, +∞[ і не має найбільшого значення.

Однак для будь-якого проміжку (закритого, відкритого чи нескінченного) справедлива наступна властивість безперервних функцій.

Приклад 4. Знайти найменше та найбільше значення функції на відрізку [-1, 3] .

Рішення. Знаходимо похідну цієї функції як похідну приватного:

.

Прирівнюємо похідну нулю, що дає нам одну критичну точку: . Вона належить відрізку [-1, 3]. Для знаходження найменшого та найбільшого значень функції на заданому відрізку знаходимо її значення на кінцях відрізка та в знайденій критичній точці:

Порівнюємо ці значення. Висновок: , рівного -5/13, у точці та найбільшого значення, рівного 1, у точці .

Продовжуємо шукати найменше та найбільше значення функції разом

Існують викладачі, які на тему знаходження найменшого і максимального значень функції не дають студентам на вирішення приклади складніше щойно розглянутих, тобто таких, у яких функція - многочлен чи дріб, чисельник і знаменник якої - многочлены. Але ми не обмежимося такими прикладами, оскільки серед викладачів бувають любителі змусити студентів думати по повній (таблиці похідних). Тому в хід підуть логарифм та тригонометрична функція.

Приклад 6. Знайти найменше та найбільше значення функції на відрізку .

Рішення. Знаходимо похідну цієї функції як похідну твори :

Прирівнюємо похідну нулю, що дає одну критичну точку: . Вона належить відрізку. Для знаходження найменшого та найбільшого значень функції на заданому відрізку знаходимо її значення на кінцях відрізка та в знайденій критичній точці:

Результат усіх дій: функція досягає найменшого значення, рівного 0, у точці та в точці та найбільшого значення, рівного e², у точці.

Приклад 7. Знайти найменше та найбільше значення функції на відрізку .

Рішення. Знаходимо похідну цієї функції:

Прирівнюємо похідну нулю:

Єдина критична точка належить відрізку. Для знаходження найменшого та найбільшого значень функції на заданому відрізку знаходимо її значення на кінцях відрізка та в знайденій критичній точці:

Висновок: функція досягає найменшого значення, рівного , у точці та найбільшого значення, рівного , у точці .

У прикладних екстремальних задачах знаходження найменшого (найбільшого) значень функції, як правило, зводиться до знаходження мінімуму (максимуму). Але більший практичний інтерес мають самі мінімуми чи максимуми, а ті значення аргументу, у яких досягаються. При вирішенні прикладних завдань виникає додаткові труднощі- Складання функцій, що описують аналізоване явище або процес.

Приклад 8.Резервуар ємністю 4 має форму паралелепіпеда з квадратною основою і відкритий зверху, потрібно вилудити оловом. Якими мають бути розміри резервуара, щоб на його покриття пішло найменша кількістьматеріалу?

Рішення. Нехай x- сторона основи, h- Висота резервуара, S- площа поверхні без кришки, V- Його обсяг. Площа поверхні резервуара виражається формулою, тобто. є функцією двох змінних. Щоб виразити Sяк функцію однієї змінної, скористаємося тим, що , звідки . Підставивши знайдений вираз hу формулу для S:

Досліджуємо цю функцію на екстремум. Вона визначена і диференційована всюди ]0, +∞[ , причому

.

Прирівнюємо похідну нулю () і знаходимо критичну точку. Крім того, при похідна не існує, але це значення не входить в область визначення і тому не може бути точкою екстремуму. Отже, єдина критична точка. Перевіримо її на наявність екстремуму, використовуючи другий достатня ознака. Знайдемо другу похідну. При другому похідному більше нуля (). Значить, при функція досягає мінімуму . Оскільки цей мінімум - єдиний екстремум цієї функції, і є її найменшим значенням. Отже, сторона основи резервуара повинна дорівнювати 2 м, а його висота .

Приклад 9.З пункту A, що знаходиться на лінії залізниці, в пункт Звіддалений від неї на відстані l, повинні переправити вантажі. Вартість провезення вагової одиниці на одиницю відстані залізницею дорівнює, а шосе вона дорівнює. До якої точки Млінії залізниціслід провести шосе, щоб транспортування вантажу з Ав Збула найбільш економічною (ділянка АВзалізниці передбачається прямолінійним)?



Останні матеріали розділу:

Персоналії.  ґ.  н.  Троєпольський - радянський письменник, лауреат державної премії СРСР Троєпольський гавриїл Миколайович біографія для дітей
Персоналії. ґ. н. Троєпольський - радянський письменник, лауреат державної премії СРСР Троєпольський гавриїл Миколайович біографія для дітей

Гаврило Миколайович Троєпольський народився 16 листопада (29 н.с.) 1905 року в селі Новоспасівка Тамбовської губернії в сім'ї священика. Отримав...

Функціональна структура біосфери
Функціональна структура біосфери

Тривалий період добіологічного розвитку нашої планети, що визначається дією фізико-хімічних факторів неживої природи, закінчився...

Перетворення російської мови за Петра I
Перетворення російської мови за Петра I

Петровські реформи завжди сприймалися неоднозначно: хтось із сучасників бачив у ньому новатора, який «прорубав вікно до Європи», хтось дорікав...