Показник заломлення повітря дорівнює. Абсолютний показник заломлення

Заломлення показник

Показник переломленняречовини - величина, рівна відношеннюфазових швидкостей світла (електромагнітних хвиль) у вакуумі та в даному середовищі . Також про показник заломлення іноді говорять для будь-яких інших хвиль, наприклад звукових, хоча в таких випадках, як останній, визначення, звичайно, доводиться якось модифікувати.

Показник заломлення залежить від властивостей речовини і довжини хвилі випромінювання, для деяких речовин показник заломлення досить сильно змінюється при зміні частоти електромагнітних хвиль від низьких частот до оптичних і далі, а також може різкіше змінюватися в певних областях частотної шкали. За умовчанням зазвичай мають на увазі оптичний діапазон або діапазон, що визначається контекстом.

Посилання

  • RefractiveIndex.INFO база даних показників заломлення

Wikimedia Foundation. 2010 .

Дивитися що таке "Показник" в інших словниках:

    Відносний двох середовищ n21, безрозмірне відношення швидкостей поширення оптичного випромінювання(Світла) в першій (c1) і в другій (с2) середовищах: n21 = с1 / с2. Водночас відносить. П. п. є відношення синусів в го л а п д е н я j і уг л ... Фізична енциклопедія

    Показник заломлення …

    Показник заломлення. * * * ПЕРЕЛОМЛЕННЯ ПОКАЗНИК ПЕРЕЛОМЛЕННЯ ПОКАЗНИК, див. Енциклопедичний словник- ПОКАЗНИК ПЕРЕЛОМЛЕННЯ, величина, що характеризує середовище і дорівнює відношенню швидкості світла у вакуумі до швидкості світла в середовищі (абсолютний показник заломлення). Показник заломлення n залежить від діелектричної e та магнітної m проникності. Ілюстрований енциклопедичний словник

    - (Див. ПРИМІЛКИ ПОКАЗНИК). Фізичний енциклопедичний словник. М.: Радянська енциклопедія. Головний редакторА. М. Прохоров. 1983 р. … Фізична енциклопедія

    Див Заломлення показник … Велика Радянська Енциклопедія

    Відношення швидкості світла у вакуумі до швидкості світла у середовищі (абсолютний показник заломлення). Відносний показник заломлення 2 середовищ відношення швидкості світла в середовищі, з якого світло падає на межу розділу, до швидкості світла по другій. Великий Енциклопедичний словник

Лабораторна робота

Заломлення світла. Вимірювання показника заломлення рідини

за допомогою рефрактометра

Мета роботи: поглиблення уявлень про явище заломлення світла; вивчення методики вимірювання показника заломлення рідких середовищ; вивчення принципу роботи із рефрактометром.

Устаткування: рефрактометр, розчини. кухонної солі, піпетка, м'яка тканина для протирання оптичних деталей приладів.

Теорія

Закони відображення та заломлення світла. Показник переломлення.

На межі поділу середовищ світло змінює напрямок свого поширення. Частина світлової енергії повертається у середу, тобто. відбувається відбиття світла. Якщо друге середовище прозоре, то частина світла за певних умов проходить через межу розділу середовищ, змінюючи при цьому, як правило, напрямок поширення. Це явище називається заломленням світла (Рис. 1).

Рис. 1. Відображення та заломлення світла на плоскій межі розділу двох середовищ.

Напрямок відбитого та заломленого променів при проходженні світла через плоску межу розділу двох прозорих середовищ визначаються законами відбиття та заломлення світла.

Закон відображення світла.Відбитий промінь лежить у одній площині з падаючим променем і нормаллю, відновленої до площині розділу середовищ у точці падіння. Кут падіння дорівнює кутувідображення
.

Закон заломлення світла.Заломлений промінь лежить в одній площині з падаючим променем і нормаллю, відновленою до площини поділу середовищ у точці падіння. Відношення синуса кута падіння α до синуса кута заломлення β є величина стала для даних двох середовищ, звана відносним показником заломлення другого середовища по відношенню до першої:

Відносний показник заломлення двох середовищ дорівнює відношеннюшвидкості поширення світла в першому середовищіv 1 до швидкості світла в другому середовищіv 2:

Якщо світло йдез вакууму в середу, то показник заломлення середовища щодо вакууму називається абсолютним показником заломлення цього середовища і дорівнює відношенню швидкості світла у вакуумі здо швидкості світла в даному середовищі:

Абсолютні показники заломлення завжди більше одиниці; для повітря nприйнято за одиницю.

Відносний показник заломлення двох середовищ можна виразити через їх абсолютні показники n 1 і n 2 :

Визначення показника заломлення рідини

Для швидкого та зручного визначення показника заломлення рідин існує спеціальні оптичні прилади – рефрактометри, основною частиною яких є дві призми (рис. 2): допоміжна Пр. 1та вимірювальна Пр.2.У зазор між призмами наливається рідина, що досліджується.

При вимірюваннях показників можуть бути використані два методи: метод ковзного променя (для прозорих рідин) та метод повного внутрішнього відбиття (для темних, каламутних та пофарбованих розчинів). У цьому роботі використовується перший їх.

У методі ковзного променя світло від зовнішнього джерела проходить крізь межу призми Пр.1,розсіюється на її матовій поверхні АСі далі через шар досліджуваної рідини проникає у призму Пр.2.Матова поверхня стає джерелом променів усіх напрямків, тому вона може спостерігатися крізь межу ЕF призми Пр.2.Проте грань АСможна спостерігати крізь ЕFтільки під кутом, великим деякого граничного мінімального кута i. Величина цього кута однозначно пов'язана з показником заломлення рідини, що знаходиться між призмами, що й стане основною ідеєю конструкції рефрактометра.

Розглянемо проходження світла через межу ЕFнижньої вимірювальної призми Пр.2.Як видно із рис. 2, застосовуючи двічі закон заломлення світла, можна отримати два співвідношення:

(1)

(2)

Вирішуючи цю систему рівнянь, неважко дійти висновку, що показник заломлення рідини

(3)

залежить від чотирьох величин: Q, r, r 1 і i. Проте чи всі вони незалежні. Так наприклад,

r+ s= R , (4)

де R - заломлюючий кут призми Пр.2. Крім того, задавши куту Qмаксимальне значення 90°, з рівняння (1) отримаємо:

(5)

Але максимальному значенню кута r , як це видно із рис. 2 та співвідношень (3) і (4), відповідають мінімальні значення кутів i і r 1 , тобто. i min і r min .

Таким чином, показник заломлення рідини для випадку "ковзаючих" променів пов'язаний тільки з кутом. i. При цьому існує мінімальне значення кута i, коли грань АСще спостерігається, т. е. у зору вона здається дзеркально білої. Для менших кутів спостереження грань не видно, й у зору це місце здається чорним. Оскільки зорова труба приладу захоплює порівняно широку кутову зону, то поле зору одночасно спостерігаються світлий і чорний ділянки, межа між якими відповідає мінімальному куту спостереження і однозначно пов'язана з показником заломлення рідини. Використовуючи остаточну розрахункову формулу:

(її висновок опущений) та ряд рідин з відомими показниками заломлення, можна проградуювати прилад, тобто встановити однозначну відповідність між показниками заломлення рідин та кутами i min . Усі наведені формули виведені для променів однієї довжини хвилі.

Світло різних довжин хвиль переломлюватиметься з урахуванням дисперсії призми. Таким чином, при освітленні призми білим світлом межа розділу буде розмита та забарвлена ​​в різні кольори внаслідок дисперсії. Тому в кожному рефрактометрі є компенсатор, який дає змогу усунути результат дисперсії. Він може складатися з однієї або двох призм прямого зору – призм Амічі. Кожна призма Амічі складається з трьох скляних призм з різними показниками заломлення та різною дисперсією, наприклад, крайні призми виготовлені з кронгласу, а середня – з флінтгласу (кронглас та флінтглас – сорти скла). Поворотом призми компенсатора за допомогою спеціального пристрою добиваються різкого без забарвлення зображення межі розділу, положення якої відповідає значенню показника заломлення жовтої лінії натрію λ =5893 Å (призми розраховані так, щоб промені з довжиною хвилі 5893 Å не відчували в них відхилення).

Промені, що пройшли компенсатор, потрапляють в об'єктив зорової труби, далі через призму, що звертає, проходять через окуляр зорової труби в око спостерігача. Схематичний перебіг променів показано на рис. 3.

Шкала рефрактометра відградуйована у значеннях показника заломлення та концентрації розчину сахарози у воді та розташована у фокальній площині окуляра.

експериментальна частина

Завдання 1. Перевірка рефрактометра.

Спрямуйте світло за допомогою дзеркала на допоміжну призму рефрактометра. Піднявши допоміжну призму, нанесіть піпеткою кілька крапель дистильованої води на вимірювальну призму. Опустивши допоміжну призму, досягайте найкращої освітленості поля зору та встановіть окуляр на чітку видимість перехрестя та шкали показників заломлення. Повертаючи камеру вимірювальної призми, отримайте в полі зору межу світла та тіні. Обертаючи головку компенсатора, досягніть усунення забарвлення межі світла і тіні. Поєднайте межу світла та тіні з точкою перехрестя та виміряйте показник заломлення води n ізм . Якщо рефрактометр справний, то для дистильованої води має вийти значення n 0 = 1,333, якщо показання відрізняються від цього значення, потрібно визначити виправлення Δn= n ізм - 1333, яку потім слід враховувати при подальшій роботі з рефрактометром. Поправки внесіть до таблиці 1.

Таблиця 1.

n 0

n ізм

Δ n

Н 2 Про

Завдання 2. Визначення показника заломлення рідини.

    Визначте показники заломлення розчинів відомих концентрацій із урахуванням знайденої поправки.

Таблиця 2.

З, про. %

n ізм

n іст

    Побудуйте графік залежності показника заломлення розчинів кухонної солі від концентрації за отриманими результатами. Зробіть висновок про перебіг залежності n від; зробіть висновки щодо точності вимірювань на рефрактометрі.

    Візьміть розчин солі невідомої концентрації З x , визначте його показник заломлення та за графіком знайдіть концентрацію розчину.

    Заберіть робоче місце, обережно протріть призми рефрактометрів вологою чистою ганчірочкою.

Контрольні питання

    Відображення та заломлення світла.

    Абсолютний та відносний показники заломлення середовища.

    Принцип роботи рефрактометрів. Метод ковзного променя.

    Схематичний перебіг променів у призмі. Навіщо необхідні призми компенсатора?

Поширення, відображення та заломлення світла

Природа світла – електромагнітна. Одним із доказів цього є збіг величин швидкостей електромагнітних хвиль та світла у вакуумі.

У однорідному середовищі світло поширюється прямолінійно. Це твердження називається законом прямолінійного поширення світла. Досвідченим доказом цього закону є різкі тіні, що даються точковими джерелами світла.

Геометричну лінію, що вказує напрямок поширення світла, називають світловим променем. В ізотропному середовищі світлові промені спрямовані перпендикулярно до хвильового фронту.

Геометричне місце точок середовища, що коливаються в однаковій фазі, називають хвильовою поверхнею, а безліч точок, до яких дійшло коливання на даний момент часу, - фронтом хвилі. Залежно від виду фронту хвилі розрізняють плоскі та сферичні хвилі.

Для пояснення процесу поширення світла використовують загальний принцип хвильової теорії про переміщення фронту хвилі у просторі, запропонований голландським фізиком Х.Гюйгенсом. Згідно з принципом Гюйгенса кожна точка середовища, до якої доходить світлове збудження, є центром вторинних сферичних хвиль, що поширюються також зі швидкістю світла. Поверхня, що огинає фронти цих вторинних хвиль, дає положення фронту хвилі, що дійсно розповсюджується в цей момент часу.

Необхідно розрізняти світлові пучки та світлові промені. Світловий пучок – це частина світлової хвилі, яка переносить світлову енергію у заданому напрямку. При заміні світлового пучка описуючим його світловим променем останній потрібно брати збігаються з віссю досить вузького, але має при цьому кінцеву ширину (розміри поперечного перерізу значно більше за довжину хвилі), світлового пучка.

Розрізняють розбіжні, схожі та квазіпаралельні світлові пучки. Часто використовують терміни пучок світлових променів чи навіть світлові промені, розуміючи під цим сукупність світлових променів, що описують реальний світловий пучок.

Швидкість світла у вакуумі c = 3108 м/с є універсальною константою і не залежить від частоти. Вперше експериментально швидкість світла було визначено астрономічним методом датським ученим О.Ремером. Точніше швидкість світла виміряв А.Майкельсон.

У речовині швидкість світла менша, ніж у вакуумі. Відношення швидкості світла у вакуумі до його швидкості у цьому середовищі називають абсолютним показником заломлення середовища:

де з – швидкість світла у вакуумі, v – швидкість світла у цьому середовищі. Абсолютні показники заломлення всіх речовин більше одиниці.

При поширенні світла у середовищі він поглинається і розсіюється, але в межі поділу середовищ – відбивається і заломлюється.

Закон відбиття світла: промінь, що падає, промінь відбитий і перпендикуляр до межі розділу двох середовищ, відновлений у точці падіння променя, лежать в одній площині; кут відбиття g дорівнює куту падіння a (рис. 1). Цей закон збігається із законом відображення хвиль будь-якої природи і може бути отриманий як наслідок принципу Гюйгенса.

Закон заломлення світла: падаючий промінь, заломлений промінь та перпендикуляр до межі розділу двох середовищ, відновлений у точці падіння променя, лежать в одній площині; відношення синуса кута падіння до синуса кута заломлення для даної частоти світла є постійна величина, звана відносним показником заломлення другого середовища відносно першої:

Експериментально встановлений закон заломлення світла пояснюється виходячи з принципу Гюйгенса. Відповідно до хвильових уявлень заломлення є наслідком зміни швидкості поширення хвиль при переході з одного середовища в інше, а фізичний зміст відносного показника заломлення – це відношення швидкості поширення хвиль у першому середовищі v1 до швидкості їх поширення у другому середовищі

Для середовищ з абсолютними показниками заломлення n1 та n2 відносний показникзаломлення другого середовища щодо першої дорівнює відношенню абсолютного показника заломлення другого середовища до абсолютного показника заломлення першого середовища:

Те середовище, яке має великий показник заломлення, називається оптично більш щільним, швидкість поширення світла в ньому менша. Якщо світло переходить з оптично більш щільного середовища в оптично менш щільне, то при деякому куті падіння a0 кут заломлення має стати рівним p/2. Інтенсивність заломленого променя у разі стає дорівнює нулю. Світло, що падає на межу розділу двох середовищ, повністю відбивається від неї.

Кут падіння a0, при якому настає повне внутрішнє відбиття світла, називається граничним кутом повного внутрішнього відбиття. За всіх кутів падіння, рівних і великих a0, відбувається повне відбиття світла.

Розмір граничного кута перебуває із співвідношення Якщо n2 = 1 (вакуум), то

2 Показник заломлення речовини - величина, що дорівнює відношенню фазових швидкостей світла (електромагнітних хвиль) у вакуумі та в даному середовищі. Також про показник заломлення говорять для будь-яких інших хвиль, наприклад, звукових.

Показник заломлення залежить від властивостей речовини і довжини хвилі випромінювання, для деяких речовин показник заломлення досить сильно змінюється при зміні частоти електромагнітних хвиль від низьких частот до оптичних і далі, а також може різкіше змінюватися в певних областях частотної шкали. За умовчанням зазвичай мають на увазі оптичний діапазон або діапазон, що визначається контекстом.

Існують оптично анізотропні речовини, у яких показник заломлення залежить від напряму та поляризації світла. Такі речовини досить поширені, зокрема, це всі кристали з досить низькою симетрією кристалічних ґрат, а також речовини, піддані механічній деформації.

Показник заломлення можна виразити як корінь із твору магнітної та діелектричних проникностей середовища

(треба при цьому враховувати, що значення магнітної проникності і показника абсолютної діелектричної проникності для діапазону частот, що цікавить - наприклад, оптичного, можуть дуже сильно відрізнятися від статичного значення цих величин).

Для вимірювання коефіцієнта заломлення використовують ручні та автоматичні рефрактометри. При використанні рефрактометра для визначення концентрації цукру в водному розчиніприлад називають сахариметр.

Відношення синуса кута падіння () променя до синуса кута заломлення () при переході променя з середовища A до середовища B називається відносним показником заломлення для цієї пари середовищ.

Величина nє відносний показник заломлення середовища по відношенню до середовища А, аn" = 1/nє відносний показник заломлення середовища А по відношенню до середовища В.

Ця величина, за інших рівних умов, зазвичай менше одиниці при переході променя з середовища більш щільного в середовище менш щільне, і більше одиниці при переході променя з середовища менш щільного в середовище більш щільного (наприклад, з газу або вакууму в рідину або тверде тіло ). Є винятки з цього правила, і тому прийнято називати середовище оптично більш менш щільним, ніж інше (не плутати з оптичною щільністю як мірою непрозорості середовища).

Промінь, що падає з безповітряного просторуна поверхню якого-небудь середовища, переломлюється сильніше, ніж при падінні на неї з іншого середовища А; показник заломлення променя, що падає на середовище безповітряного простору, називається його абсолютним показником заломлення або просто показником заломлення даного середовища, це і є показник заломлення, визначення якого дано на початку статті. Показник заломлення будь-якого газу, в тому числі повітря, за звичайних умов набагато менше, ніж показники заломлення рідин або твердих тіл, тому приблизно (і з порівняно непоганою точністю) про абсолютний показник заломлення можна судити за показником заломлення щодо повітря.

Рис. 3. Принцип дії інтерференційного рефрактометра. Промінь світла поділяють так, щоб дві його частини пройшли через кювети довжиною l заповнені речовинами з різними показниками заломлення. На виході з кювет промені набувають певну різницюходу і, будучи зведені разом, дають на екрані картину інтерференційних максимумів і мінімумів порядку (схематично показано праворуч). Різниця показників заломлення Dn = n2 -n1 = kl / 2, де - довжина хвилі світла.

Рефрактометри називаються прилади, що служать для вимірювання показника заломлення речовин. Принцип дії рефрактометра ґрунтується на явищі повного відображення. Якщо на межу розділу двох середовищ з показниками заломлення і з середовища більш оптично щільною падає розсіяний пучок світла, то починаючи з деякого кута падіння, промені не входять у друге середовище, а повністю відбиваються від межі розділу в першому середовищі. Цей кут називається граничним кутом повного відбиття. На рис.1 показано поведінку променів при падінні деяку струму цієї поверхні. Промінь йде під граничним кутом. З закону заломлення можна визначити: , (оскільки).

Величина граничного кута залежить від відносного показника заломлення двох середовищ. Якщо промені, відбиті від поверхні, направити на лінзу, що збирає, то у фокальній площині лінзи можна бачити межу світла і півтіні, причому, положення цієї межі залежить від величини граничного кута, а отже, і від показника заломлення. Зміна показника заломлення однієї із середовищ тягне у себе зміна становища кордону розділу. Кордон розділу світла і тіні може бути індикатором щодо показника заломлення, що й використовується в рефрактометрах. Цей метод визначення показника заломлення називається методом повного відображення

Крім методу повного відбиття в рефрактометрах використовується метод ковзного променя. У цьому методі розсіяний пучок світла потрапляє на кордон із середовища менш оптично щільного під всілякими кутами (рис. 2). Променю ковзному поверхнею (), відповідає - граничний кут заломлення (промінь на рис.2). Якщо на шляху променів (), заломлених на поверхні, поставити лінзу, то у фокальній площині лінзи ми також побачимо різку межу світла та тіні.

Рис. 2

Оскільки умови, що визначають величину граничного кута, в обох методах однакові, те й положення межі розділу збігається. Обидва методи рівноцінні, але метод повного відображення дозволяє вимірювати показник заломлення непрозорих речовин.

Хід променів у трикутної призми

На малюнку 9 зображено переріз скляної призми площиною, перпендикулярною її бічним ребрам. Промінь у призмі відхиляється до основи, переломлюючись на гранях ОА та 0В. Кут між цими гранями називають заломлюючим кутом призми. Кут відхилення променя залежить від заломлюючого кута призм, показника заломлення п матеріалу призми і кута падіння. Він може бути обчислений за допомогою закону заломлення (1.4).

У рефрактометрі використовується джерело 3 білого світла. Внаслідок дисперсії при проходженні світлом призм 1 і 2 межа світла та тіні виявляється забарвленою. Щоб уникнути цього перед об'єктивом зорової труби поміщають компенсатор 4. Він складається з двох однакових призм, кожна з яких склеєна з трьох призм, що мають різний показник заломлення. Призми підбирають так, щоб монохроматичний промінь із довжиною хвилі= 589,3 мкм. (Довжина хвилі жовтої лінії натрію) не відчував після проходження компенсатора відхилення. Промені з іншими довжинами хвиль відхиляються призмами у різних напрямках. Переміщуючи призми компенсатора за допомогою спеціальної рукоятки, домагаються того, щоб межа світла і темряви стала більш чіткою.

Промені світла, пройшовши компенсатор, потрапляють в об'єктив 6 зорової труби. Зображення межі розділу світло – тінь у окуляр 7 зорової труби. Одночасно в окуляр розглядається шкала 8. Так як граничний кут заломлення та граничний кут повного відображення залежать від показника заломлення рідини, то на шкалі рефрактометра одразу нанесено значення цього показника заломлення.

Оптична система рефрактометра містить поворотну призму 5. Вона дозволяє розташувати вісь зорової труби перпендикулярно призмам 1 і 2, що робить спостереження більш зручним.

Процеси, які пов'язані зі світлом, є важливою складовою фізики і оточують нас у нашій повсякденному життіповсюдно. Найважливіші в цій ситуації є закони відображення та заломлення світла, на яких ґрунтується сучасна оптика. Заломлення світла є важливим складником сучасної науки.

Ефект спотворення

Ця стаття розповість вам, що є явищем заломлення світла, а також як виглядає закон заломлення і що з нього випливає.

Основи фізичного явища

При падінні променя на поверхню, яка поділяється двома прозорими речовинами, що мають різну оптичну щільність (наприклад, різні стеклаабо у воді), частина променів буде відображена, а частина – проникне у другу структуру (наприклад, піде поширюватися у воді чи склі). При переході з одного середовища до іншого для променя характерна зміна свого напряму. Це і є явище заломлення світла.
Особливо добре відображення та заломлення світла видно у воді.

Ефект спотворення у воді

Дивлячись на речі, що у воді, вони здаються спотвореними. Особливо це дуже помітно на межі між повітрям та водою. Візуально здається, що підводні предмети трохи відхилені. У фізичному явищі, що описується, якраз і криється причина того, що у воді всі об'єкти здаються спотвореними. При попаданні променів на скло цей ефект менш помітний.
Заломлення світла є фізичним явищем, яке характеризується зміною напрямку руху сонячного променяу момент переміщення з одного середовища (структури) до іншого.
Для покращення розуміння даного процесуРозглянемо приклад попадання променя з повітря у воду (аналогічно для скла). При проведенні перпендикуляра вздовж межі розділу можна виміряти кут заломлення та повернення світлового променя. Цей показник (кут заломлення) змінюватиметься при проникненні потоку у воду (всередину скла).
Зверніть увагу! Під даним параметром розуміється кут, який утворює перпендикуляр, проведений до розділу двох речовин при проникненні променя першої структури в другу.

Проходження променя

Цей показник характерний й інших середовищ. Встановлено, що цей показник залежить від густини речовини. Якщо падіння променя відбувається з менш щільною в щільнішу структуру, то кут створюваного спотворення буде більшим. А якщо навпаки – то менше.
При цьому зміна нахилу падіння також позначиться на даному показнику. Але відношення між ними не залишається незмінним. Водночас ставлення їхніх синусів залишиться. постійною величиною, Яку відображає наступна формула: sinα / sinγ = n, де:

  • n – стала величина, яка описана для кожної конкретної речовини (повітря, скла, води і т.д.). Тому, яка буде дана величинаможна визначити за спеціальними таблицями;
  • α – кут падіння;
  • γ – кут заломлення.

Для визначення цього фізичного явищаі було створено закон заломлення.

Фізичний закон

Закон заломлення світлових потоків дає змогу визначити характеристики прозорих речовин. Сам закон складається з двох положень:

  • перша частина. Промінь (падаючий, змінений) та перпендикуляр, який був відновлений у точці падіння на кордоні, наприклад, повітря та води (скла тощо), будуть розташовуватися в одній площині;
  • друга частина. Показник співвідношення синуса кута падіння до синуса цього ж кута, що утворився під час переходу кордону, буде величиною постійної.

Опис закону

При цьому в момент виходу променя з другої структури до першої (наприклад, при проходженні світлового потокуз повітря, через скло і назад у повітря), також виникатиме ефект спотворення.

Важливий параметр для різних об'єктів

Основний показник у цій ситуації — це співвідношення синуса кута падіння до аналогічного параметра, але спотворення. Як випливає із закону, описаного вище, цей показник являє собою постійну величину.
При цьому при зміні значення нахилу падіння така ж ситуація буде характерна і для аналогічного показника. Цей параметр має велике значенняоскільки є невід'ємною характеристикою прозорих речовин.

Показники для різних об'єктів

Завдяки цьому параметру можна досить ефективно розрізняти види скла, а також різноманітні дорогоцінне каміння. Також він важливий визначення швидкості переміщення світла у різних середовищах.

Зверніть увагу! Найвища швидкість світлового потоку – у вакуумі.

При переході з однієї речовини в інші його швидкість буде зменшуватися. Наприклад, у алмазу, який має найбільший показник заломлюваності, швидкість поширення фотонів буде в 2,42 рази вищою, ніж у повітря. У воді вони поширюватимуться повільніше в 1,33 рази. Для різних видівскла цей параметр коливається в діапазоні від 1,4 до 2,2.

Зверніть увагу! Деякі скла мають показник заломлення 2,2, що дуже близько до алмазу (2,4). Тому не завжди вдасться відрізнити скло від реального алмазу.

Оптична густина речовин

Світло може проникати через різні речовини, які характеризуються різними показниками оптичної щільності. Як ми вже говорили раніше, використовуючи даний законможна визначити характеристику густини середовища (структури). Чим щільнішою вона буде, тим з меншою швидкістю в ній поширюватиметься світло. Наприклад, скло або вода будуть більш оптично щільними, ніж повітря.
Крім того, що цей параметр є постійною величиною, він ще й відображає відношення швидкості світла у двох речовинах. Фізичний змістможна відобразити у вигляді наступної формули:

Цей показник каже, як змінюється швидкість поширення фотонів під час переходу з однієї речовини до іншого.

Ще один важливий показник

При переміщенні світлового потоку через прозорі об'єкти можлива його поляризація. Вона спостерігається під час проходження світлового потоку від діелектричних ізотропних середовищ. Поляризація виникає під час проходження фотонів через скло.

Ефект поляризації

Часткова поляризація спостерігається, коли кут падіння світлового потоку на межі двох діелектриків відрізнятиметься від нуля. Ступінь поляризації залежить від того, якими були кути падіння (закон Брюстера).

Повноцінне внутрішнє відображення

Завершуючи наш невеликий екскурсще необхідно розглянути такий ефект, як повноцінне внутрішнє відображення.

Явище повноцінного відображення

Для появи даного ефекту необхідно збільшення кута падіння світлового потоку в момент його переходу з більш щільного менш щільне середовище в межі розділу між речовинами. У ситуації, коли цей параметр перевищуватиме певне граничне значення, тоді фотони, що падають на межу цього розділу, будуть повністю відображатися. Власне, це і буде наше шукане явище. Без нього було неможливо зробити волоконну оптику.

Висновок

Практичне застосування особливостей поведінки світлового потоку дали дуже багато, створивши різноманітні технічні пристрої для покращення нашого життя. При цьому світло відкрило перед людством далеко не всі свої можливості та його практичний потенціалще повністю не реалізовано.


Як зробити паперовий світильник своїми руками
Як перевірити працездатність світлодіодної стрічки

Квиток 75.

Закон відображення світла: падаючий і відбитий промені, і навіть перпендикуляр до межі розділу двох середовищ, відновлений у точці падіння променя, лежать у одній площині (площина падіння). Кут відображення γ дорівнює куту падіння α.

Закон заломлення світла: падаючий та заломлений промені, а також перпендикуляр до межі розділу двох середовищ, відновлений у точці падіння променя, лежать в одній площині. Відношення синуса кута падіння α до синуса кута заломлення є величина, постійна для двох даних середовищ:

Закони відображення та заломлення знаходять пояснення у хвильовій фізиці. Згідно з хвильовими уявленнями, заломлення є наслідком зміни швидкості поширення хвиль при переході з одного середовища в інше. Фізичний зміст показника заломлення– це відношення швидкості поширення хвиль у першому середовищі 1 до швидкості їх поширення у другому середовищі 2:

Рис 3.1.1 ілюструє закони відображення та заломлення світла.

Середовище з меншим абсолютним показником заломлення називають оптично менш щільним.

При переході світла з оптично більш щільного середовища в оптично менш щільне n 2< n 1 (например, из стекла в воздух) можно наблюдать явище повного відображеннятобто зникнення заломленого променя. Це явище спостерігається при кутах падіння, що перевищують деякий критичний кут пр, який називається граничним кутом повного внутрішнього відбиття(Див. рис. 3.1.2).

Для кута падіння α = α пр sin β = 1; значення sin α пр = n 2 / n 1< 1.

Якщо другим середовищем є повітря (n 2 ≈ 1), то формулу зручно переписати у вигляді

Явище повного внутрішнього відбиття знаходить застосування у багатьох оптичних пристроях. Найбільш цікавим та практично важливим застосуваннямє створення волоконних світловодів, які є тонкими (від кількох мікрометрів до міліметрів) довільно вигнуті нитки з оптично прозорого матеріалу (скло, кварц). Світло, що потрапляє на торець світловода, може поширюватися на ньому великі відстаніза рахунок повного внутрішнього відбиття від бічних поверхонь (рис 3.1.3). Науково-технічний напрямок, що займається розробкою та застосуванням оптичних світловодів, називається волоконною оптикою.

Дисперсія світла (розкладання світла)- це явище, обумовлене залежністю абсолютного показника заломлення речовини від частоти (або довжини хвилі) світла (частотна дисперсія), або, те саме, залежність фазової швидкості світла в речовині від довжини хвилі (або частоти). Експериментально відкрита Ньютоном близько 1672 року, хоча теоретично досить добре пояснена значно пізніше.

Просторова дисперсіяназивається залежність тензора діелектричної проникності середовища від вектора хвильового. Така залежність викликає ряд явищ, які називаються ефектами просторової поляризації.

Один з самих наочних прикладівдисперсії - Розкладання білого світлапри проходженні через призму (досвід Ньютона) . Сутністю явища дисперсії є відмінність швидкостей поширення променів світла з різною довжиною хвилі в прозорій речовині - оптичному середовищі (тоді як у вакуумі швидкість світла завжди однакова, незалежно від довжини хвилі і відтак кольору). Зазвичай чим більше частота світлової хвилі, тим більший показник заломлення середовища для неї і тим менша швидкість хвилі в середовищі:

Досвіди Ньютона Досвід розкладання білого світла в спектр: Ньютон направив промінь сонячного світлачерез маленький отвір на скляну призму. Потрапляючи на призму, промінь заломлювався і давав на протилежній стіні подовжене зображення з райдужним чергуванням кольорів – спектр. Досвід проходження монохроматичного світла через призму: Ньютон на шляху сонячного променя поставив червоне скло, за яким отримало монохроматичне світло (червоне), далі призму і спостерігав на екрані тільки червону пляму від променя світла. Досвід із синтезу (одержання) білого світла:Спочатку Ньютон спрямував сонячний промінь на призму. Потім, зібравши кольорові промені, що вийшли з призми, за допомогою збираючої лінзи, Ньютон на білій стіні отримав замість пофарбованої смуги біле зображення отвору. Висновки Ньютона:- призма не змінює світло, а тільки розкладає його на складові - світлові промені, що відрізняються за кольором, відрізняються за ступенем заломлюваності; найбільш сильно заломлюються фіолетові промені, менш сильно - червоні - червоне світло, яке менше заломлюється, має найбільшу швидкість, а фіолетовий - найменшу, тому призма і розкладає світло. Залежність показника заломлення світла від його кольору називається дисперсією.

Висновки:- призма розкладає світло - біле світло є складним (складеним) - фіолетові промені заломлюються сильніше за червоні. Колір променя світла визначається його частотою коливань. При переході з одного середовища до іншого змінюються швидкість світла і довжина хвилі, а частота, що визначає колір залишається постійною. Межі діапазонів білого світла та її складових прийнято характеризувати їх довжинами хвиль у вакуумі. Біле світло – це сукупність хвиль довжинами від 380 до 760 нм.

Квиток 77.

Поглинання світла. Закон Бугера

Поглинання світла в речовині пов'язане із перетворенням енергії електромагнітного поляхвилі в теплову енергіюречовини (або енергію вторинного фотолюмінесцентного випромінювання). Закон поглинання світла (закон Бугера) має вигляд:

I=I 0 exp(-x),(1)

де I 0 , I-інтенсивності світла на вході (х = 0)та виході з шару середовища товщини х,- коефіцієнт поглинання, він залежить від  .

Для діелектриків  =10 -1 10 -5 м -1 для металів =10 5 10 7 м -1 , тому метали непрозорі світла.

Залежністю  () пояснюється забарвленість поглинаючих тіл. Наприклад, скло, що слабко поглинає червоне світло, при освітленні білим світлом здаватиметься червоним.

Розсіювання світла. Закон Релею

Дифракція світла може відбуватися в оптично неоднорідному середовищі, наприклад, у каламутному середовищі (дим, туман, запилене повітря тощо). Дифрагуючи на неоднорідностях середовища, світлові хвилістворюють дифракційну картину, що характеризується досить рівномірним розподілом інтенсивності в усіх напрямках.

Таку дифракцію на дрібних неоднорідностях називають розсіянням світла.

Це явище спостерігається, якщо вузький пучок сонячних променів проходить через запилене повітря, розсіюється на порошинках і стає видимим.

Якщо розміри неоднорідностей малі в порівнянні з довжиною хвилі (не більше ніж 0,1 ), то інтенсивність розсіяного світла виявляється обернено пропорційна четвертого ступеня довжини хвилі, тобто.

I розс ~ 1/ 4 , (2)

ця залежність зветься закону Релея.

Розсіювання світла спостерігається також і в чистих середовищах, які не містять сторонніх частинок. Наприклад, воно може відбуватися на флуктуаціях (випадкових відхиленнях) густини, анізотропії або концентрації. Таке розсіювання називають молекулярним. Воно пояснює, наприклад, блакитний колір неба. Дійсно, згідно (2) блакитні та сині променірозсіюються сильніше, ніж червоні та жовті, т.к. мають меншу довжину хвилі, зумовлюючи цим блакитний колір неба.

Квиток 78.

Поляризація світла- Сукупність явищ хвильової оптики, в яких проявляється поперечність електромагнітних світлових хвиль. Поперечна хвиля- Частки середовища коливаються в напрямках, перпендикулярних до напряму поширення хвилі ( рис.1).

Рис.1 Поперечна хвиля

Електромагнітна світлова хвиля плоскополяризована(лінійна поляризація), якщо напрямки коливань векторів E та B строго фіксовані та лежать у певних площинах ( рис.1). Плоскополяризована світлова хвиля називається плоскополяризованим(лінійнополяризованим) світлом. Неполяризована(природна) хвиля - електромагнітна світлова хвиля, в якій напрямки коливань векторів E і B у цій хвилі можуть лежати в будь-яких площинах, перпендикулярних до вектора швидкості v . Неполяризоване світло- світлові хвилі, у яких напрямки коливань векторів E і B хаотично змінюються так, що рівноймовірні усі напрямки коливань у площинах, перпендикулярних до променя поширення хвилі ( рис.2).

Рис.2 Неполяризоване світло

Поляризовані хвилі- у яких напрями векторів E та B зберігаються незмінними у просторі або змінюються за певним законом. Випромінювання, у якого напрям вектора Е змінюється хаотично - неполяризоване. Прикладом такого випромінювання може бути теплове випромінювання (хаотично розподілені атоми та електрони). Площина поляризації- це площина, перпендикулярна до напряму коливань вектора Е. Основний механізм виникнення поляризованого випромінювання - розсіювання випромінювання на електронах, атомах, молекулах, порошинках.

1.2. Види поляризаціїІснує три види поляризації. Дамо їм визначення. 1. Лінійна Виникає, якщо електричний вектор Е зберігає своє становище у просторі. Вона хіба що виділяє площину, у якій коливається вектор Е. 2. Кругова Це поляризація, що виникає, коли електричний вектор Е обертається навколо напряму поширення хвилі з кутовою швидкістю, що дорівнює кутової частоти хвилі, і зберігає при цьому свою абсолютну величину. Така поляризація характеризує напрямок обертання вектора Е в площині, перпендикулярній до променя зору. Прикладом є циклотронне випромінювання (система електронів, що обертаються в магнітному полі). 3. Еліптична Виникає тоді, коли величина електричного вектора Е змінюється отже він описує еліпс (обертання вектора Е). Еліптична і кругова поляризація буває правою (обертання вектора Е відбувається за годинниковою стрілкою, якщо дивитися назустріч хвилі, що поширюється) і лівою (обертання вектора Е відбувається проти годинникової стрілки, якщо дивитися назустріч хвилі, що розповсюджується) .

Реально, найчастіше зустрічається часткова поляризація (частково поляризовані електромагнітні хвилі). Кількісно вона характеризується якоюсь величиною, званою ступенем поляризації Ряка визначається як: P = (Imax – Imin) / (Imax + Imin)де Imax,Imin- найбільша та найменша щільність потоку електромагнітної енергії через аналізатор (поляроїд, призму Ніколя…). Насправді, поляризацію випромінювання часто описують параметрами Стокса (визначають потоки випромінювання із заданим напрямом поляризації).

Квиток 79.

Якщо природне світло падає на межу розділу двох діелектриків (наприклад, повітря та скла), то частина його відбивається, а частина переломлюється в поширюється в другому середовищі. Встановлюючи на шляху відбитого та заломленого променів аналізатор (наприклад, турмалін), переконуємось у тому, що відбитий та заломлений промені частково поляризовані: при повертанні аналізатора навколо променів інтенсивність світла періодично зменшується та слабшає (повного гасіння не спостерігається!). Подальші дослідження показали, що у відбитому промені переважають коливання, перпендикулярні до площини падіння (на рис. 275 вони позначені точками), у заломленому - коливання, паралельні площині падіння (зображені стрілками).

Ступінь поляризації (ступінь виділення світлових хвиль з певною орієнтацією електричного (і магнітного) вектора) залежить від кута падіння променів та показника заломлення. Шотландський фізик Д. Брюстер(1781-1868) встановив закон, згідно з яким при вугіллі падіння i B (кут Брюстера), що визначається співвідношенням

(n 21 - показник заломлення другого середовища щодо першої), відбитий промінь є плоскополяризованим(містить лише коливання, перпендикулярні до площини падіння) (рис. 276). Заломлений промінь при вугіллі падінняi B поляризується максимально, але не повністю.

Якщо світло падає на межу розділу під кутом Брюстера, то відбитий і заломлений промені взаємно перпендикулярні(tg i B = sin i B /cos i B, n 21 = sin i B / sin i 2 (i 2 - кут заломлення), звідки cos i B = sin i 2). Отже, i B + i 2 = /2, але i B = i B (закон відображення), тому i B + i 2 = /2.

Ступінь поляризації відбитого та заломленого світла при різних кутах падіння можна розрахувати з рівнянь Максвелла, враховуючи граничні умови для електромагнітного поля на межі розділу двох ізотропних діелектриків (так звані формули Френеля).

Ступінь поляризації заломленого світла може бути значно підвищена (багаторазовим заломленням за умови падіння світла щоразу на межу розділу під кутом Брюстера). Якщо, наприклад, для скла ( п= 1,53) ступінь поляризації заломленого променя становить 15%, то після заломлення на 8-10 накладених один на одного скляних пластинок світло, що вийшло з такої системи, буде практично повністю поляризованим. Така сукупність платівок називається стопою.Стопа може бути для аналізу поляризованого світлаяк за його відображенні, і за його заломленні.

Квиток 79 (для шпори)

Як показує досвід при заломленні та відображенні світла заломлене і відбите світло виявляється поляризованим, причому відбиток. світло може бути повністю поляризоанним при деякому вугіллі падіння, априлом. світло завжди є частково поляризованим. На підставі формул Фрінеля можна показати, що відбиток. світло поляризоване в площині перпендикулярної площині падіння, а прелом. світло поляризоване в площині паралельної площині падіння.

Кут падіння у якому отраж. світло є повністю поляризованим називається кутом Брюстера. Кут Брюстера визначається із закону Брюстера: - Закон Брюстера. У цьому випадку кут між відбит. та прелом. променями дорівнюватиме. Для системи повітря-скло кут Брюстера дорівнює. Для отримання хорошої поляризації, тобто. ,при заломленні світла використовують багато поїлом-х поверхонь, які звуться Стопа Столетова.

Квиток 80.

Досвід показує, що при взаємодії світла з речовиною основна дія (фізіологічна, фотохімічна, фотоелектрична та ін) викликається коливаннями вектора, який у зв'язку з цим іноді називають світловим вектором. Тому для опису закономірностей поляризації світла стежать за поведінкою вектора.

Площина, утворена векторами і називається площиною поляризації.

Якщо коливання вектора відбуваються в одній фіксованій площині, то таке світло (промінь) називається лінійно-поляризованим. Його умовно позначають так. Якщо промінь поляризований у перпендикулярній площині (у площині хоzдив. рис. 2 у другій лекції), його позначають.

Природне світло (від традиційних джерел, сонця), складається з хвиль, мають різні, хаотично розподілені площині поляризації (див. рис. 3).

Природне світло іноді умовно позначають так. Його називають також неполяризованим.

Якщо при поширенні хвилі вектор повертається і при цьому кінець вектора описує коло, то таке світло називається поляризованим по колу, а поляризацію – круговою або циркулярною (правою чи лівою). Існує також еліптична поляризація.

Існують оптичні пристрої (плівки, пластини тощо) – поляризаториякі з природного світла виділяють лінійно поляризоване світло або частково поляризоване світло.

Поляризатори, що використовуються для аналізу поляризації світла, називаються аналізаторами.

Площиною поляризатора (або аналізатора) називається площина поляризації світла, що пропускається поляризатором (або аналізатором).

Нехай на поляризатор (або аналізатор) падає лінійно поляризоване світло з амплітудою Е 0 . Амплітуда минулого світла дорівнюватиме Е=Е 0 сos j, а інтенсивність I=I 0 сos 2 j.

Ця формула висловлює закон Малюса:

Інтенсивність лінійно поляризованого світла, що пройшов аналізатор, пропорційна квадрату косинуса кута. jміж площиною коливань падаючого світла та площиною аналізатора.

Квиток 80 (для шпори)

Поляризатори-прилади дають можливість отримати поляризоване світло.Аналізатори-це прилади за допомогою яких можна проаналізувати чи є світло поляризованим чи ні.Конструктивно поляризатор і аналізатор це одне й теж. Кожен вектор можна розкласти на дві взаємно перпендикулярні складові: одна з яких паралельна площині поляризації поляризатора, а інша їй перпендикулярна.

Очевидно інтенсивність світла, що вийшов з поляризатора, буде рівна. Позначимо інтенсивність світла, що вийшов з поляризатора через ().

Квиток 81.

Вивчаючи свічення розчину солей урану під дією променів радію, радянський фізикП. А. Черенков звернув увагу, що світиться і сама вода, у якій солей урану немає. Виявилося, що при пропущенні променів (див. Гамма-випромінювання) через чисті рідини всі вони починають світитися. С. І. Вавілов, під керівництвом якого працював П. А. Черенков, висловив гіпотезу, що світіння пов'язане з рухом електронів, що вибиваються-квантами радію з атомів. Справді, світіння сильно залежало від напрямку магнітного поля в рідині (це наводило на думку, що його причина - рух електронів).

Але чому електрони, що рухаються в рідині, випромінюють світло? Правильна відповідь на це питання у 1937 р. дали радянські фізики І. Є. Тамм та І. М. Франк.

Електрон, рухаючись у речовині, взаємодіє з оточуючими його атомами. Під дією його електричного поляатомні електрони та ядра зміщуються в протилежні сторони - середовище поляризується. Поляризуючись і потім повертаючись у вихідний стан, атоми середовища, розташовані вздовж траєкторії електрона, випускають електромагнітні світлові хвилі. Якщо швидкість електрона v менша за швидкість поширення світла в середовищі (- показник заломлення), то електромагнітне поле обганятиме електрон, а речовина встигне поляризуватися в просторі попереду електрона. Поляризація середовища перед електроном і його протилежна за напрямом, і випромінювання протилежно поляризованих атомів, «складаючись», «гасять» одне одного. Коли атоми, до яких ще не долетів електрон, не встигають поляризуватися, і виникає випромінювання, спрямоване вздовж вузького конічного шару з вершиною, що збігається з електроном, що рухається, і кутом при вершині с. Виникнення світлового «конуса» та умова випромінювання можна отримати з загальних принципівпоширення хвиль.

Рис. 1. Механізм утворення хвильового фронту

Нехай електрон рухається по осі ОЕ (див. рис. 1) дуже вузького порожнього каналу в прозорій однорідній речовині з показником заломлення (порожній канал потрібен, щоб у теоретичному розгляді не враховувати зіткнень електрона з атомами). Будь-яка точка на лінії ОЕ, послідовно займана електроном, буде центром випромінювання світла. Хвилі, що виходять із послідовних точок О, D, Е, інтерферують один з одним і посилюються, якщо різниця фаз між ними дорівнює нулю (див. Інтерференція). Ця умова виконується для спрямування, що становить кут 0 з траєкторією руху електрона. Кут 0 визначається співвідношенням:.

Дійсно, розглянемо дві хвилі, випущені в напрямку під кутом 0 до швидкості електрона з двох точок траєкторії - точки і точки D, розділених відстанню . У точку В, що лежить на прямій BE, перпендикулярній ОВ, перша хвиля при-через час У точку F, що лежить на прямій BE, хвиля, випущена з точки, прийде в момент часу після випускання хвилі з точки О. Ці дві хвилі будуть у фазі, т. е. пряма буде хвильовим фронтом, якщо ці часи рівні:. Та як умова рівності часів дає. У всіх напрямках, для яких світло гаситиметься через інтерференцію хвиль, випущених з ділянок траєкторії, розділених відстанню Д. Величина Д визначається очевидним рівнянням, де Т - період світлових коливань. Це рівняння завжди має рішення, якщо.

Якщо , то напрями, у якому випромінювані хвилі, інтерферуючи, посилюються, немає, може бути більше 1.

Рис. 2. Розподіл звукових хвиль та формування ударної хвилі під час руху тіла

Випромінювання спостерігається тільки, якщо .

На досвіді електрони летять у кінцевому тілесному куті, з деяким розкидом по швидкостях, і в результаті випромінювання поширюється в конічному шарі біля основного напрямку, що визначається кутом.

У нашому розгляді ми знехтували уповільненням електрона. Це цілком припустимо, оскільки втрати на випромінювання Вавилова - Черенкова малі й у першому наближенні вважатимуться, що енергія, що втрачається електроном, не позначається на його швидкості і він рухається рівномірно. В цьому принципова відмінністьі незвичність випромінювання Вавилова – Черенкова. Зазвичай випромінюють заряди, відчуваючи значні прискорення.

Електрон, що обганяє своє світло, подібний до літака, що летить зі швидкістю, більшої швидкості звуку. У цьому випадку перед літаком теж поширюється ударна конічна звукова хвиля, (Див. рис. 2).

Закон заломлення світла. Абсолютний та відносний показники (коефіцієнти) заломлення. Повне внутрішнє відображення

Закон заломлення світлабуло встановлено досвідченим шляхом у XVII столітті. При переході світла з однієї прозорого середовищав інший напрямок світла може змінюватися. Зміна напрямку світла на кордоні різних середовищназивається заломленням світла. Завдання заломлення відбувається зміну форми предмета, що здається. (Приклад: ложка в склянці з водою). Закон заломлення світла: На межі 2ух середовищ заломлений промінь лежить у площині падіння і утворює з нормальню до межі розділу, відновленої в точці падіння, кут приломлення, такий, що: = 1-падіння, 2 відбиття, n-показник заломлення (ф. Снеліуса) - відносний показникПоказник заломлення променя, що падає на середовище з безповітряного простору, називається його абсолютним показником заломлення.Кут падіння, при якому заломлений промінь починає ковзати по межі розділу двох середовищ без переходу в більш щільне оптично середовище – граничний кут повного внутрішнього відбиття. Повне внутрішнє відображення- внутрішнє відбиток, за умови, що кут падіння перевершує певний критичний кут. При цьому падаюча хвиля відображається повністю, і значення коефіцієнта відображення перевершує його великі значеннядля полірованих поверхонь. Коефіцієнт відбиття при повному внутрішньому відбитку залежить від довжини хвилі. В оптиці це явище спостерігається для широкого спектру електромагнітного випромінюваннявключаючи рентгенівський діапазон. У геометричній оптиціявище пояснюється у межах закону Снелла. Враховуючи, що кут заломлення не може перевищувати 90°, отримуємо, що при вугіллі падіння, синус якого більше відношення меншого коефіцієнта заломлення до більшого коефіцієнта, електромагнітна хвилямає повністю відбиватися в першу середу. Приклад: Яскравий блиск багатьох природних кристалів, а особливо - огранених дорогоцінних та напівдорогоцінних каменів пояснюється повним внутрішнім відображенням, в результаті якого кожен промінь, що увійшов у кристал, утворює велика кількістьдосить яскравих променів, що вийшли, пофарбованих в результаті дисперсії.



Останні матеріали розділу:

Отримання нітросполук нітруванням
Отримання нітросполук нітруванням

Електронна будова нітрогрупи характеризується наявність семи полярного (напівполярного) зв'язку: Нітросполуки жирного ряду – рідини, що не...

Хроміт, їх відновлювальні властивості
Хроміт, їх відновлювальні властивості

Окисно-відновні властивості сполук хрому з різним ступенем окиснення. Хром. Будова атома. Можливі ступені окислення.

Чинники, що впливають на швидкість хімічної реакції
Чинники, що впливають на швидкість хімічної реакції

Питання №3 Від яких чинників залежить константа швидкості хімічної реакції? Константа швидкості реакції (питома швидкість реакції) - коефіцієнт...