Знаходження числа за відомим значенням його логарифму. Що таке логарифм

(від грецької λόγος - «слово», «ставлення» та ἀριθμός - «число») числа bна підставі a(log α b) називається таке число c, і b= a cтобто записи log α b=cі b=acеквівалентні. Логарифм має сенс, якщо a>0, а ≠1, b>0.

Говорячи іншими словами логарифмчисла bна підставі аформулюється як показник ступеня, в який треба звести число a, щоб отримати число b(Логарифм існує тільки у позитивних чисел).

З цього формулювання випливає, що обчислення x= log α b, рівнозначно рішенню рівняння a x = b.

Наприклад:

log 2 8 = 3 тому, що 8 = 2 3 .

Виділимо, що зазначене формулювання логарифму дає можливість відразу визначити значення логарифмуколи число під знаком логарифму виступає деяким ступенем основи. І справді, формулювання логарифму дає можливість довести, що якщо b=a з, то логарифм числа bна підставі aдорівнює з. Також ясно, що тема логарифмування тісно пов'язана з темою ступеня числа.

Обчислення логарифму називають логарифмуванням. Логарифмування - це математична операціявзяття логарифму. При логарифмуванні, твори співмножників трансформується у суми членів.

Потенціювання- це математична операція зворотна до логарифмування. При потенціювання задана основа зводиться у ступінь виразу, над яким виконується потенціювання. При цьому суми членів трансформуються у твір співмножників.

Досить часто використовуються речові логарифми з основами 2 (двійковий), е число Ейлера e ≈ 2,718 (натуральний логарифм) та 10 (десятковий).

На цьому етапі доцільно розглянути зразки логарифмів log 7 2 , ln 5, lg0.0001.

А записи lg(-3), log -3 3.2, log -1 -4.3 немає сенсу, оскільки у першій їх під знаком логарифму вміщено негативне число , у другій - від'ємне числов основі, а в третій - і від'ємне число під знаком логарифму та одиниця в основі.

Умови визначення логарифму.

Варто окремо розглянути умови a > 0, a ≠ 1, b > 0. визначення логарифму.Розглянемо, чому взято ці обмеження. У цьому нам допоможе рівність виду x = log α b, зване основним логарифмічним тотожністю , яке безпосередньо випливає з цього визначення логарифму.

Візьмемо умову a≠1. Оскільки одиниця будь-якою мірою дорівнює одиниці, то рівність x=log α bможе існувати лише за b=1але при цьому log 1 1 буде будь-яким дійсним числом. Для виключення цієї неоднозначності і береться a≠1.

Доведемо необхідність умови a>0. При a=0за формулюванням логарифму може існувати тільки при b=0. І відповідно тоді log 0 0може бути будь-яким відмінним від нуля дійсним числом, тому що нуль у будь-якій відмінній від нуля мірі є нуль. Виключити цю неоднозначність дає умову a≠0. А при a<0 нам би довелося відкинути розбір раціональних та ірраціональних значень логарифму, оскільки ступінь з раціональним та ірраціональним показником визначено лише для невід'ємних підстав. Саме з цієї причини і обумовлено умову a>0.

І остання умова b>0випливає з нерівності a>0оскільки x=log α b, а значення ступеня з позитивною основою aзавжди позитивно.

Особливості логарифмів.

Логарифмихарактеризуються відмінними особливостями, які зумовили їхнє повсюдне вживання для значного полегшення копітких розрахунків. При переході «в світ логарифмів» множення трансформується на значно легше додавання, розподіл — на віднімання, а зведення в ступінь і витяг кореня трансформуються відповідно до множення і розподіл на показник ступеня.

Формулювання логарифмів та таблицю їх значень (для тригонометричних функцій) вперше видав у 1614 році шотландський математик Джон Непер. Логарифмічні таблиці, збільшені та деталізовані іншими вченими, широко використовувалися при виконанні наукових та інженерних обчислень, і залишалися актуальними доки не стали застосовуватись електронні калькулятори та комп'ютери.

Одним із елементів алгебри примітивного рівня є логарифм. Назва походить з грецької мовивід слова "число" або "ступінь" і означає ступінь, в який необхідно звести число, що знаходиться в підставі, для знаходження підсумкового числа.

Види логарифмів

  • log a b – логарифм числа b на підставі a (a > 0, a ≠ 1, b > 0);
  • lg b – десятковий логарифм (логарифм на підставі 10, a = 10);
  • ln b - натуральний логарифм (логарифм на основі e, a = e).

Як вирішувати логарифми?

Логари́м числа b за основою a є показником ступеня, який вимагає, щоб у число b звели основу а. Отриманий результат вимовляється так: "логарифм b на підставі а". Розв'язання логарифмічних завдань полягає в тому, що вам необхідно визначити цей ступінь за числами вказаним числам. Існують деякі основні правила, щоб визначити чи вирішити логарифм, а також перетворити сам запис. Використовуючи їх, провадиться рішення логарифмічних рівнянь, знаходяться похідні, вирішуються інтеграли та здійснюються багато інших операцій. В основному, рішенням самого логарифму є його спрощений запис. Нижче наведено основні формули та властивості:

Для будь-яких a; a > 0; a ≠ 1 і для будь-яких x; y > 0.

  • a log a b = b – основна логарифмічна тотожність
  • log a 1 = 0
  • log a a = 1
  • log a (x · y) = log a x + log a y
  • log a x / y = log a x - log a y
  • log a 1/x = -log a x
  • log a x p = p log a x
  • log a k x = 1/k · log a x , при k ≠ 0
  • log a x = log a c x c
  • log a x = log b x / log b a – формула переходу до нової основи
  • log a x = 1/log x a


Як вирішувати логарифми – покрокова інструкція рішення

  • Спочатку запишіть необхідне рівняння.

Зверніть увагу: якщо в логарифмі з основи стоїть 10 , запис укорочується, виходить десятковий логарифм. Якщо стоїть натуральне числое, то записуємо, скорочуючи до натурального логарифму. Мається на увазі, що результат всіх логарифмів - ступінь, в який зводиться число підстав до отримання числа b.


Безпосередньо рішення і полягає у обчисленні цього ступеня. Перш ніж вирішити вираз із логарифмом, його необхідно спростити за правилом, тобто, користуючись формулами. Основні тотожності ви зможете знайти, повернувшись трохи назад у статті.

Складаючи та віднімаючи логарифми з двома різними числами, але з однаковими підставами, замінюйте одним логарифмом з добутком чи розподілом чисел b та з відповідно. У такому разі можна застосувати формулу переходу до іншої основи (див. вище).

Якщо ви використовуєте вирази для спрощення логарифму, необхідно враховувати деякі обмеження. А тобто: основа логарифму а – тільки додатне число, але не рівну одиниці. Число b, як і а, має бути більшим за нуль.

Є випадки, коли спростивши вираз, ви не зможете обчислити логарифм у числовому вигляді. Буває, що такий вираз не має сенсу, адже багато ступенів – ірраціональні числа. За такої умови залиште рівень числа у вигляді запису логарифму.



основними властивостями.

  1. logax + logay = loga (x · y);
  2. logax – logay = loga (x: y).

однакові підстави

Log6 4+log6 9.

Тепер трохи ускладнимо завдання.

Приклади вирішення логарифмів

Що, якщо у підставі чи аргументі логарифма стоїть ступінь? Тоді показник цього ступеня можна винести за знак логарифму за такими правилами:

Зрозуміло, всі ці правила мають сенс при дотриманні ОДЗлогарифма: a > 0, a ≠ 1, x >

Завдання. Знайдіть значення виразу:

Перехід до нової основи

Нехай даний логарифм logax. Тоді для будь-якого числа c такого, що c > 0 і c ≠ 1, правильна рівність:

Завдання. Знайдіть значення виразу:

Дивіться також:


Основні властивості логарифму

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.



Експонента дорівнює 2,718281828. Щоб запам'ятати експоненту, можете вивчити правило: експонента дорівнює 2,7 і двічі рік народження Льва Миколайовича Толстого.

Основні властивості логарифмів

Знаючи це правило знатимете і точне значенняекспоненти та дату народження Льва Толстого.


Приклади на логарифми

Прологарифмувати вирази

приклад 1.
а). х=10ас^2 (а>0,с>0).

За властивостями 3,5 обчислюємо

2.

3.

4. де .



Приклад 2. Знайти х, якщо


Приклад 3. Нехай задано значення логарифмів

Обчислити log(x), якщо




Основні властивості логарифмів

Логарифми, як і будь-які числа, можна складати, віднімати та всіляко перетворювати. Але оскільки логарифми це не зовсім звичайні числа, тут є свої правила, які називаються основними властивостями.

Ці правила обов'язково треба знати - без них не вирішується жодне серйозне логарифмічне завдання. До того ж їх зовсім небагато — все можна вивчити за один день. Отже, почнемо.

Додавання та віднімання логарифмів

Розглянемо два логарифми з однаковими підставами: logax та logay. Тоді їх можна складати і віднімати, причому:

  1. logax + logay = loga (x · y);
  2. logax – logay = loga (x: y).

Отже, сума логарифмів дорівнює логарифму твору, а різниця - приватного логарифму. Зверніть увагу: ключовий моменттут - однакові підстави. Якщо підстави різні, ці правила не працюють!

Ці формули допоможуть обчислити логарифмічний виразнавіть тоді, коли окремі його частини не рахуються (див. урок «Що таке логарифм»). Погляньте на приклади і переконайтеся:

Оскільки підстави у логарифмів однакові, використовуємо формулу суми:
log6 4 + log6 9 = log6 (4 · 9) = log6 36 = 2.

Завдання. Знайдіть значення виразу: log2 48 − log2 3.

Підстави однакові, використовуємо формулу різниці:
log2 48 − log2 3 = log2 (48: 3) = log2 16 = 4.

Завдання. Знайдіть значення виразу: log3 135 − log3 5.

Знову підстави однакові, тому маємо:
log3 135 − log3 5 = log3 (135: 5) = log3 27 = 3.

Як бачите, вихідні вирази складені з поганих логарифмів, які окремо не вважаються. Але після перетворень виходять цілком нормальні числа. На цьому факті побудовано багато контрольні роботи. Та що контрольні подібні висловлюванняна повному серйозі (іноді практично без змін) пропонуються на ЄДІ.

Винесення показника ступеня з логарифму

Неважко помітити, що останнє правилослід їх перших двох. Але краще його все ж таки пам'ятати — у деяких випадках це значно скоротить обсяг обчислень.

Зрозуміло, всі ці правила мають сенс за дотримання ОДЗ логарифму: a > 0, a ≠ 1, x > 0. І ще: вчитеся застосовувати всі формули як зліва направо, а й навпаки, тобто. можна вносити числа, що стоять перед знаком логарифму, до самого логарифму. Саме це найчастіше й потрібне.

Завдання. Знайдіть значення виразу: log7 496.

Позбавимося ступеня в аргументі за першою формулою:
log7 496 = 6 · log7 49 = 6 · 2 = 12

Завдання. Знайдіть значення виразу:

Зауважимо, що у знаменнику стоїть логарифм, основа та аргумент якого є точними ступенями: 16 = 24; 49 = 72. Маємо:

Думаю, до останньому прикладупотрібні пояснення. Куди зникли логарифми? До останнього моменту ми працюємо лише зі знаменником.

Формули логарифмів. Логарифми – приклади рішення.

Представили підставу і аргумент логарифму, що там стоїть, у вигляді ступенів і винесли показники — отримали «триповерховий» дріб.

Тепер подивимося на основний дріб. У чисельнику та знаменнику стоїть те саме число: log2 7. Оскільки log2 7 ≠ 0, можемо скоротити дріб — у знаменнику залишиться 2/4. За правилами арифметики, четвірку можна перенести в чисельник, що було зроблено. В результаті вийшла відповідь: 2.

Перехід до нової основи

Говорячи про правила складання та віднімання логарифмів, я спеціально підкреслював, що вони працюють лише за однакових підстав. А що, коли підстави різні? Що, якщо вони не є точними ступенями того самого числа?

На допомогу приходять формули переходу до нової основи. Сформулюємо їх як теореми:

Нехай даний логарифм logax. Тоді для будь-якого числа c такого, що c > 0 і c ≠ 1, правильна рівність:

Зокрема, якщо покласти c = x отримаємо:

З другої формули випливає, що можна міняти місцями основу та аргумент логарифму, але при цьому весь вислів «перевертається», тобто. логарифм опиняється у знаменнику.

Ці формули рідко зустрічаються у звичайних числових виразів. Оцінити, наскільки вони зручні, можна лише при розв'язанні логарифмічних рівнянь та нерівностей.

Втім, існують завдання, які взагалі не вирішуються інакше як переходом до нової основи. Розглянемо пару таких:

Завдання. Знайдіть значення виразу: log5 16 · log2 25.

Зауважимо, що в аргументах обох логарифмів стоять точні ступені. Винесемо показники: log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

А тепер «перевернемо» другий логарифм:

Оскільки від перестановки множників твір не змінюється, ми спокійно перемножили четвірку та двійку, а потім розібралися з логарифмами.

Завдання. Знайдіть значення виразу: log9 100 · lg 3.

Підстава та аргумент першого логарифму — точні ступені. Запишемо це і позбудемося показників:

Тепер позбудемося десяткового логарифму, перейшовши до нової основи:

Основне логарифмічне тотожність

Часто в процесі рішення потрібно представити число як логарифм на задану основу. У цьому випадку нам допоможуть формули:

У першому випадку число n стає показником ступеня, що стоїть у аргументі. Число n може бути абсолютно будь-яким, адже це просто значення логарифму.

Друга формула – це фактично перефразоване визначення. Вона і називається: .

Справді, що буде, якщо число b звести на такий ступінь, що число b у цій мірі дає число a? Правильно: вийде це саме число a. Уважно прочитайте цей абзац ще раз — багато хто на ньому «зависає».

Подібно до формул переходу до нової основи, основна логарифмічна тотожність іноді буває єдино можливим рішенням.

Завдання. Знайдіть значення виразу:

Зауважимо, що log25 64 = log5 8 — просто винесли квадрат із підстави та аргументу логарифму. Враховуючи правила множення ступенів з однаковою основою, отримуємо:

Якщо хтось не в курсі, це було справжнє завдання з ЄДІ 🙂

Логарифмічна одиниця та логарифмічний нуль

Насамкінець наведу дві тотожності, які складно назвати властивостями — швидше, це наслідки з визначення логарифму. Вони постійно зустрічаються у завданнях і, що дивно, створюють проблеми навіть для «просунутих» учнів.

  1. logaa = 1 – це. Запам'ятайте раз і назавжди: логарифм з будь-якої основи a від самої цієї основи дорівнює одиниці.
  2. loga 1 = 0 це. Підстава a може бути будь-якою, але якщо в аргументі стоїть одиниця — логарифм дорівнює нулю! Тому що a0 = 1 – це прямий слідствоіз визначення.

Ось і всі властивості. Обов'язково потренуйтеся застосовувати їх на практиці! Завантажте шпаргалку на початку уроку, роздрукуйте її і вирішуйте завдання.

Дивіться також:

Логарифмом числа b на підставі a позначають вираз . Обчислити логарифм означає знайти такий ступінь x (), при якому виконується рівність

Основні властивості логарифму

Наведені властивості необхідно знати, оскільки, на їх основі вирішуються практично всі завдання та приклади пов'язані з логарифмами. Інші екзотичні властивості можна вивести шляхом математичних маніпуляцій з даними формулами

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.

При обчисленнях формули суми та різниці логарифмів (3,4) зустрічаються досить часто. Інші дещо складні, але у ряді завдань є незамінними для спрощення складних виразів та обчислення їх значень.

Поширені випадки логарифмів

Одними з поширених логарифмів є такі в яких основа рівна десять, експоненті або двійці.
Логарифм на основі десять прийнято називати десятковим логарифмом і спрощено позначати lg(x).

Із запису видно, що основи запису не пишуть. Для прикладу

Натуральний логарифм – це логарифм, у якого за основу експонента (позначають ln(x)).

Експонента дорівнює 2,718281828. Щоб запам'ятати експоненту, можете вивчити правило: експонента дорівнює 2,7 і двічі рік народження Льва Миколайовича Толстого. Знаючи це правило знатимете і точне значення експоненти, і дату народження Льва Толстого.

І ще один важливий логарифм на основі два позначають

Похідна від логарифм функції дорівнює одиниці розділеної на змінну

Інтеграл чи первісна логарифма визначається залежністю

Наведеного матеріалу Вам достатньо, щоб вирішувати широкий клас завдань, пов'язаних з логарифмами та логарифмування. Для засвоєння матеріалу наведу лише кілька поширених прикладів з шкільної програмита ВНЗ.

Приклади на логарифми

Прологарифмувати вирази

приклад 1.
а). х=10ас^2 (а>0,с>0).

За властивостями 3,5 обчислюємо

2.
За властивістю різниці логарифмів маємо

3.
Використовуючи властивості 3,5 знаходимо

4. де .

На вигляд складний виразз використанням ряду правил спрощується до вигляду

Знаходження значень логарифмів

Приклад 2. Знайти х, якщо

Рішення. Для обчислення застосуємо до останнього доданку 5 і 13 властивості

Підставляємо в запис і сумуємо

Оскільки основи рівні, то прирівнюємо вирази

Логарифми. Початковий рівень.

Нехай задано значення логарифмів

Обчислити log(x), якщо

Рішення: Прологарифмуємо змінну, щоб розписати логарифм через суму доданків


На цьому знайомство з логарифмами та їх властивостями лише починається. Вправляйтеся в обчисленнях, збагачуйте практичні навички - отримані знання скоро знадобляться для вирішення логарифмічних рівнянь. Вивчивши основні методи розв'язання таких рівнянь, ми розширимо Ваші знання для іншої. важливій темі- Логарифмічні нерівності ...

Основні властивості логарифмів

Логарифми, як і будь-які числа, можна складати, віднімати та всіляко перетворювати. Але оскільки логарифми — це не зовсім звичайні числа, тут є свої правила, які називаються основними властивостями.

Ці правила обов'язково треба знати - без них не вирішується жодне серйозне логарифмічне завдання. До того ж їх зовсім небагато — все можна вивчити за один день. Отже, почнемо.

Додавання та віднімання логарифмів

Розглянемо два логарифми з однаковими підставами: logax та logay. Тоді їх можна складати і віднімати, причому:

  1. logax + logay = loga (x · y);
  2. logax – logay = loga (x: y).

Отже, сума логарифмів дорівнює логарифму твору, а різниця - приватного логарифму. Зверніть увагу: ключовий момент тут однакові підстави. Якщо підстави різні, ці правила не працюють!

Ці формули допоможуть обчислити логарифмічний вираз навіть тоді, коли окремі його частини не рахуються (див. урок «Що таке логарифм»). Погляньте на приклади і переконайтеся:

Завдання. Знайдіть значення виразу: log6 4 + log6 9.

Оскільки підстави у логарифмів однакові, використовуємо формулу суми:
log6 4 + log6 9 = log6 (4 · 9) = log6 36 = 2.

Завдання. Знайдіть значення виразу: log2 48 − log2 3.

Підстави однакові, використовуємо формулу різниці:
log2 48 − log2 3 = log2 (48: 3) = log2 16 = 4.

Завдання. Знайдіть значення виразу: log3 135 − log3 5.

Знову підстави однакові, тому маємо:
log3 135 − log3 5 = log3 (135: 5) = log3 27 = 3.

Як бачите, вихідні вирази складені з поганих логарифмів, які окремо не вважаються. Але після перетворень виходять цілком нормальні числа. На цьому факті збудовано багато контрольних робіт. Так що контрольні — подібні висловлювання на повному серйозі (іноді практично без змін) пропонуються на ЄДІ.

Винесення показника ступеня з логарифму

Тепер трохи ускладнимо завдання. Що, якщо у підставі чи аргументі логарифма стоїть ступінь? Тоді показник цього ступеня можна винести за знак логарифму за такими правилами:

Неважко помітити, що останнє правило слідує їх перших двох. Але краще його все ж таки пам'ятати — у деяких випадках це значно скоротить обсяг обчислень.

Зрозуміло, всі ці правила мають сенс за дотримання ОДЗ логарифму: a > 0, a ≠ 1, x > 0. І ще: вчитеся застосовувати всі формули як зліва направо, а й навпаки, тобто. можна вносити числа, що стоять перед знаком логарифму, до самого логарифму.

Як вирішувати логарифми

Саме це найчастіше й потрібне.

Завдання. Знайдіть значення виразу: log7 496.

Позбавимося ступеня в аргументі за першою формулою:
log7 496 = 6 · log7 49 = 6 · 2 = 12

Завдання. Знайдіть значення виразу:

Зауважимо, що у знаменнику стоїть логарифм, основа та аргумент якого є точними ступенями: 16 = 24; 49 = 72. Маємо:

Думаю, до останнього прикладу потрібні пояснення. Куди зникли логарифми? До останнього моменту ми працюємо лише зі знаменником. Представили підставу і аргумент логарифму, що там стоїть, у вигляді ступенів і винесли показники — отримали «триповерховий» дріб.

Тепер подивимося на основний дріб. У чисельнику та знаменнику стоїть те саме число: log2 7. Оскільки log2 7 ≠ 0, можемо скоротити дріб — у знаменнику залишиться 2/4. За правилами арифметики, четвірку можна перенести в чисельник, що було зроблено. В результаті вийшла відповідь: 2.

Перехід до нової основи

Говорячи про правила складання та віднімання логарифмів, я спеціально підкреслював, що вони працюють лише за однакових підстав. А що, коли підстави різні? Що, якщо вони не є точними ступенями того самого числа?

На допомогу приходять формули переходу до нової основи. Сформулюємо їх як теореми:

Нехай даний логарифм logax. Тоді для будь-якого числа c такого, що c > 0 і c ≠ 1, правильна рівність:

Зокрема, якщо покласти c = x отримаємо:

З другої формули випливає, що можна міняти місцями основу та аргумент логарифму, але при цьому весь вислів «перевертається», тобто. логарифм опиняється у знаменнику.

Ці формули рідко зустрічається у звичайних числових виразах. Оцінити, наскільки вони зручні, можна лише при розв'язанні логарифмічних рівнянь та нерівностей.

Втім, існують завдання, які взагалі не вирішуються інакше як переходом до нової основи. Розглянемо пару таких:

Завдання. Знайдіть значення виразу: log5 16 · log2 25.

Зауважимо, що в аргументах обох логарифмів стоять точні ступені. Винесемо показники: log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

А тепер «перевернемо» другий логарифм:

Оскільки від перестановки множників твір не змінюється, ми спокійно перемножили четвірку та двійку, а потім розібралися з логарифмами.

Завдання. Знайдіть значення виразу: log9 100 · lg 3.

Підстава та аргумент першого логарифму — точні ступені. Запишемо це і позбудемося показників:

Тепер позбудемося десяткового логарифму, перейшовши до нової основи:

Основне логарифмічне тотожність

Часто в процесі рішення потрібно представити число як логарифм на задану основу. У цьому випадку нам допоможуть формули:

У першому випадку число n стає показником ступеня, що стоїть у аргументі. Число n може бути абсолютно будь-яким, адже це просто значення логарифму.

Друга формула – це фактично перефразоване визначення. Вона і називається: .

Справді, що буде, якщо число b звести на такий ступінь, що число b у цій мірі дає число a? Правильно: вийде це саме число a. Уважно прочитайте цей абзац ще раз — багато хто на ньому «зависає».

Подібно до формул переходу до нової основи, основна логарифмічна тотожність іноді буває єдино можливим рішенням.

Завдання. Знайдіть значення виразу:

Зауважимо, що log25 64 = log5 8 — просто винесли квадрат із підстави та аргументу логарифму. Враховуючи правила множення ступенів з однаковою основою, отримуємо:

Якщо хтось не в курсі, це було справжнє завдання з ЄДІ 🙂

Логарифмічна одиниця та логарифмічний нуль

Насамкінець наведу дві тотожності, які складно назвати властивостями — швидше, це наслідки з визначення логарифму. Вони постійно зустрічаються у завданнях і, що дивно, створюють проблеми навіть для «просунутих» учнів.

  1. logaa = 1 – це. Запам'ятайте раз і назавжди: логарифм з будь-якої основи a від самої цієї основи дорівнює одиниці.
  2. loga 1 = 0 це. Підстава a може бути будь-якою, але якщо в аргументі стоїть одиниця — логарифм дорівнює нулю! Тому що a0 = 1 — це прямий наслідок визначення.

Ось і всі властивості. Обов'язково потренуйтеся застосовувати їх на практиці! Завантажте шпаргалку на початку уроку, роздрукуйте її і вирішуйте завдання.

Логарифмом позитивного числа b на підставі a (a>0, a не дорівнює 1) називають таке число с, що a c = b: log a b = c ⇔ a c = b (a > 0, a ≠ 1, b > 0) nbsp nbsp nbsp

Зверніть увагу: логарифм від позитивного числа не визначено. Крім того, в основі логарифму має бути позитивне число, не рівне 1. Наприклад, якщо ми зведемо -2 у квадрат, отримаємо число 4, але це не означає, що логарифм на підставі -2 від 4 дорівнює 2.

Основне логарифмічне тотожність

a log a b = b (a > 0, a ≠ 1) (2)

Важливо, що області визначення правої та лівої частин цієї формули відрізняються. Ліва частинавизначена тільки за b>0, a>0 і a ≠ 1. Права частинавизначена за будь-якого b, а від a взагалі не залежить. Таким чином, застосування основної логарифмічної "тотожності" при вирішенні рівнянь та нерівностей може призвести до зміни ОДЗ.

Два очевидні наслідки визначення логарифму

log a a = 1 (a > 0, a ≠ 1) (3)
log a 1 = 0 (a > 0, a ≠ 1) (4)

Дійсно, при зведенні числа a в першу міру ми отримаємо те саме число, а при зведенні в нульовий ступінь - одиницю.

Логарифм твору та логарифм приватного

log a (b c) = log a b + log a c (a > 0, a ≠ 1, b > 0, c > 0) (5)

Log a b c = log a b − log a c (a > 0, a ≠ 1, b > 0, c > 0) (6)

Хотілося б застерегти школярів від бездумного застосування даних формул під час вирішення логарифмічних рівнянь та нерівностей. При їх використанні "зліва направо" відбувається звуження ОДЗ, а при переході від суми чи різниці логарифмів до логарифму твору або приватного - розширення ОДЗ.

Дійсно, вираз log a (f (x) g (x)) визначено у двох випадках: коли обидві функції суворо позитивні або коли f (x) і g (x) обидві менше від нуля.

Перетворюючи цей вираз у суму log a f (x) + log a g (x) , ми змушені обмежуватися лише випадком, коли f(x)>0 і g(x)>0. В наявності звуження області допустимих значень, а це категорично неприпустимо, тому що може призвести до втрати рішень. Аналогічна проблема існує й у формули (6).

Ступінь можна виносити за знак логарифму

log a b p = p log a b (a > 0, a ≠ 1, b > 0) (7)

І знову хотілося б покликати до акуратності. Розглянемо наступний приклад:

Log a (f(x) 2 = 2 log a f(x)

Ліва частина рівності визначена, очевидно, за всіх значень f(х), крім нуля. Права частина - тільки за f(x)>0! Виносячи ступінь із логарифму, ми знову звужуємо ОДЗ. Зворотна процедура призводить до розширення області допустимих значень. Всі ці зауваження стосуються не тільки ступеня 2, але й будь-якого парного ступеня.

Формула переходу до нової основи

log a b = log c b log ca (a > 0, a ≠ 1, b > 0, c > 0, c ≠ 1) (8)

Той рідкісний випадок, коли ОДЗ не змінюється під час перетворення. Якщо ви розумно вибрали основу з (позитивна і не рівна 1), формула переходу до нової основи є абсолютно безпечною.

Якщо в якості нової основи вибрати число b, отримаємо важливий окремий випадокформули (8):

Log a b = 1 log b a (a > 0, a ≠ 1, b > 0, b ≠ 1) (9)

Декілька простих прикладів з логарифмами

Приклад 1. Обчисліть: lg2 + lg50.
Рішення. lg2 + lg50 = lg100 = 2. Ми скористалися формулою суми логарифмів (5) та визначенням десяткового логарифму.


Приклад 2. Розрахуйте: lg125/lg5.
Рішення. lg125/lg5 = log 5 125 = 3. Ми використали формулу переходу до нової основи (8).

Таблиця формул, пов'язаних із логарифмами

a log a b = b (a > 0, a ≠ 1)
log a a = 1 (a > 0, a ≠ 1)
log a 1 = 0 (a > 0, a ≠ 1)
log a (b c) = log a b + log a c (a > 0, a ≠ 1, b > 0, c > 0)
log a b c = log a b − log a c (a > 0, a ≠ 1, b > 0, c > 0)
log a b p = p log a b (a > 0, a ≠ 1, b > 0)
log a b = log c b log ca (a > 0, a ≠ 1, b > 0, c > 0, c ≠ 1)
log a b = 1 log b a (a > 0, a ≠ 1, b > 0, b ≠ 1)

Логарифмом числа N на підставі а називається показник ступеня х , в яку потрібно звести а , щоб отримати число N

За умови, що
,
,

З визначення логарифму випливає, що
, тобто.
- ця рівність є основною логарифмічною тотожністю.

Логарифми на підставі 10 називаються десятковими логарифмами. Замість
пишуть
.

Логарифми на підставі e називаються натуральними та позначаються
.

Основні властивостілогарифмів.

    Логарифм одиниці за будь-якої підстави дорівнює нулю

    Логарифм твору дорівнює сумілогарифмів співмножників.

3) Логарифм приватного дорівнює різниці логарифмів


Множник
називається модулем переходу від логарифмів на підставі a до логарифмів на підставі b .

За допомогою властивостей 2-5 часто вдається звести логарифм складного виразу результату простих арифметичних дій над логарифмами.

Наприклад,

Такі перетворення логарифму називаються логарифмуванням. Перетворення зворотні логарифмування називаються потенціюванням.

Розділ 2. Елементи вищої математики.

1. Межі

Межею функції
є кінцеве число А, якщо при прагненні xx 0 для кожного наперед заданого
, знайдеться таке число
, що як тільки
, то
.

Функція, що має межу, відрізняється від нього на нескінченно малу величину:
, де -б.м.в., тобто.
.

приклад. Розглянемо функцію
.

При прагненні
, функція y прагне до нуля:

1.1. Основні теореми про межі.

    Межа постійної величинидорівнює цій постійній величині

.

    Межа суми (різниці) кінцевого числафункцій дорівнює сумі (різниці) меж цих функций.

    Межа добутку кінцевого числа функцій дорівнює творумеж цих функций.

    Межа частки двох функцій дорівнює приватній межі цих функцій, якщо межа знаменника не дорівнює нулю.

Чудові межі

,
, де

1.2. Приклади обчислення меж

Однак не всі межі обчислюються так просто. Найчастіше обчислення межі зводиться до розкриття невизначеності типу: або .

.

2. Похідна функції

Нехай ми маємо функцію
, безперервну на відрізку
.

Аргумент отримав деякий приріст
. Тоді і функція отримає збільшення
.

Значення аргументу відповідає значення функції
.

Значення аргументу
відповідає значення функції.

Отже, .

Знайдемо межу цього відношення при
. Якщо ця межа існує, то вона називається похідною цієї функції.

Визначення 3Виробної даної функції
за аргументом називається межа відношення збільшення функції до збільшення аргументу, коли збільшення аргументу довільним чином прагне до нуля.

Похідна функції
може бути позначена таким чином:

; ; ; .

Визначення 4Операція знаходження похідної від функції називається диференціюванням.

2.1. Механічний сенс похідної.

Розглянемо прямолінійний рух деякого твердого тіла чи матеріальної точки.

Нехай у певний момент часу точка, що рухається
знаходилась на відстані від початкового становища
.

Через деякий проміжок часу
вона перемістилася на відстань
. Ставлення =- Середня швидкістьматеріальної точки
. Знайдемо межу цього відношення, враховуючи що
.

Отже, визначення миттєвої швидкостірух матеріальної точки зводиться до знаходження похідної від шляху за часом.

2.2. Геометричне значенняпохідний

Нехай ми маємо графічно задану деяку функцію
.

Рис. 1. Геометричний зміст похідної

Якщо
, то крапка
, буде переміщатися кривою, наближаючись до точки
.

Отже
, тобто. значення похідної за даного значення аргументу чисельно дорівнює тангенсу кута утвореного дотичної в даній точці з позитивним напрямом осі
.

2.3. Таблиця основних формул диференціювання.

Ступінна функція

Показова функція

Логарифмічна функція

Тригонометрична функція

Зворотна тригонометрична функція

2.4. Правила диференціювання.

Похідна від

Похідна суми (різниці) функцій


Похідна робота двох функцій


Похідна приватного двох функцій


2.5. Похідна від складної функції.

Нехай дана функція
така, що її можна подати у вигляді

і
, де змінна є проміжним аргументом, тоді

Похідна складної функції дорівнює добутку похідної цієї функції за проміжним аргументом на похідну проміжного аргументу по x.

Приклад1.

Приклад2.

3. Диференціал функції.

Нехай є
, що диференціюється на деякому відрізку
і нехай у цієї функції є похідна

,

тоді можна записати

(1),

де - нескінченно мала величина,

так як при

Помножуючи всі члени рівності (1) на
маємо:

Де
- Б.М.В. вищого ладу.

Величина
називається диференціалом функції
і позначається

.

3.1. Геометричне значення диференціалу.

Нехай дана функція
.

Рис.2. Геометричний зміст диференціала.

.

Очевидно, що диференціал функції
дорівнює приросту ординати дотичної в цій точці.

3.2. Похідні та диференціали різних порядків.

Якщо є
тоді
називається першою похідною.

Похідна від першої похідної називається похідною другого порядку та записується
.

Похідний n-го порядку від функції
називається похідна (n-1)-го порядку та записується:

.

Диференціал від диференціалу функції називається другим диференціалом чи диференціалом другого порядку.

.

.

3.3 Розв'язання біологічних завдань із застосуванням диференціювання.

Задача1. Дослідження показали, що зростання колонії мікроорганізмів підпорядковується закону
, де N – чисельність мікроорганізмів (у тис.), t -Час (Дні).

б) Чи буде в цей період чисельність колонії збільшуватися чи зменшуватись?

Відповідь. Чисельність колонії збільшуватиметься.

Задача 2. Вода в озері періодично тестується контролю вмісту хвороботворних бактерій. Через t днів після тестування концентрація бактерій визначається співвідношенням

.

Коли в озері настане мінімальна концентрація бактерій і чи можна буде в ньому купатися?

РішенняФункція досягає max або min, коли її похідна дорівнює нулю.

,

Визначимо max чи min буде через 6 днів. Для цього візьмемо другу похідну.


Відповідь: Через 6 днів буде мінімальна концентрація бактерій.



Останні матеріали розділу:

Перше ополчення у смутні часи презентація
Перше ополчення у смутні часи презентація

Слайд 1Смутний час Слайд 2На початку XVII століття Російська держава була охоплена пожежею громадянської війни та глибокою кризою. Сучасники...

Слова паразити у дитячій мові
Слова паразити у дитячій мові

Однією з найважливіших проблем сучасного суспільства є проблема мови. Ні для кого не секрет, що останнім часом наша мова зазнала...

Презентація для уроків літературного читання у початковій школі про Е
Презентація для уроків літературного читання у початковій школі про Е

Слайд 2 04.11.2009р. Н.С. Папулова 2 Олена Олександрівна Благініна. (1903-1989) – російський поет, перекладач. Слайд 3 Дочка багажного касира на...