Чому дорівнює синус кута а. Основні тригонометричні тотожності, їх формулювання та висновок

Важливі зауваження!
1. Якщо замість формул ти бачиш абракадабру, почисти кеш. Як це зробити у твоєму браузері написано тут:
2. Перш ніж почнеш читати статтю, зверни увагу на наш навігатор по самих корисним ресурсудля

Синус, косинус, тангенс, котангенс

Поняття синуса (), косинуса (), тангенса (), котангенса () нерозривно пов'язані з поняттям кута. Щоб добре розібратися в цих, на перший погляд, складних поняттях(які викликають у багатьох школярів стан жаху), і переконатися, що «не такий страшний чорт, як його малюють», почнемо від початку і розберемося в понятті кута.

Поняття кута: радіан, градус

Давай подивимося малюнку. Вектор "повернувся" щодо точки на певну величину. Так ось мірою цього повороту щодо початкового положення і виступатиме кут.

Що ще необхідно знати про поняття кута? Ну, звичайно ж, одиниці виміру кута!

Кут, як і геометрії, і у тригонометрії, може вимірюватися у градусах і радіанах.

Кутом в (один градус) називають центральний кутв колі, що спирається на кругову дугу, що дорівнює частині кола. Таким чином, все коло складається з «шматочків» кругових дуг, або кут, що описується колом, дорівнює.

Тобто малюнку вище зображений кут, рівний, тобто цей кут спирається на кругову дугу розміром довжини кола.

Кутом у радіан називають центральний кут в колі, що спирається на кругову дугу, довжина якої дорівнює радіусу кола. Ну що, розібрався? Якщо ні, то давай розумітися на малюнку.

Отже, на малюнку зображено кут, рівний радіану, тобто цей кут спирається на кругову дугу, довжина якої дорівнює радіусу кола (довжина дорівнює довжині або радіус дорівнює довжинідуги). Таким чином, довжина дуги обчислюється за такою формулою:

Де – центральний кут у радіанах.

Ну що, можеш, знаючи це, відповісти, скільки радіан містить кут, який описує коло? Так, для цього треба згадати формулу довжини кола. Ось вона:

Ну ось, тепер співвіднесемо ці дві формули і отримаємо, що кут, що описується коло дорівнює. Тобто, співвіднісши величину у градусах та радіанах, отримуємо, що. Відповідно, . Як можна побачити, на відміну «градусів», слово «радіан» опускається, оскільки одиниця виміру зазвичай зрозуміла з контексту.

А скільки радіан складають? Все вірно!

Вловив? Тоді вперед закріплювати:

Виникли проблеми? Тоді дивись відповіді:

Прямокутний трикутник: синус, косинус, тангенс, котангенс кута

Отже, з поняттям кута розібралися. А що ж таке синус, косинус, тангенс, котангенс кута? Давай розбиратись. Для цього нам допоможе прямокутний трикутник.

Як називаються сторони прямокутного трикутника? Все вірно, гіпотенуза і катети: гіпотенуза - це сторона, що лежить навпроти прямого кута (у прикладі це сторона); катети - це дві сторони, що залишилися і (ті, що прилягають до прямому куту), причому, якщо розглядати катети щодо кута, то катет – це прилеглий катет, а катет – протилежний. Отже, тепер дамо відповідь на запитання: що таке синус, косинус, тангенс і котангенс кута?

Синус кута- Це ставлення протилежного (далекого) катета до гіпотенузи.

У нашому трикутнику.

Косинус кута- Це ставлення прилеглого (близького) катета до гіпотенузи.

У нашому трикутнику.

Тангенс кута- Це ставлення протилежного (далекого) катета до прилеглого (близького).

У нашому трикутнику.

Котангенс кута- Це ставлення прилеглого (близького) катета до протилежного (дальнього).

У нашому трикутнику.

Ці визначення необхідні запам'ятати! Щоб було простіше запам'ятати який катет на що ділити, необхідно чітко усвідомити, що в тангенсеі котангенсісидять тільки катети, а гіпотенуза з'являється тільки в синусіі косинус. А далі можна придумати ланцюжок асоціацій. Наприклад, ось таку:

Косинус→торкатися→доторкнутися→прилежний;

Котангенс→торкатися→доторкнутися→прилежний.

Насамперед, необхідно запам'ятати, що синус, косинус, тангенс і котангенс як відносини сторін трикутника не залежить від довжин цих сторін (при одному вугіллі). Не віриш? Тоді переконайся, подивившись на малюнок:

Розглянемо, наприклад, косинус кута. За визначенням, з трикутника: , але ми можемо обчислити косинус кута і з трикутника: . Бачиш, довжини у сторін різні, а значення косинуса одного кута одне й те саме. Таким чином, значення синуса, косинуса, тангенсу та котангенсу залежать виключно від величини кута.

Якщо розібрався у визначеннях, то вперед закріплюйте їх!

Для трикутника, зображеного нижче малюнку, знайдемо.

Ну що, вловив? Тоді пробуй сам: порахуй те саме для кута.

Одиничне (тригонометричне) коло

Розбираючись у поняттях градуса і радіана, ми розглядали коло з рівним радіусом. Таке коло називається одиничною. Вона дуже знадобиться щодо тригонометрії. Тому зупинимося на ній трохи докладніше.

Як можна помітити, дане колопобудована в декартовій системікоординат. Радіус кола дорівнює одиниціПри цьому центр кола лежить на початку координат, початкове положення радіус-вектора зафіксовано вздовж позитивного напрямку осі (у нашому прикладі це радіус).

Кожній точці кола відповідають два числа: координата по осі та координата по осі. А що це за числа-координати? І взагалі, яке відношення вони мають до цієї теми? Для цього треба згадати розглянутий прямокутний трикутник. На малюнку, наведеному вище, можна помітити цілих два прямокутні трикутники. Розглянемо трикутник. Він прямокутний, оскільки є перпендикуляром до осі.

Чому дорівнює трикутнику? Все вірно. Крім того, нам відомо, що - це радіус. одиничного кола, а значить, . Підставимо це значення на нашу формулу для косинуса. Ось що виходить:

А чому дорівнює трикутнику? Ну звичайно, ! Підставимо значення радіуса в цю формулу та отримаємо:

Так, а можеш сказати, які координати має точка, що належить колу? Ну що, аж ніяк? А якщо збагнути, що й – це просто числа? Який координаті відповідає? Ну, звісно, ​​координати! А якій координаті відповідає? Все правильно, координаті! Таким чином, точка.

А чому тоді рівні? Все вірно, скористаємося відповідними визначеннями тангенсу та котангенсу і отримаємо, що, а.

А що, якщо кут буде більшим? Ось, наприклад, як у цьому рисунку:

Що ж змінилося в даному прикладі? Давай розбиратись. Для цього знову звернемося до прямокутного трикутника. Розглянемо прямокутний трикутник: кут (як прилеглий до кута). Чому дорівнює значення синуса, косинуса, тангенсу та котангенсу для кута? Все вірно, дотримуємося відповідних визначень тригонометричних функцій:

Ну от, як бачиш, значення синуса кута так само відповідає координаті; значення косинуса кута – координаті; а значення тангенсу та котангенсу відповідним співвідношенням. Таким чином, ці співвідношення можна застосовувати до будь-яких поворотів радіус-вектора.

Вже згадувалося, що початкове становище радіус-вектора - вздовж позитивного спрямування осі. Досі ми обертали цей вектор проти годинникової стрілки, а що буде, якщо повернути його за годинниковою стрілкою? Нічого екстраординарного, вийде так само кут певної величини, але він буде негативним. Таким чином, при обертанні радіус-вектора проти годинникової стрілки виходять позитивні кути, а при обертанні за годинниковою стрілкою - негативні.

Отже, ми знаємо, що цілий оберт радіус-вектора по колу становить або. А чи можна повернути радіус-вектор на чи на? Ну звісно, ​​можна! У першому випадку, таким чином, радіус-вектор зробить один повний оборот і зупиниться в положенні.

У другому випадку, тобто радіус-вектор здійснить три повних оборотуі зупиниться у положенні або.

Таким чином, з наведених прикладів можемо зробити висновок, що кути, що відрізняються на або (де - будь-яке ціле число), відповідають одному положенню радіус-вектора.

Нижче на малюнку зображено кут. Це зображення відповідає куту тощо. Цей список можна продовжити до безкінечності. Всі ці кути можна записати загальною формулою або (де – будь-яке ціле число)

Тепер, знаючи визначення основних тригонометричних функцій та використовуючи одиничне коло, спробуй відповісти, чому рівні значення:

Ось тобі на допомогу одиничне коло:

Виникли проблеми? Тоді давай розбиратись. Отже, ми знаємо, що:

Звідси ми визначаємо координати точок, що відповідають певним заходам кута. Ну що ж, почнемо по порядку: кутку відповідає точка з координатами, отже:

Не існує;

Далі, дотримуючись тієї ж логіки, з'ясовуємо, що кутам відповідають точки з координатами, відповідно. Знаючи це, легко визначити значення тригонометричних функцій у відповідних точках. Спочатку спробуй сам, а потім звіряйся з відповідями.

Відповіді:

Таким чином, ми можемо скласти таку табличку:

Немає потреби пам'ятати всі ці значення. Достатньо пам'ятати відповідність координат точок на одиничному колі та значень тригонометричних функцій:

А ось значення тригонометричних функцій кутів і, наведених нижче в таблиці, необхідно запам'ятати:

Не треба лякатися, зараз покажемо один із прикладів досить простого запам'ятовування відповідних значень:

Для користування цим методом життєво необхідно запам'ятати значення синуса для всіх трьох заходів кута (), а також значення тангенсу кута. Знаючи ці значення, досить просто відновити всю таблицю цілком - значення косинуса переносяться відповідно до стрілочок, тобто:

Знаючи це можна відновити значення. Чисельник « » буде відповідати, а знаменник « » відповідає. Значення котангенсу переносяться відповідно до стрілок, вказаних на малюнку. Якщо це усвідомити і запам'ятати схему зі стрілочками, достатньо пам'ятати всього значення з таблиці.

Координати точки на колі

А чи можна знайти точку (її координати) на колі, знаючи координати центру кола, його радіус та кут повороту?

Ну, звісно, ​​можна! Давай виведемо загальну формулудля знаходження координат точки.

Ось, наприклад, перед нами таке коло:

Нам дано, що точка – центр кола. Радіус кола дорівнює. Необхідно знайти координати точки, одержаної поворотом точки на градусів.

Як очевидно з малюнка, координаті точки відповідає довжина відрізка. Довжина відрізка відповідає координаті центру кола, тобто дорівнює. Довжину відрізка можна виразити, використовуючи визначення косинуса:

Тоді маємо, що для точки координат.

За тією ж логікою знаходимо значення координати для точки. Таким чином,

Отже, у загальному виглядікоординати точок визначаються за формулами:

Координати центру кола,

Радіус кола,

Кут повороту вектор радіуса.

Як можна помітити, для одиничного кола, що розглядається нами, ці формули значно скорочуються, оскільки координати центру дорівнюють нулю, а радіус дорівнює одиниці:

Ну що, спробуємо ці формули на смак, повправляючись у знаходженні крапок на колі?

1. Знайти координати точки на одиничному колі, отриманому поворотом точки на.

2. Знайти координати точки на одиничному колі, отриманому поворотом точки на.

3. Знайти координати точки на одиничному колі, отриманому поворотом точки на.

4. Крапка - центр кола. Радіус кола дорівнює. Необхідно знайти координати точки, отриманої поворотом початкового радіус-вектора.

5. Крапка - центр кола. Радіус кола дорівнює. Необхідно знайти координати точки, отриманої поворотом початкового радіус-вектора.

Виникли проблеми у знаходженні координот точки на колі?

Розв'яжи ці п'ять прикладів (або добре розберись у рішенні) і ти навчишся їх знаходити!

КОРОТКИЙ ВИКЛАД І ОСНОВНІ ФОРМУЛИ

Синус кута - це відношення протилежного (далекого) катета до гіпотенузи.

Косинус кута - це ставлення прилеглого (близького) катета до гіпотенузи.

Тангенс кута - це відношення протилежного (далекого) катета до прилеглого (близького).

Котангенс кута - це відношення прилеглого (близького) катета до протилежного (далекого).

Ну ось, тема закінчена. Якщо ти читаєш ці рядки, значить ти дуже крутий.

Тому що лише 5% людей здатні освоїти щось самостійно. І якщо ти дочитав до кінця, то ти потрапив у ці 5%!

Тепер найголовніше.

Ти розібрався з теорією на цю тему. І, повторюся, це… це просто супер! Ти вже краще, ніж абсолютна більшість твоїх однолітків.

Проблема в тому, що цього не вистачить.

Для чого?

Для успішної здачі ЄДІ, для вступу до інституту на бюджет і, найголовніше, для життя.

Я не буду тебе ні в чому переконувати, просто скажу одну річ…

Люди, які отримали гарна освіта, заробляють набагато більше, ніж ті, хто не отримав. Це – статистика.

Але й це – не головне.

Головне те, що вони БІЛЬШЕ ЩАСЛИВІ (є такі дослідження). Можливо тому, що перед ними відкривається набагато більше можливостейі життя стає яскравішим? Не знаю...

Але, думай сам...

Що потрібно, щоб бути, напевно, кращим за інших на ЄДІ і бути зрештою… більш щасливим?

Набити руку, вирішуючи завдання за цією темою.

На іспиті в тебе не питатимуть теорію.

Тобі треба буде вирішувати завдання на якийсь час.

І, якщо ти не вирішував їх (Багато!), ти обов'язково десь безглуздо помилишся або просто не встигнеш.

Це як у спорті – потрібно багато разів повторити, щоби виграти напевно.

Знайди де хочеш збірку, обов'язково з рішеннями, докладним розбором і вирішуй, вирішуй, вирішуй!

Можна скористатися нашими завданнями (не обов'язково), і ми їх, звичайно, рекомендуємо.

Для того, щоб набити руку за допомогою наших завдань, потрібно допомогти продовжити життя підручнику YouClever, який ти зараз читаєш.

Як? Є два варіанта:

  1. Відкрий доступ до всіх прихованих завдань у цій статті
  2. Відкрий доступ до всіх прихованих завдань у всіх 99 статтях підручника. Купити підручник - 499 руб

Так, у нас у підручнику 99 таких статей та доступ для всіх завдань та всіх прихованих текстіву них можна відкрити одразу.

Доступ до всіх прихованих завдань надається на весь час існування сайту.

І на закінчення...

Якщо наші завдання тобі не подобаються, то знайди інші. Тільки не зупиняйся на теорії.

"Зрозумів" і "Вмію вирішувати" - це зовсім різні навички. Тобі потрібні обидва.

Знайди завдання та вирішуй!


Співвідношення між основними тригонометричними функціями – синусом, косінусом, тангенсом та котангенсом – задаються тригонометричними формулами. Оскільки зв'язків між тригонометричними функціями досить багато, цим пояснюється і розмаїття тригонометричних формул. Одні формули пов'язують тригонометричні функції однакового кута, інші функції кратного кута, треті дозволяють знизити ступінь, четверті виразити всі функції через тангенс половинного кута, і т.д.

У цій статті ми по порядку перерахуємо всі основні тригонометричні формули, Яких достатньо для вирішення переважної більшості задач тригонометрії. Для зручності запам'ятовування та використання групуватимемо їх за призначенням і заноситимемо в таблиці.

Навігація на сторінці.

Основні тригонометричні тотожності

Основні тригонометричні тотожності задають зв'язок між синусом, косинусом, тангенсом та котангенсом одного кута. Вони випливають із визначення синуса, косинуса, тангенсу та котангенсу, а також поняття одиничного кола. Вони дозволяють виразити одну тригонометричну функцію через будь-яку іншу.

Детальний опис цих формул тригонометрії, їх висновок та приклади застосування дивіться у статті .

Формули наведення




Формули наведеннявипливають із властивостей синуса, косинуса, тангенсу і котангенсу, тобто, вони відображають властивість періодичності тригонометричних функцій, властивість симетричності, а також властивість зсуву на даний кут. Ці тригонометричні формули дозволяють від роботи з довільними кутамипереходити до роботи з кутами не більше від нуля до 90 градусів.

Обґрунтування цих формул, мнемонічне правилодля їх запам'ятовування та приклади їх застосування можна вивчити у статті.

Формули додавання

Тригонометричні формули складанняпоказують, як тригонометричні функції суми чи різниці двох кутів виражаються через тригонометричні функції цих кутів. Ці формули є базою для виведення наступних нижче тригонометричних формул.

Формули подвійного, потрійного тощо. кута



Формули подвійного, потрійного тощо. кута (їх ще називають формулами кратного кута) показують, як тригонометричні функції подвійних, потрійних і т.д. кутів () виражаються через тригонометричні функції одинарного кута. Їх висновок виходить з формулах складання.

Більше Детальна інформаціязібрана у статті формули подвійного, потрійного тощо. кута.

Формули половинного кута

Формули половинного кутапоказують, як тригонометричні функції половинного кута виражаються через косинус цілого кута. Ці тригонометричні формули випливають із формул подвійного кута.

Їх висновок та приклади застосування можна переглянути у статті.

Формули зниження ступеня


Тригонометричні формули зниження ступеняпокликані сприяти переходу від натуральних ступенівтригонометричних функцій до синусів і косинусів у першому ступені, але кратних кутів. Іншими словами, вони дозволяють знижувати ступеня тригонометричних функцій до першої.

Формули суми та різниці тригонометричних функцій


Основне призначення формул суми та різниці тригонометричних функційполягає в переході до виконання функцій, що дуже корисно при спрощенні тригонометричних виразів. Зазначені формули також широко використовуються при вирішенні тригонометричних рівнянь, так як дозволяють розкладати на множники суму та різницю синусів і косінусів.

Формули твору синусів, косінусів та синуса на косинус


Перехід від твору тригонометричних функцій до суми чи різниці здійснюється за допомогою формул твору синусів, косінусів та синусу на косинус.

  • Башмаков М. І.Алгебра та початку аналізу: Навч. для 10-11 кл. середовищ. шк. - 3-тє вид. - М: Просвітництво, 1993. - 351 с.: іл. - ISBN 5-09-004617-4.
  • Алгебрата початку аналізу: Навч. для 10-11 кл. загальноосвіт. установ / А. Н. Колмогоров, А. М. Абрамов, Ю. П. Дудніцин та ін; За ред. А. Н. Колмогорова. - 14-те вид. - М.: Просвітництво, 2004. - 384 с.: Іл. - ISBN 5-09-013651-3.
  • Гусєв В. А., Мордкович А. Г.Математика (посібник для вступників до технікумів): Навч. посібник.- М.; Вищ. шк., 1984.-351 с., іл.
  • Copyright by cleverstudents

    Всі права захищені.
    Охороняється законом про авторське право. Жодну частину сайту, включаючи внутрішні матеріали та зовнішнє оформлення, не можна відтворювати в будь-якій формі або використовувати без попереднього письмового дозволу правовласника.

    Вивчення тригонометрії ми розпочнемо з прямокутного трикутника. Визначимо, що таке синус та косинус, а також тангенс та котангенс гострого кута. Це є основи тригонометрії.

    Нагадаємо, що прямий кут- це кут, що дорівнює 90 градусів. Іншими словами, половина розгорнутого кута.

    Гострий кут- менше 90 градусів.

    Тупий кут- більший за 90 градусів. Стосовно такого кута «тупий» - не образа, а математичний термін:-)

    Намалюємо прямокутний трикутник. Прямий кут зазвичай позначається. Звернімо увагу, що сторона, що лежить навпроти кута, позначається тією ж літерою, лише маленькою. Так, сторона, що лежить навпроти кута A, позначається .

    Кут позначається відповідною грецькою літерою.

    Гіпотенузапрямокутного трикутника - це сторона, що лежить навпроти прямого кута.

    Катети- Сторони, що лежать навпроти гострих кутів.

    Катет, що лежить навпроти кута, називається протилежним(По відношенню до кута). Інший катет, який лежить на одній із сторін кута, називається прилеглим.

    Сінусгострого кута у прямокутному трикутнику - це відношення протилежного катетадо гіпотенузи:

    Косінусгострого кута у прямокутному трикутнику - відношення прилеглого катетадо гіпотенузи:

    Тангенсгострого кута в прямокутному трикутнику - відношення протилежного катета до прилеглого:

    Інше (рівносильне) визначення: тангенсом гострого кута називається відношення синуса кута до його косинусу:

    Котангенсгострого кута в прямокутному трикутнику - відношення прилеглого катета до протилежного (або, що те саме, відношення косинуса до синуса):

    Зверніть увагу на основні співвідношення для синуса, косинуса, тангенсу та котангенсу, які наведені нижче. Вони стануть у нагоді нам при вирішенні завдань.

    Давайте доведемо деякі з них.

    Добре, ми дали визначення та записали формули. А навіщо потрібні синус, косинус, тангенс і котангенс?

    Ми знаємо, що сума кутів будь-якого трикутника дорівнює.

    Знаємо співвідношення між сторонамипрямокутний трикутник. Це теорема Піфагора: .

    Виходить, знаючи два кути в трикутнику, можна знайти третій. Знаючи дві сторони прямокутного трикутника, можна знайти третю. Значить, для кутів – своє співвідношення, для сторін – своє. А що робити, якщо у прямокутному трикутнику відомий один кут (крім прямого) та одна сторона, а знайти треба інші сторони?

    З цим і зіткнулися люди в минулому, складаючи карти місцевості та зоряного неба. Адже не завжди можна безпосередньо виміряти усі сторони трикутника.

    Синус, косинус та тангенс - їх ще називають тригонометричними функціями кута- дають співвідношення між сторонамиі кутамитрикутник. Знаючи кут, можна знайти всі його тригонометричні функції за спеціальними таблицями. А знаючи синуси, косинуси та тангенси кутів трикутника та одну з його сторін, можна знайти інші.

    Ми також намалюємо таблицю значень синуса, косинуса, тангенсу та котангенсу для «хороших» кутів від до .

    Зверніть увагу на два червоні прочерки в таблиці. При відповідних значеннях кутів тангенс та котангенс не існують.

    Розберемо кілька завдань із тригонометрії з Банку завдань ФІПД.

    1. У трикутнику кут дорівнює . Знайдіть .

    Завдання вирішується за чотири секунди.

    Оскільки , .

    2 . У трикутнику кут дорівнює , , . Знайдіть .

    Знайдемо за теоремою Піфагора.

    Завдання вирішено.

    Часто в задачах зустрічаються трикутники з кутами або з кутами і . Основні співвідношення для них запам'ятовуйте напам'ять!

    Для трикутника з кутами і катет, що лежить навпроти кута, дорівнює половині гіпотенузи.

    Трикутник з кутами і рівнобедрений. У ньому гіпотенуза в раз більше катета.

    Ми розглянули завдання розв'язання прямокутних трикутників - тобто перебування невідомих сторін чи кутів. Але це не все! У варіантах ЄДІз математики безліч завдань, де фігурує синус, косинус, тангенс чи котангенс зовнішнього кута трикутника. Про це – у наступній статті.

    Тригонометричні тотожності— це рівності, які встановлюють зв'язок між синусом, косінусом, тангенсом і котангенсом одного кута, що дозволяє знаходити будь-яку з даних функцій за умови, що буде відома будь-яка інша.

    tg \alpha = \frac(\sin \alpha)(\cos \alpha), \enspace ctg \alpha = \frac(\cos \alpha)(\sin \alpha)

    tg \alpha \cdot ctg \alpha = 1

    Ця тотожність говорить про те, що сума квадрата синуса одного кута і квадрата косинуса одного кута дорівнює одиниці, що на практиці дає можливість обчислити синус одного кута, коли відомий його косинус і навпаки.

    При перетворенні тригонометричних виразів дуже часто використовують дану тотожність, яка дозволяє замінювати одиницею суму квадратів косинуса і синуса одного кута і проводити операцію заміни у зворотному порядку.

    Знаходження тангенсу та котангенсу через синус та косинус

    tg \alpha = \frac(\sin \alpha)(\cos \alpha),\enspace

    Дані тотожності утворюються з визначень синуса, косинуса, тангенсу та котангенсу. Адже якщо розібратися, то визначення ординатою y є синус, а абсцисою x — косинус. Тоді тангенс буде дорівнює відношенню \frac(y)(x)=\frac(\sin \alpha)(\cos \alpha), а відношення \frac(x)(y)=\frac(\cos \alpha)(\sin \alpha)— буде котангенсом.

    Додамо, що тільки для таких кутів \alpha , при яких тригонометричні функції, що входять до них, мають сенс, матимуть місце тотожності , ctg \alpha=\frac(\cos \alpha)(\sin \alpha).

    Наприклад: tg \alpha = \frac(\sin \alpha)(\cos \alpha)є справедливою для кутів \alpha , які відмінні від \frac(\pi)(2)+\pi z, а ctg \alpha=\frac(\cos \alpha)(\sin \alpha)- Для кута \alpha, відмінного від \pi z, z - є цілим числом.

    Залежність між тангенсом та котангенсом

    tg \alpha \cdot ctg \alpha=1

    Ця тотожність справедлива тільки для таких кутів \alpha , які відмінні від \frac(\pi)(2) z. Інакше чи котангенс чи тангенс не будуть визначені.

    Маючи вищевикладені пункти, отримуємо, що tg \alpha = \frac(y)(x), а ctg \alpha=\frac(x)(y). Звідси слідує що tg \alpha \cdot ctg \alpha = \frac(y)(x) \cdot \frac(x)(y)=1. Таким чином, тангенс та котангенс одного кута, при якому вони мають сенс, є взаємно зворотними числами.

    Залежності між тангенсом та косинусом, котангенсом та синусом

    tg^(2) \alpha + 1=\frac(1)(\cos^(2) \alpha)— сума квадрата тангенса кута \alpha і 1 дорівнює зворотному квадрату косинуса цього кута. Ця тотожність справедлива для всіх \alpha , відмінних від \frac(\pi)(2)+ \pi z.

    1+ctg^(2) \alpha=\frac(1)(\sin^(2)\alpha)— сума 1 і квадрат котангенсу кута \alpha , що дорівнює зворотному квадрату синуса даного кута. Ця тотожність справедлива для будь-якого \alpha , відмінного від \pi z .

    Приклади з розв'язуванням задач на використання тригонометричних тотожностей

    Приклад 1

    Знайдіть \sin \alpha і tg \alpha якщо \cos \alpha=-\frac12і \frac(\pi)(2)< \alpha < \pi ;

    Показати рішення

    Рішення

    Функції \sin \alpha та \cos \alpha пов'язує формула \sin^(2)\alpha + \cos^(2) \alpha = 1. Підставивши до цієї формули \cos \alpha = -\frac12, Отримаємо:

    \sin^(2)\alpha + \left (-\frac12 \right)^2 = 1

    Це рівняння має 2 розв'язки:

    \sin \alpha = \pm \sqrt(1-\frac14) = \pm \frac(\sqrt 3)(2)

    За умовою \frac(\pi)(2)< \alpha < \pi . У другій чверті синус позитивний, тому \sin \alpha = \frac(\sqrt 3)(2).

    Для того щоб знайти tg \alpha , скористаємося формулою tg \alpha = \frac(\sin \alpha)(\cos \alpha)

    tg \alpha = \frac(\sqrt 3)(2) : \frac12 = \sqrt 3

    Приклад 2

    Знайдіть \cos \alpha і ctg \alpha , якщо і \frac(\pi)(2)< \alpha < \pi .

    Показати рішення

    Рішення

    Підставивши у формулу \sin^(2)\alpha + \cos^(2) \alpha = 1це за умовою число \sin \alpha=\frac(\sqrt3)(2), отримуємо \left (\frac(\sqrt3)(2)\right)^(2) + \cos^(2) \alpha = 1. Це рівняння має два рішення \cos \alpha = \pm \sqrt(1-\frac34)=\pm\sqrt\frac14.

    За умовою \frac(\pi)(2)< \alpha < \pi . У другій чверті косинус негативний, тому \cos \alpha = -\sqrt\frac14=-\frac12.

    Щоб знайти ctg \alpha , скористаємося формулою ctg \alpha = \frac(\cos \alpha)(\sin \alpha). Відповідні величини нам відомі.

    ctg \alpha = -\frac12: \frac(\sqrt3)(2) = -\frac(1)(\sqrt 3).

    Тригонометрія, як наука, зародилася на Стародавньому Сході. Перші тригонометричні співвідношеннябули виведені астрономами для створення точного календаря та орієнтування за зірками. Дані обчислення належали до сферичної тригонометрії, тоді як шкільному курсівивчають співвідношення сторін та кута плоского трикутника.

    Тригонометрія – це розділ математики, що займається властивостями тригонометричних функцій та залежністю між сторонами та кутами трикутників.

    У період розквіту культури та науки I тисячоліття нашої ери знання поширилися з Стародавнього Сходув Грецію. Але основні відкриття тригонометрії – це заслуга чоловіків арабського халіфату. Зокрема, туркменський учений аль-Маразві ввів такі функції, як тангенс та котангенс, склав перші таблиці значень для синусів, тангенсів та котангенсів. Поняття синуса та косинуса введено індійськими вченими. Тригонометрії присвячено чимало уваги у працях таких великих діячів давнини, як Евкліда, Архімеда та Ератосфена.

    Основні величини тригонометрії

    Основні тригонометричні функції числового аргументу– це синус, косинус, тангенс та котангенс. Кожна з них має свій графік: синусоїда, косінусоїда, тангенсоїда та котангенсоїда.

    У основі формул до розрахунку значень зазначених величин лежить теорема Піфагора. Школярам вона більше відома у формулюванні: « Піфагорові штани, на всі боки рівні», оскільки доказ наводиться на прикладі рівнобедреного прямокутного трикутника.

    Синус, косинус та інші залежності встановлюють зв'язок між гострими кутамита сторонами будь-якого прямокутного трикутника. Наведемо формули для розрахунку цих величин для кута A і простежимо взаємозв'язки тригонометричних функцій:

    Як видно, tg і ctg є зворотними функціями. Якщо уявити катет a як добуток sin A та гіпотенузи с, а катет b у вигляді cos A * c, то отримаємо такі формули для тангенсу та котангенсу:

    Тригонометричне коло

    Графічно співвідношення згаданих величин можна так:

    Коло, в даному випадку, являє собою всі можливі значення кута - від 0° до 360°. Як видно з малюнка, кожна функція приймає негативне або позитивне значеннязалежно від величини кута. Наприклад, sin α буде зі знаком «+», якщо α належить І і ІІ чверті кола, тобто знаходиться у проміжку від 0° до 180°. При від 180° до 360° (III і IV чверті) sin α може бути тільки негативним значенням.

    Спробуємо збудувати тригонометричні таблицідля конкретних кутів і дізнатися значення величин.

    Значення α рівні 30°, 45°, 60°, 90°, 180° тощо – називають окремими випадками. Значення тригонометричних функцій їм прораховані і представлені у вигляді спеціальних таблиць.

    Ці кути обрані зовсім не випадково. Позначення π у таблицях стоїть для радіан. Радий - це кут, при якому довжина дуги кола відповідає її радіусу. Ця величинабула введена для того, щоб встановити універсальну залежність, при розрахунках у радіанах не має значення дійсна довжина радіусу див.

    Кути в таблицях для тригонометричних функцій відповідають значенням радіан:

    Отже, не важко здогадатися, що 2π - це повне коло або 360 °.

    Властивості тригонометричних функцій: синус та косинус

    Для того, щоб розглянути та порівняти основні властивості синуса та косинуса, тангенсу та котангенсу, необхідно накреслити їх функції. Зробити це можна у вигляді кривої, розташованої у двовимірній системі координат.

    Розглянь порівняльну таблицювластивостей для синусоїди та косинусоїди:

    СинусоїдаКосинусоїда
    y = sin xy = cos x
    ОДЗ [-1; 1]ОДЗ [-1; 1]
    sin x = 0, при x = πk, де k ϵ Zcos x = 0 при x = π/2 + πk, де k ϵ Z
    sin x = 1, за x = π/2 + 2πk, де k ϵ Zcos x = 1 при x = 2πk, де k ϵ Z
    sin x = - 1 при x = 3π/2 + 2πk, де k ϵ Zcos x = - 1 при x = π + 2πk, де k ϵ Z
    sin (-x) = - sin x, тобто функція непарнаcos (-x) = cos x, тобто функція парна
    функція періодична, найменший період- 2π
    sin x › 0, при x належить I і II чвертям або від 0° до 180° (2πk, π + 2πk)cos x › 0, при x належить I і IV чвертям або від 270° до 90° (- π/2 + 2πk, π/2 + 2πk)
    sin x ‹ 0, при x належить III і IV чвертям або від 180° до 360° (π + 2πk, 2π + 2πk)cos x ‹ 0, при x належить II і III чвертям або від 90° до 270° (π/2 + 2πk, 3π/2 + 2πk)
    зростає на проміжку [- π/2 + 2πk, π/2 + 2πk]зростає на проміжку [-π + 2πk, 2πk]
    зменшується на проміжках [ π/2 + 2πk, 3π/2 + 2πk]зменшується на проміжках
    похідна (sin x)’ = cos xпохідна (cos x)' = - sin x

    Визначити чи є функція парною чи ні дуже просто. Достатньо уявити тригонометричне колозі знаками тригонометричних величин і подумки «скласти» графік щодо осі OX. Якщо знаки збігаються, функція парна, інакше непарна.

    Введення радіан та перерахування основних властивостейсинусоїди та косінусоїди дозволяють навести наступну закономірність:

    Переконатись у вірності формули дуже просто. Наприклад, для x = π/2 синус дорівнює 1, як і косинус x = 0. Перевірку можна здійснити до таблиць або простеживши криві функцій для заданих значень.

    Властивості тангенсоїди та котангенсоїди

    Графіки функцій тангенсу та котангенсу значно відрізняються від синусоїди та косинусоїди. Величини tg та ctg є оберненими другдругові.

    1. Y = tg x.
    2. Тангенсоіда прагне значень y при x = π/2 + πk, але ніколи не досягає їх.
    3. Найменший позитивний періодтангенсоіди дорівнює π.
    4. Tg (-x) = - tg x, тобто функція непарна.
    5. Tg x = 0 при x = πk.
    6. Функція є зростаючою.
    7. Tg x › 0, при x ϵ (πk, π/2 + πk).
    8. Tg x ‹ 0, при x ϵ (— π/2 + πk, πk).
    9. Похідна (tg x)' = 1/cos 2 ⁡x .

    Розглянемо графічне зображеннякотангенсоіди нижче за текстом.

    Основні властивості котангенсоіди:

    1. Y = ctg x.
    2. На відміну від функцій синуса та косинуса, в тангенсоіді Y може набувати значення безлічі всіх дійсних чисел.
    3. Котангенсоіда прагне значень y при x = πk, але ніколи не досягає їх.
    4. Найменший позитивний період котангенсоіди дорівнює π.
    5. Ctg (-x) = - ctg x, тобто функція непарна.
    6. Ctg x = 0, при x = π/2 + πk.
    7. Функція є спадною.
    8. Ctg x › 0, при x ϵ (πk, π/2 + πk).
    9. Ctg x ‹ 0, при x ϵ (π/2 + πk, πk).
    10. Похідна (ctg x)’ = — 1/sin 2 ⁡x Виправити


    Останні матеріали розділу:

    Як правильно заповнити шкільний щоденник
    Як правильно заповнити шкільний щоденник

    Сенс читацького щоденника в тому, щоб людина змогла згадати, коли і які книги вона читала, який їх сюжет. Для дитини це може бути своєю...

    Рівняння площини: загальне, через три точки, нормальне
    Рівняння площини: загальне, через три точки, нормальне

    Рівняння площини. Як скласти рівняння площини? Взаємне розташування площин. Просторова геометрія не набагато складніше...

    Старший сержант Микола Сиротінін
    Старший сержант Микола Сиротінін

    5 травня 2016, 14:11 Микола Володимирович Сиротинін (7 березня 1921 року, Орел – 17 липня 1941 року, Кричев, Білоруська РСР) – старший сержант артилерії. У...