Чи є послідовність непарних чисел арифметичної прогресії. Як знайти суму арифметичної прогресії: формули та приклад їх використання

Початковий рівень

Арифметична прогресія. Детальна теоріяз прикладами (2019)

Числова послідовність

Отже, сядемо і почнемо писати якісь числа. Наприклад:
Писати можна будь-які числа, і може бути скільки завгодно (у разі їх). Скільки б чисел ми не написали, ми завжди можемо сказати, яке з них перше, яке друге і так далі до останнього, тобто можемо їх пронумерувати. Це і є приклад числової послідовності:

Числова послідовність
Наприклад, для нашої послідовності:

Присвоєний номер характерний лише однієї числа послідовності. Іншими словами, у послідовності немає трьох других чисел. Друге число (як і число) завжди одне.
Число з номером називається членом послідовності.

Всю послідовність ми зазвичай називаємо якоюсь літерою (наприклад,), і кожен член цієї послідовності - тією ж літерою з індексом, що дорівнює номеру цього члена: .

У нашому випадку:

Припустимо, у нас є числова послідовність, у якій різниця між сусідніми числами однакова і дорівнює.
Наприклад:

і т.д.
Така числова послідовність називається арифметичною прогресією.
Термін «прогресія» був введений римським автором Боецієм ще в 6 столітті і розумівся на більш широкому значенніяк нескінченна числова послідовність. Назва «арифметична» було перенесено з теорії безперервних пропорцій, якими займалися давні греки.

Це числова послідовність, кожен член якої дорівнює попередньому, складеному з тим самим числом. Це число називається різницею арифметичної прогресії та позначається.

Спробуй визначити, які числові послідовності є арифметичною прогресією, а які:

a)
b)
c)
d)

Розібрався? Порівняємо наші відповіді:
Єарифметичною прогресією – b, c.
Не єарифметичною прогресією – a, d.

Повернемося до заданої прогресії() і спробуємо знайти значення її члена. Існує дваспособу його знаходження.

1. Спосіб

Ми можемо додавати до попереднього значення числа прогресії, поки не дійдемо до члена прогресії. Добре, що підсумувати нам залишилося небагато – лише три значення:

Отже, -ой член описаної арифметичної прогресії дорівнює.

2. Спосіб

А якщо нам потрібно було б знайти значення -го члена прогресії? Підсумовування зайняло б у нас не одну годину, і не факт, що ми не помилилися б при складанні чисел.
Зрозуміло, математики вигадали спосіб, у якому не потрібно додавати різницю арифметичної прогресії до попереднього значення. Придивись уважно до намальованого малюнка… Напевно, ти вже помітив якусь закономірність, а саме:

Наприклад, подивимося, з чого складається значення члена даної арифметичної прогресії:


Іншими словами:

Спробуй самостійно знайти у такий спосіб значення члена даної арифметичної прогресії.

Розрахував? Порівняй свої записи з відповіддю:

Зверніть увагу, що в тебе вийшло таке ж число, як і в попередньому способі, коли ми послідовно додавали до попереднього значення членів арифметичної прогресії.
Спробуємо «знеособити» цю формулу- Наведемо її в загальний виглядта отримаємо:

Рівняння арифметичної прогресії.

Арифметичні прогресії бувають зростаючі, а бувають спадні.

Зростаючі- прогресії, у яких кожне наступне значення членів більше попереднього.
Наприклад:

Знижені- прогресії, у яких кожне наступне значення членів менше попереднього.
Наприклад:

Виведена формула застосовується для членів як у зростаючих, і у спадних членах арифметичної прогресії.
Перевіримо це практично.
Нам дана арифметична прогресія, що складається з наступних чисел: Перевіримо, яке вийде число даної арифметичної прогресії, якщо при його розрахунку використовувати нашу формулу:


Тому що:

Таким чином, ми переконалися, що формула діє як у спадній, так і в зростаючій арифметичній прогресії.
Спробуй самостійно знайти члени цієї арифметичної прогресії.

Порівняємо отримані результати:

Властивість арифметичної прогресії

Ускладнимо завдання - виведемо властивість арифметичної прогресії.
Припустимо, нам дано таку умову:
- арифметична прогресія, знайти значення.
Легко, скажеш ти і почнеш вважати за вже відомою тобі формулою:

Нехай, а тоді:

Абсолютно вірно. Виходить ми спочатку знаходимо, потім додаємо його до першого числа і отримуємо шукане. Якщо прогресія представлена ​​невеликими значеннями, то нічого складного в цьому немає, а якщо нам за умови дані числа? Погодься, є ймовірність помилитися у обчисленнях.
А тепер подумай, чи можна вирішити це завдання в одну дію з використанням будь-якої формули? Звичайно, так, і саме її ми спробуємо зараз вивести.

Позначимо шуканий член арифметичної прогресії як формула його знаходження нам відома - це та сама формула, виведена нами на початку:
тоді:

  • попередній член прогресії це:
  • наступний член прогресії це:

Підсумуємо попередній та наступний члени прогресії:

Виходить, що сума попереднього та наступного членів прогресії – це подвоєне значеннячлена прогресії, що між ними. Іншими словами, щоб знайти значення члена прогресії при відомих попередніх та послідовних значеннях, необхідно скласти їх та розділити на.

Все вірно, ми отримали це число. Закріпимо матеріал. Вважай значення для прогресії самостійно, адже це зовсім нескладно.

Молодець! Ти знаєш про прогрес майже всі! Залишилося дізнатися тільки одну формулу, яку за легендами легко вивів для себе один з найбільших математиківвсіх часів, «король математиків» - Карл Гаус...

Коли Карлу Гауссу було 9 років, вчитель, зайнятий перевіркою робіт учнів інших класів, поставив на уроці таке завдання: «Порахувати суму всіх натуральних чиселвід до (за іншими джерелами до) включно». Яке ж було здивування вчителя, коли один із його учнів (це і був Карл Гаусс) через хвилину дав правильну відповідь на поставлене завдання, при цьому більшість однокласників сміливця після довгих підрахунків отримали неправильний результат.

Юний Карл Гаусс помітив деяку закономірність, яку легко помітиш і ти.
Припустимо, у нас є арифметична прогресія, що складається з членів: Нам необхідно знайти суму даних членів арифметичної прогресії. Звичайно, ми можемо вручну підсумувати всі значення, але що робити, якщо в завданні потрібно буде знайти суму її членів, як це шукав Гаус?

Зобразимо задану нам прогресію. Придивись уважно до виділених чисел та спробуй зробити з ними різні математичні дії.


Спробував? Що ти помітив? Правильно! Їхні суми рівні


А тепер дай відповідь, скільки всього набереться таких пар у заданій нам прогресії? Звичайно, рівно половина всіх чисел, тобто.
Виходячи з того, що сума двох членів арифметичної прогресії дорівнює, а подібних рівних пар ми отримуємо, що Загальна сумадорівнює:
.
Таким чином, формула для суми перших членів будь-якої арифметичної прогресії буде такою:

У деяких завданнях нам невідомий член, але відома різниця прогресії. Спробуй підставити формулу суми, формулу -го члена.
Що в тебе вийшло?

Молодець! Тепер повернемося до завдання, яке задали Карлу Гаусс: порахуй самостійно, чому дорівнює сума чисел, починаючи від -го, і сума чисел починаючи від -го.

Скільки у тебе вийшло?
Гаус вийшло, що сума членів дорівнює, а сума членів. Чи ти так вирішував?

Насправді формула суми членів арифметичної прогресії була доведена давньогрецьким вченим Діофантом ще в 3 столітті, та й протягом усього цього часу дотепні люди користувалися властивостями арифметичної прогресії.
Наприклад, уяви Стародавній Єгипеті саму масштабне будівництвотого часу - будівництво піраміди… На малюнку представлено одну її сторону.

Де тут прогресія скажеш ти? Подивися уважно та знайди закономірність у кількості піщаних блоків у кожному ряді стіни піраміди.


Чим не арифметична прогресія? Порахуй, скільки всього блоків необхідно для будівництва однієї стіни, якщо в основу кладеться цегла. Сподіваюся, ти не вважатимеш, водячи пальцем по монітору, ти ж пам'ятаєш останню формулу і все, що ми говорили про арифметичну прогресію?

У даному випадкупрогресія виглядає так: .
Різниця арифметичної прогресії.
Кількість членів арифметичної прогресії.
Підставимо останні формули наші дані (порахуємо кількість блоків 2 способами).

Спосіб 1.

Спосіб 2.

А тепер можна і на моніторі порахувати: порівняй отримані значення з тією кількістю блоків, яка є в нашій піраміді. Зійшлося? Молодець, ти освоїв суму членів арифметичної прогресії.
Звичайно, з блоків у підставі піраміду не побудуєш, а от із? Спробуй розрахувати, скільки необхідно піщаної цегли, щоб побудувати стіну з такою умовою.
Впорався?
Вірна відповідь - блоків:

Тренування

Завдання:

  1. Маша приходить у форму до літа. Щодня вона збільшує кількість присідань. Скільки разів присідатиме Маша через тижні, якщо на першому тренуванні вона зробила присідань.
  2. Якою є сума всіх непарних чисел, що містяться в.
  3. Лісоруби при зберіганні колод укладають їх таким чином, що кожен верхній шармістить одну колоду менше, ніж попередній. Скільки колод знаходиться в одній кладці, якщо основою кладки є колод.

Відповіді:

  1. Визначимо параметри арифметичної прогресії. В даному випадку
    (Тижня = днів).

    Відповідь:Через два тижні Маша повинна присідати щодня.

  2. Перше непарне число, останнє число.
    Різниця арифметичної прогресії.
    Кількість непарних чисел в - половина, проте, перевіримо цей факт, використовуючи формулу знаходження члена арифметичної прогресії:

    У числах справді міститься непарних чисел.
    Наявні дані підставимо у формулу:

    Відповідь:Сума всіх непарних чисел, що містяться, дорівнює.

  3. Згадаймо завдання для піраміди. Для нашого випадку a , так як кожен верхній шар зменшується на одну колоду, то всього в купі шарів, тобто.
    Підставимо дані у формулу:

    Відповідь:У кладці знаходиться колод.

Підведемо підсумки

  1. - Чисельна послідовність, в якій різниця між сусідніми числами однакова і дорівнює. Вона буває зростаючою та спадною.
  2. Формула знаходження-го члена арифметичної прогресії записується формулою - , де - Число чисел в прогресії.
  3. Властивість членів арифметичної прогресії- де - кількість чисел у прогресії.
  4. Суму членів арифметичної прогресіїможна знайти двома способами:

    де - кількість значень.

АРИФМЕТИЧНА ПРОГРЕСІЯ. СЕРЕДНІЙ РІВЕНЬ

Числова послідовність

Давай сядемо і почнемо писати якісь числа. Наприклад:

Писати можна будь-які числа, і їх може бути скільки завгодно. Але завжди можна сказати, яке з них перше, яке друге і так далі, тобто, можемо їх пронумерувати. Це і є приклад числової послідовності.

Числова послідовність- це безліч чисел, кожному з яких можна надати унікальний номер.

Іншими словами, кожному числу можна поставити у відповідність якесь натуральне число, причому єдине. І цей номер ми не надамо більше жодному іншому числу з даної множини.

Число з номером називається членом послідовності.

Всю послідовність ми зазвичай називаємо якоюсь літерою (наприклад,), і кожен член цієї послідовності - тією ж літерою з індексом, що дорівнює номеру цього члена: .

Дуже зручно, якщо член послідовності можна задати який-небудь формулою. Наприклад, формула

задає послідовність:

А формула – таку послідовність:

Наприклад, арифметичною прогресією є послідовність (перший член тут дорівнює, а різниця). Або (, різниця).

Формула n-го члена

Рекурентною ми називаємо таку формулу, в якій щоб дізнатися член, потрібно знати попередній або кілька попередніх:

Щоб знайти за такою формулою, наприклад, член прогресії, нам доведеться обчислити попередні дев'ять. Наприклад, хай. Тоді:

Ну що, зрозуміло тепер якась формула?

У кожному рядку ми додаємо, помножене на якесь число. На яке? Дуже просто: це номер поточного члена мінус:

Тепер набагато зручніше, правда? Перевіряємо:

Виріши сам:

В арифметичній прогресії знайти формулу n-го члена та знайти сотий член.

Рішення:

Перший член дорівнює. А чому дорівнює різниця? А ось чому:

(Вона тому і називається різницею, що дорівнює різниці послідовних членів прогресії).

Отже, формула:

Тоді сотий член дорівнює:

Чому дорівнює сума всіх натуральних чисел від до?

За легендою великий математик Карл Гаусс, будучи 9-річним хлопчиком, порахував цю суму за кілька хвилин. Він зауважив, що сума першого та останнього числа дорівнює, сума другого та передостаннього – теж, сума третього та 3-го з кінця – теж, і так далі. Скільки всього набереться таких пар? Правильно, рівно половина кількості всіх чисел, тобто. Отже,

Загальна формула для суми перших членів будь-якої арифметичної прогресії буде такою:

Приклад:
Знайдіть суму всіх двоцифрових чиселкратних.

Рішення:

Перше таке число – це. Кожне наступне виходить додаванням до попереднього числа. Таким чином, цікаві для нас числа утворюють арифметичну прогресію з першим членом і різницею.

Формула члена для цієї прогресії:

Скільки членів у прогресії, якщо всі вони мають бути двозначними?

Дуже легко: .

Останній членпрогресії дорівнюватиме. Тоді сума:

Відповідь: .

Тепер виріши сам:

  1. Щодня спортсмен пробігає на м більше, ніж у попередній день. Скільки всього кілометрів він пробіжить за тижні, якщо першого дня він пробіг км?
  2. Велосипедист проїжджає щодня на км більше, ніж попереднього. Першого дня він проїхав км. Скільки днів йому треба їхати, щоб подолати кілометри? Скільки кілометрів він проїде за останній день шляху?
  3. Ціна холодильника в магазині щорічно зменшується на ту саму суму. Визначте, на скільки щороку зменшувалася ціна холодильника, якщо виставлений на продаж за рублів через шість років був проданий за рублів.

Відповіді:

  1. Тут найголовніше - розпізнати арифметичну прогресію та визначити її параметри. У цьому випадку (тижня = днів). Визначити потрібно суму перших членів цієї прогресії:
    .
    Відповідь:
  2. Тут дано: треба знайти.
    Очевидно, потрібно використовувати ту саму формулу суми, що й у попередньому завданні:
    .
    Підставляємо значення:

    Корінь, очевидно, не підходить, отже, відповідь.
    Порахуємо шлях, пройдений за останній день за допомогою формули члена:
    (Км).
    Відповідь:

  3. Дано: . Знайти: .
    Простіше не буває:
    (Руб).
    Відповідь:

АРИФМЕТИЧНА ПРОГРЕСІЯ. КОРОТКО ПРО ГОЛОВНЕ

Це числова послідовність, у якій різниця між сусідніми числами однакова і дорівнює.

Арифметична прогресія буває зростаючою () та спадною ().

Наприклад:

Формула знаходження n-ого члена арифметичної прогресії

записується формулою, де - кількість чисел у прогресії.

Властивість членів арифметичної прогресії

Воно дозволяє легко знайти член прогресії, якщо відомі його сусідні члени – де – кількість чисел у прогресії.

Сума членів арифметичної прогресії

Існує два способи знаходження суми:

Де – кількість значень.

Де – кількість значень.

Якщо кожному натуральному числу n поставити у відповідність дійсне число a n , то кажуть, що поставлено числову послідовність :

a 1 , a 2 , a 3 , . . . , a n , . . . .

Отже, числова послідовність – функція натурального аргументу.

Число a 1 називають першим членом послідовності , число a 2 другим членом послідовності , число a 3 третім і так далі. Число a n називають n-м членомпослідовності , а натуральне число nйого номером .

Із двох сусідніх членів a n і a n +1 послідовності член a n +1 називають наступним (по відношенню до a n ), а a n попереднім (по відношенню до a n +1 ).

Щоб встановити послідовність, потрібно вказати спосіб, що дозволяє знайти член послідовності з будь-яким номером.

Часто послідовність задають за допомогою формули n-го члена тобто формули, яка дозволяє визначити член послідовності за його номером.

Наприклад,

послідовність позитивних непарних чиселможна задати формулою

a n= 2n - 1,

а послідовність чергуються 1 і -1 формулою

b n = (-1)n +1 .

Послідовність можна визначити рекурентною формулою, тобто формулою, яка виражає будь-який член послідовності, починаючи з деякого через попередні (один або кілька) члени.

Наприклад,

якщо a 1 = 1 , а a n +1 = a n + 5

a 1 = 1,

a 2 = a 1 + 5 = 1 + 5 = 6,

a 3 = a 2 + 5 = 6 + 5 = 11,

a 4 = a 3 + 5 = 11 + 5 = 16,

a 5 = a 4 + 5 = 16 + 5 = 21.

Якщо а 1= 1, а 2 = 1, a n +2 = a n + a n +1 , то перші сім членів числової послідовності встановлюємо так:

a 1 = 1,

a 2 = 1,

a 3 = a 1 + a 2 = 1 + 1 = 2,

a 4 = a 2 + a 3 = 1 + 2 = 3,

a 5 = a 3 + a 4 = 2 + 3 = 5,

a 6 = a 4 + a 5 = 3 + 5 = 8,

a 7 = a 5 + a 6 = 5 + 8 = 13.

Послідовності можуть бути кінцевими і нескінченними .

Послідовність називається кінцевою якщо вона має кінцеве число членів. Послідовність називається нескінченною якщо вона має нескінченно багато членів.

Наприклад,

послідовність двоцифрових натуральних чисел:

10, 11, 12, 13, . . . , 98, 99

кінцева.

Послідовність простих чисел:

2, 3, 5, 7, 11, 13, . . .

нескінченна.

Послідовність називають зростаючою якщо кожен її член, починаючи з другого, більше ніж попередній.

Послідовність називають спадаючою якщо кожен її член, починаючи з другого, менше ніж попередній.

Наприклад,

2, 4, 6, 8, . . . , 2n, . . . - Зростаюча послідовність;

1, 1 / 2 , 1 / 3 , 1 / 4 , . . . , 1 /n, . . . - спадна послідовність.

Послідовність, елементи якої зі збільшенням номера не зменшуються, або, навпаки, не зростають, називається монотонною послідовністю .

Монотонними послідовностями, зокрема, є зростаючі послідовності та спадні послідовності.

Арифметична прогресія

Арифметичною прогресією називається послідовність, кожен член якої, починаючи з другого, дорівнює попередньому, до якого додається те саме число.

a 1 , a 2 , a 3 , . . . , a n, . . .

є арифметичною прогресією, якщо для будь-якого натурального числа n виконується умова:

a n +1 = a n + d,

де d - Деяке число.

Таким чином, різниця між наступним та попереднім членами даної арифметичної прогресії завжди постійна:

а 2 - a 1 = а 3 - a 2 = . . . = a n +1 - a n = d.

Число d називають різницею арифметичної прогресії.

Щоб задати арифметичну прогресію, достатньо вказати її перший член та різницю.

Наприклад,

якщо a 1 = 3, d = 4 , то перші п'ять членів послідовності знаходимо так:

a 1 =3,

a 2 = a 1 + d = 3 + 4 = 7,

a 3 = a 2 + d= 7 + 4 = 11,

a 4 = a 3 + d= 11 + 4 = 15,

a 5 = a 4 + d= 15 + 4 = 19.

Для арифметичної прогресії з першим членом a 1 і різницею d її n

a n = a 1 + (n- 1)d.

Наприклад,

знайдемо тридцятий член арифметичної прогресії

1, 4, 7, 10, . . .

a 1 =1, d = 3,

a 30 = a 1 + (30 - 1)d = 1 + 29· 3 = 88.

a n-1 = a 1 + (n- 2)d,

a n= a 1 + (n- 1)d,

a n +1 = a 1 + nd,

то, очевидно,

a n=
a n-1 + a n+1
2

кожен член арифметичної прогресії, починаючи з другого, дорівнює середньому арифметичному попереднього та наступного членів.

числа a, b і c є послідовними членами деякої арифметичної прогресії тоді і лише тоді, коли одне з них дорівнює середньому арифметичному двох інших.

Наприклад,

a n = 2n- 7 є арифметичною прогресією.

Скористаємося наведеним вище твердженням. Маємо:

a n = 2n- 7,

a n-1 = 2(n - 1) - 7 = 2n- 9,

a n+1 = 2(n+ 1) - 7 = 2n- 5.

Отже,

a n+1 + a n-1
=
2n- 5 + 2n- 9
= 2n- 7 = a n,
2
2

Відмітимо, що n -й член арифметичної прогресії можна знайти не тільки через a 1 , але й будь-який попередній a k

a n = a k + (n- k)d.

Наприклад,

для a 5 можна записати

a 5 = a 1 + 4d,

a 5 = a 2 + 3d,

a 5 = a 3 + 2d,

a 5 = a 4 + d.

a n = a n-k + kd,

a n = a n+k - kd,

то, очевидно,

a n=
a n-k + a n+k
2

будь-який член арифметичної прогресії, починаючи з другого дорівнює напівсумірівновіддалених від нього членів цієї арифметичної прогресії.

Крім того, для будь-якої арифметичної прогресії справедлива рівність:

a m + a n = a k + a l,

m+n=k+l.

Наприклад,

в арифметичній прогресії

1) a 10 = 28 = (25 + 31)/2 = (a 9 + a 11 )/2;

2) 28 = a 10 = a 3 + 7d= 7 + 7 · 3 = 7 + 21 = 28;

3) a 10= 28 = (19 + 37)/2 = (a 7 + a 13)/2;

4) a 2 + a 12 = a 5 + a 9, так як

a 2 + a 12= 4 + 34 = 38,

a 5 + a 9 = 13 + 25 = 38.

S n= a 1 + a 2 + a 3 +. . .+ a n,

перших n членів арифметичної прогресії дорівнює добутку напівсуми крайніх доданків на кількість доданків:

Звідси, зокрема, випливає, що якщо потрібно підсумувати члени

a k, a k +1 , . . . , a n,

то попередня формула зберігає свою структуру:

Наприклад,

в арифметичній прогресії 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, . . .

S 10 = 1 + 4 + . . . + 28 = (1 + 28) · 10/2 = 145;

10 + 13 + 16 + 19 + 22 + 25 + 28 = S 10 - S 3 = (10 + 28 ) · (10 - 4 + 1)/2 = 133.

Якщо дана арифметична прогресія, то величини a 1 , a n, d, nіS n пов'язані двома формулами:

Тому, якщо значення трьохз цих величин дано, то відповідні їм значення двох інших величин визначаються з цих формул, об'єднаних у систему двох рівнянь із двома невідомими.

Арифметична прогресія є монотонною послідовністю. При цьому:

  • якщо d > 0 , вона є зростаючою;
  • якщо d < 0 , то вона є спадною;
  • якщо d = 0 , то послідовність буде стаціонарною.

Геометрична прогресія

Геометричною прогресією називається послідовність, кожен член якої, починаючи з другого, дорівнює попередньому, помноженому на те саме число.

b 1 , b 2 , b 3 , . . . , b n, . . .

є геометричною прогресією, якщо для будь-якого натурального числа n виконується умова:

b n +1 = b n · q,

де q ≠ 0 - Деяке число.

Таким чином, відношення наступного члена даної геометричній прогресіїдо попереднього є число постійне:

b 2 / b 1 = b 3 / b 2 = . . . = b n +1 / b n = q.

Число q називають знаменником геометричної прогресії.

Щоб задати геометричну прогресію, достатньо вказати її перший член та знаменник.

Наприклад,

якщо b 1 = 1, q = -3 , то перші п'ять членів послідовності знаходимо так:

b 1 = 1,

b 2 = b 1 · q = 1 · (-3) = -3,

b 3 = b 2 · q= -3 · (-3) = 9,

b 4 = b 3 · q= 9 · (-3) = -27,

b 5 = b 4 · q= -27 · (-3) = 81.

b 1 та знаменником q її n -й член може бути знайдений за формулою:

b n = b 1 · q n -1 .

Наприклад,

знайдемо сьомий член геометричної прогресії 1, 2, 4, . . .

b 1 = 1, q = 2,

b 7 = b 1 · q 6 = 1 · 2 6 = 64.

b n-1 = b 1 · q n -2 ,

b n = b 1 · q n -1 ,

b n +1 = b 1 · q n,

то, очевидно,

b n 2 = b n -1 · b n +1 ,

кожен член геометричної прогресії, починаючи з другого, дорівнює середньому геометричному (пропорційному) попереднього та наступного членів.

Тому що вірно і зворотне затвердження, то має місце таке твердження:

числа a, b та c є послідовними членами деякої геометричної прогресії тоді і лише тоді, коли квадрат одного з них дорівнює творудвох інших, тобто одне із чисел є середнім геометричним двом іншим.

Наприклад,

доведемо, що послідовність, яка задається формулою b n= -3 · 2 n є геометричною прогресією. Скористаємося наведеним вище твердженням. Маємо:

b n= -3 · 2 n,

b n -1 = -3 · 2 n -1 ,

b n +1 = -3 · 2 n +1 .

Отже,

b n 2 = (-3 · 2 n) 2 = (-3 · 2 n -1 ) · (-3 · 2 n +1 ) = b n -1 · b n +1 ,

як і доводить необхідне твердження.

Відмітимо, що n -й член геометричної прогресії можна знайти не тільки через b 1 , але й будь-який попередній член b k , для чого достатньо скористатися формулою

b n = b k · q n - k.

Наприклад,

для b 5 можна записати

b 5 = b 1 · q 4 ,

b 5 = b 2 · q 3,

b 5 = b 3 · q 2,

b 5 = b 4 · q.

b n = b k · q n - k,

b n = b n - k · q k,

то, очевидно,

b n 2 = b n - k· b n + k

квадрат будь-якого члена геометричної прогресії, починаючи з другого дорівнює добутку рівновіддалених від нього членів цієї прогресії.

Крім того, для будь-якої геометричної прогресії справедлива рівність:

b m· b n= b k· b l,

m+ n= k+ l.

Наприклад,

у геометричній прогресії

1) b 6 2 = 32 2 = 1024 = 16 · 64 = b 5 · b 7 ;

2) 1024 = b 11 = b 6 · q 5 = 32 · 2 5 = 1024;

3) b 6 2 = 32 2 = 1024 = 8 · 128 = b 4 · b 8 ;

4) b 2 · b 7 = b 4 · b 5 , так як

b 2 · b 7 = 2 · 64 = 128,

b 4 · b 5 = 8 · 16 = 128.

S n= b 1 + b 2 + b 3 + . . . + b n

перших n членів геометричної прогресії зі знаменником q 0 обчислюється за такою формулою:

А при q = 1 - за формулою

S n= nb 1

Зауважимо, що якщо потрібно підсумувати члени

b k, b k +1 , . . . , b n,

то використовується формула:

S n- S k -1 = b k + b k +1 + . . . + b n = b k · 1 - q n - k +1
.
1 - q

Наприклад,

у геометричній прогресії 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, . . .

S 10 = 1 + 2 + . . . + 512 = 1 · (1 - 2 10) / (1 - 2) = 1023;

64 + 128 + 256 + 512 = S 10 - S 6 = 64 · (1 - 2 10-7+1) / (1 - 2) = 960.

Якщо дана геометрична прогресія, то величини b 1 , b n, q, nі S n пов'язані двома формулами:

Тому, якщо значення якихось трьох із цих величин дано, то відповідні їм значення двох інших величин визначаються з цих формул, об'єднаних у систему двох рівнянь із двома невідомими.

Для геометричної прогресії з першим членом b 1 та знаменником q мають місце такі властивості монотонності :

  • прогресія є зростаючою, якщо виконано одну з таких умов:

b 1 > 0 і q> 1;

b 1 < 0 і 0 < q< 1;

  • прогресія є спадною, якщо виконано одну з наступних умов:

b 1 > 0 і 0 < q< 1;

b 1 < 0 і q> 1.

Якщо q< 0 , то геометрична прогресія є знакозмінною: її члени з непарними номерами мають той самий знак, що й перший член, а члени з парними номерами — протилежний йому знак. Зрозуміло, що знакозмінна геометрична прогресія не є монотонною.

Твір перших n членів геометричної прогресії можна розрахувати за такою формулою:

P n= b 1 · b 2 · b 3 · . . . · b n = (b 1 · b n) n / 2 .

Наприклад,

1 · 2 · 4 · 8 · 16 · 32 · 64 · 128 = (1 · 128) 8/2 = 128 4 = 268 435 456;

3 · 6 · 12 · 24 · 48 = (3 · 48) 5/2 = (144 1/2) 5 = 12 5 = 248 832.

Нескінченна спадна геометрична прогресія

Нескінченно спадаючою геометричною прогресією називають нескінченну геометричну прогресію, модуль знаменника якої менший 1 , тобто

|q| < 1 .

Зауважимо, що нескінченно спадна геометрична прогресія може не бути спадною послідовністю. Це відповідає нагоді

1 < q< 0 .

При такому знаменнику послідовність знакозмінна. Наприклад,

1, - 1 / 2 , 1 / 4 , - 1 / 8 , . . . .

Сумою нескінченно спадної геометричної прогресії називають число, до якого необмежено наближається сума перших n членів прогресії при необмеженому зростанні числа n . Це число завжди звичайно і виражається формулою

S= b 1 + b 2 + b 3 + . . . = b 1
.
1 - q

Наприклад,

10 + 1 + 0,1 + 0,01 + . . . = 10 / (1 - 0,1) = 11 1 / 9 ,

10 - 1 + 0,1 - 0,01 + . . . = 10 / (1 + 0,1) = 9 1 / 11 .

Зв'язок арифметичної та геометричної прогресій

Арифметична та геометрична прогресії тісно пов'язані між собою. Розглянемо лише два приклади.

a 1 , a 2 , a 3 , . . . d , то

b a 1 , b a 2 , b a 3 , . . . b d .

Наприклад,

1, 3, 5, . . . - арифметична прогресія з різницею 2 і

7 1 , 7 3 , 7 5 , . . . - геометрична прогресія із знаменником 7 2 .

b 1 , b 2 , b 3 , . . . - геометрична прогресія із знаменником q , то

log a b 1, log a b 2, log a b 3, . . . - арифметична прогресія з різницею log aq .

Наприклад,

2, 12, 72, . . . - геометрична прогресія із знаменником 6 і

lg 2, lg 12, lg 72, . . . - арифметична прогресія з різницею lg 6 .

Багато хто чув про арифметичну прогресію, але не всі добре уявляють, що це таке. У даній статті дамо відповідне визначення, а також розглянемо питання, як знайти різницю арифметичної прогресії, і наведемо ряд прикладів.

Математичне визначення

Отже, якщо мова йдепро прогресію арифметичної чи алгебраїчної (ці поняття визначають одне й те саме), це означає, що є певний числовий ряд, що задовольняє наступного закону: кожні два сусідні числа в ряду відрізняються на те саме значення. Математично це записується так:

Тут n означає номер елемента a n у послідовності, а число d - це різниця прогресії (її назва випливає з представленої формули).

Про що говорить знання різниці d? Про те, як "далеко" один від одного відстоять сусідні числа. Однак знання d є необхідним, але не достатньою умовоювизначення (відновлення) всієї прогресії. Необхідно знати ще одне число, яким може бути абсолютно будь-який елемент ряду, наприклад, a 4 , a10, але, як правило, використовують перше число, тобто a 1 .

Формули для визначення елементів прогресії

Загалом інформації вище вже достатньо, щоб переходити до рішення конкретних завдань. Проте до того, як буде дана арифметична прогресія, і знайти різницю її буде необхідно, наведемо пару корисних формул, полегшивши цим подальший процес вирішення завдань.

Нескладно показати, що будь-який елемент послідовності з номером n може бути знайдений так:

a n = a 1 + (n - 1) * d

Дійсно, перевірити цю формулу може кожен простим перебором: якщо підставити n = 1, то вийде перший елемент, якщо підставити n = 2, тоді вираз видає суму першого числа та різниці, і так далі.

Умови багатьох завдань складаються таким чином, що за відомою парою чисел, номери яких у послідовності також дано, необхідно відновити весь числовий ряд (знайти різницю та перший елемент). Зараз ми вирішимо це завдання у загальному вигляді.

Отже, нехай дані два елементи з номерами n і m. Користуючись отриманою формулою, можна скласти систему з двох рівнянь:

a n = a 1 + (n - 1) * d;

a m = a 1 + (m - 1) * d

Для знаходження невідомих величин скористаємося відомим простим прийомомрішення такої системи: віднімемо попарно ліву та праву частини, рівність при цьому залишиться справедливою. Маємо:

a n = a 1 + (n - 1) * d;

a n - a m = (n - 1) * d - (m - 1) * d = d * (n - m)

Таким чином ми виключили одну невідому (a 1). Тепер можна записати остаточний вираз визначення d:

d = (a n - a m) / (n - m), де n > m

Ми отримали дуже просту формулу: щоб обчислити різницю d відповідно до умов завдання, необхідно лише взяти відношення різниць самих елементів та їх порядкових номерів. Слід звернути на один важливий моментувага: різниці беруться між "старшим" і "молодшим" ​​членами, тобто n > m ("старший" - мається на увазі вартий далі від початку послідовності, його абсолютне значенняможе бути як більше, так і менше "молодшого" елемента).

Вираз для різниці d прогресії слід підставити на будь-яке з рівнянь на початку розв'язання задачі, щоб отримати значення першого члена.

У наш вік розвитку комп'ютерних технологійбагато школярів намагаються знайти рішення для своїх завдань в Інтернеті, тому часто виникають такі питання: знайти різницю арифметичної прогресії онлайн. За подібним запитом пошуковик видасть ряд web-сторінок, перейшовши на які, потрібно буде ввести відомі з умови дані (це можуть бути як два члени прогресії, так і сума деякого їх числа) і миттєво отримати відповідь. Проте такий підхід до вирішення завдання є непродуктивним у плані розвитку школяра та розуміння суті поставленого перед ним завдання.

Рішення без використання формул

Вирішимо перше завдання, при цьому не будемо використовувати жодні з наведених формул. Нехай дані елементи ряду: а6 = 3, а9 = 18. Знайти різницю прогресії арифметичної.

Відомі елементи стоять близько один до одного в ряду. Скільки разів потрібно додати різницю d до найменшого, щоб отримати найбільше? Три рази (вперше додавши d, ми отримаємо 7-й елемент, другий раз - восьмий, нарешті, втретє - дев'ятий). Яке число потрібно додати до трьох разів, щоб отримати 18? Це число п'ять. Дійсно:

Таким чином, невідома різниця d=5.

Звичайно ж, рішення можна було виконати із застосуванням відповідної формули, але цього не було зроблено навмисно. Детальне поясненнярозв'язання задачі має стати зрозумілим та яскравим прикладом, що таке арифметична прогресія

Завдання, подібне до попереднього

Тепер вирішимо схоже завдання, але змінимо вхідні дані. Отже, слід знайти, якщо а3 = 2, а9 = 19.

Звичайно, можна вдатися знову до методу рішення "в лоб". Але оскільки дані елементи ряду, які стоять відносно далеко один від одного, такий метод стане не зовсім зручним. А ось використання отриманої формули швидко приведе нас до відповіді:

d = (а 9 - а 3) / (9 - 3) = (19 - 2) / (6) = 17 / 6 ≈ 2,83

Тут ми округлили кінцеве число. Наскільки це округлення спричинило помилку, можна судити, перевіривши отриманий результат:

a 9 = a 3 + 2,83 + 2,83 + 2,83 + 2,83 + 2,83 + 2,83 = 18,98

Цей результат відрізняється лише на 0,1 % від значення, даного за умови. Тому використане округлення до сотих можна вважати успішним вибором.

Завдання застосування формули для an члена

Розглянемо класичний прикладзадачі визначення невідомої d: знайти різницю прогресії арифметичної, якщо а1 = 12, а5 = 40.

Коли дано два числа невідомої послідовності алгебри, причому одним з них є елемент a 1 , тоді не потрібно довго думати, а слід відразу ж застосувати формулу для a n члена. В даному випадку маємо:

a 5 = a 1 + d * (5 - 1) => d = (a 5 - a 1) / 4 = (40 - 12) / 4 = 7

Ми отримали точне число під час поділу, тому немає сенсу перевіряти точність розрахованого результату, як це було зроблено в попередньому пункті.

Вирішимо ще одне аналогічне завдання: слід знайти різницю арифметичної прогресії, якщо а1 = 16, а8 = 37.

Використовуємо аналогічний попередній підхід та отримуємо:

a 8 = a 1 + d * (8 - 1) => d = (a 8 - a 1) / 7 = (37 - 16) / 7 = 3

Що ще слід знати про арифметичну прогресію

Крім завдань на знаходження невідомої різниці або окремих елементівчасто необхідно вирішувати проблеми суми перших членів послідовності. Розгляд цих завдань виходить за межі теми статті, проте для повноти інформації наведемо загальну формулудля суми n чисел ряду:

∑ n i = 1 (a i) = n * (a 1 + a n) / 2

Або арифметична - це вид упорядкованої числової послідовності, властивості якої вивчають у шкільному курсіалгебри. У статті докладно розглянуто питання, як знайти суму арифметичної прогресії.

Що це за прогрес?

Перш ніж переходити до розгляду питання (як знайти суму арифметичної прогресії), варто зрозуміти, про що йтиметься.

Будь-яка послідовність дійсних чисел, яка виходить шляхом додавання (віднімання) деякого значення з кожного попереднього числа, називається алгебраїчною (арифметичною) прогресією. Це визначення в перекладі на мову математики набуває форми:

Тут i - порядковий номерелемента ряду a i. Таким чином, знаючи лише одне початкове число, можна легко відновити весь ряд. Параметр d у формулі називається різницею прогресії.

Можна легко показати, що для ряду чисел, що розглядається, виконується наступна рівність:

a n = a 1 + d * (n – 1).

Тобто знаходження значення n-го по порядку елемента слід n-1 раз додати різницю d до першого елементу a 1 .

Чому дорівнює сума арифметичної прогресії: формула

Перш ніж наводити формулу для зазначеної суми, варто розглянути простий окремий випадок. Дана прогресія натуральних чисел від 1 до 10, необхідно знайти їхню суму. Оскільки членів у прогресії небагато (10), можна вирішити завдання в лоб, тобто підсумувати всі елементи по порядку.

S10 = 1+2+3+4+5+6+7+8+9+10 = 55.

Варто врахувати одну цікаву річ: оскільки кожен член відрізняється від наступного на те саме значення d = 1, то попарне підсумовування першого з десятим, другого з дев'ятим і так далі дасть однаковий результат. Дійсно:

11 = 1+10 = 2+9 = 3+8 = 4+7 = 5+6.

Як видно, цих сум всього 5, тобто рівно вдвічі менше, ніж кількість елементів ряду. Тоді, помножуючи число сум (5) на результат кожної суми (11), ви прийдете до отриманого в першому прикладі результату.

Якщо узагальнити ці міркування, можна записати такий вираз:

S n = n*(a 1 + a n)/2.

Цей вираз показує, що зовсім не обов'язково підсумовувати всі елементи, достатньо знати значення першого a 1 і останнього a n , а також загальної кількостідоданків n.

Вважається, що вперше до цієї рівності додумався Гаус, коли шукав рішення на задану його шкільним учителемЗавдання: підсумувати 100 перших цілих чисел.

Сума елементів від m до n: формула

Формула, наведена в попередньому пункті, дає відповідь на питання, як знайти суму арифметичної прогресії (перших елементів), але часто в завданнях необхідно підсумувати ряд чисел, що стоять у середині прогресії. Як це зробити?

Відповісти на це питання найпростіше, розглядаючи наступний приклад: нехай необхідно знайти суму членів від m-го до n-го. Для розв'язання задачі слід подати заданий відрізок від m до n прогресії у вигляді нового числового ряду. У такому поданні m-й член a m буде першим, а a n стане під номером n-(m-1). У цьому випадку, застосовуючи стандартну формулу для суми, вийде такий вираз:

S m n = (n - m + 1) * (a m + a n)/2.

Приклад використання формул

Знаючи, як визначити суму арифметичної прогресії, варто розглянути простий приклад використання наведених формул.

Нижче дана числова послідовність, слід знайти суму її членів, починаючи з 5-го та закінчуючи 12-м:

Наведені числа свідчать, що різниця d дорівнює 3. Використовуючи вираз для n-го елемента, можна знайти значення 5-го та 12-го членів прогресії. Виходить:

a 5 = a 1 + d * 4 = -4 + 3 * 4 = 8;

a 12 = a 1 + d * 11 = -4 + 3 * 11 = 29.

Знаючи значення чисел, що стоять на кінцях аналізованої алгебраїчної прогресії, а також знаючи, які номери в ряду вони займають, можна скористатися формулою суми, отриманої в попередньому пункті. Вийде:

S 5 12 = (12 - 5 + 1) * (8 + 29) / 2 = 148.

Варто зазначити, що це значення можна було отримати інакше: спочатку знайти суму перших 12 елементів за стандартною формулоюпотім обчислити суму перших 4 елементів за тією ж формулою, після цього відняти з першої суми другу.

І. В. Яковлєв | Матеріали з математики MathUs.ru

Арифметична прогресія

Арифметична прогресія це спеціального видупослідовність. Тому, перш ніж давати визначення арифметичної (а потім і геометричної) прогресії, нам потрібно коротко обговорити важливе поняттячислової послідовності.

Послідовність

Уявіть пристрій, на екрані якого висвічуються одна за одною деякі цифри. Скажімо, 2; 7; 13; 1; 6; 0; 3; : : : Такий набір чисел якраз і є прикладом послідовності.

Визначення. Числова послідовність це безліч чисел, у якому кожному числу можна надати унікальний номер (тобто поставити у відповідність єдине натуральне число)1 . Число з номером n називається n членом послідовності.

Так, у наведеному вище прикладі перший номер має число 2 перший член послідовності, який можна позначити a1 ; номер п'ять має число 6, це п'ятий член послідовності, який можна позначити a5 . Взагалі, n-й членпослідовності позначається an (або bn, cn і т. д.).

Дуже зручна ситуація, коли n член послідовності можна задати деякою формулою. Наприклад, формула an = 2n 3 задає послідовність: 1; 1; 3; 5; 7; : : : Формула an = (1)n задає послідовність: 1; 1; 1; 1; : : :

Не всяка множина чисел є послідовністю. Так, відрізок не послідовність; у ньому міститься «надто багато» чисел, щоб їх можна було перенумерувати. Багато R всіх дійсних чисел також не є послідовністю. Ці факти доводяться у курсі математичного аналізу.

Арифметична прогресія: основні визначення

Ось тепер ми готові надати визначення арифметичної прогресії.

Визначення. Арифметична прогресія - це послідовність, кожен член якої (починаючи з другого) дорівнює суміпопереднього члена та деякого фіксованого числа (званого різницею арифметичної прогресії).

Наприклад, послідовність 2; 5; 8; 11; : : : є арифметичною прогресією з першим членом 2 і різницею 3. Послідовність 7; 2; 3; 8; : : : є арифметичною прогресією з першим членом 7 і різницею 5. Послідовність 3; 3; 3; : : : є арифметичною прогресією з різницею, що дорівнює нулю.

Еквівалентне визначення: послідовність an називається арифметичною прогресією, якщо різниця an+1 an є постійна величина (не залежить від n).

Арифметична прогресія називається зростаючою, якщо її різниця позитивна, і спадною, якщо її різниця негативна.

1 А ось лаконічніше визначення: послідовність є функція, визначена на безлічі натуральних чисел. Наприклад, послідовність дійсних чисел є функція f: N! R.

За умовчанням послідовності вважаються нескінченними, тобто такими, що містять нескінченна безліччисел. Але ніхто не заважає розглядати кінцеві послідовності; власне, будь-який кінцевий набір чисел можна назвати кінцевою послідовністю. Наприклад, кінцева послідовність 1; 2; 3; 4; 5 складається із п'яти чисел.

Формула n-го члена арифметичної прогресії

Легко зрозуміти, що арифметична прогресія повністю визначається двома числами: першим членом та різницею. Тому постає питання: як, знаючи перший член і різницю, знайти довільний член арифметичної прогресії?

Отримати шукану формулу n-го члена арифметичної прогресії неважко. Нехай an

арифметична прогресія з різницею d. Маємо:

an+1 = an + d (n = 1; 2; : : :):

Зокрема, пишемо:

a2 = a1 + d;

a3 = a2 + d = (a1 + d) + d = a1 + 2d;

a4 = a3 + d = (a1 + 2d) + d = a1 + 3d;

і тепер стає ясно, що формула для an має вигляд:

an = a1 + (n 1)d:

Завдання 1. В арифметичній прогресії 2; 5; 8; 11; : : : Знайти формулу n-го члена і обчислити сотий член.

Рішення. Відповідно до формули (1 ) маємо:

an = 2 + 3(n 1) = 3n 1:

a100 = 3100 1 = 299:

Властивість та ознака арифметичної прогресії

Властивість арифметичної прогресії. В арифметичній прогресії an для будь-якого

Інакше висловлюючись, кожен член арифметичної прогресії (починаючи з другого) є середнім арифметичним сусідніх членів.

Доведення. Маємо:

a n 1+ a n+1

(an d) + (an + d)

що й потрібно.

Більше загальним чином, для арифметичної прогресії an справедлива рівність

a n = n k+ a n+k

при будь-якому n > 2 та будь-якому натуральному k< n. Попробуйте самостоятельно доказать эту формулу тем же самым приёмом, что и формулу (2 ).

Виявляється, формула (2) служить не тільки необхідною, але й достатньою умовою того, що послідовність є арифметичною прогресією.

Ознака арифметичної прогресії. Якщо всім n > 2 виконано рівність (2 ), то послідовність an є арифметичної прогресією.

Доведення. Перепишемо формулу (2 ) таким чином:

a na n 1 = a n+1a n:

Звідси видно, що різницю an+1 an залежить від n, але це й означає, що послідовність an є арифметична прогресія.

Властивість та ознака арифметичної прогресії можна сформулювати у вигляді одного твердження; ми для зручності зробимо це для трьох чисел (саме така ситуація часто зустрічається у завданнях).

Характеризація арифметичної прогресії. Три числа a, b, c утворюють арифметичну прогресію і тоді, коли 2b = a + c.

Завдання 2. (МДУ, економ. ф-т, 2007) Три числа 8x, 3x2 і 4 у зазначеному порядку утворюють спадну арифметичну прогресію. Знайдіть x і вкажіть різницю цієї прогресії.

Рішення. За якістю арифметичної прогресії маємо:

2(3 x2 ) = 8x 4 , 2x2 + 8x 10 = 0, x2 + 4x 5 = 0, x = 1; x = 5:

Якщо x = 1, то виходить спадна прогресія 8, 2, 4 з різницею 6. Якщо x = 5, то виходить зростаюча прогресія 40, 22, 4; цей випадок годиться.

Відповідь: x = 1, різниця дорівнює 6.

Сума перших n членів арифметичної прогресії

Легенда свідчить, що одного разу вчитель наказав дітям знайти суму чисел від 1 до 100 і сів спокійно читати газету. Проте не минуло й кількох хвилин, як один хлопчик сказав, що вирішив завдання. Це був 9-річний Карл Фрідріх Гаусс, згодом один із найбільших математиків в історії.

Ідея маленького Гауса була така. Нехай

S = 1 + 2 + 3 + : : : + 98 + 99 + 100:

Запишемо цю сумув зворотньому напрямку:

S = 100 + 99 + 98 + : : : + 3 + 2 + 1;

і складемо дві ці формули:

2S = (1 + 100) + (2 + 99) + (3 + 98) + : : : + (98 + 3) + (99 + 2) + (100 + 1):

Кожен доданок у дужках дорівнює 101, а всього таких доданків 100. Тому

2S = 101100 = 10100;

Ми використовуємо цю ідею для виведення формули суми

S = a1 + a2 + : : : + an + a n n: (3)

Корисна модифікація формули (3 ) виходить, якщо до неї підставити формулу n-го члена an = a1 + (n 1)d:

2a1 + (n 1)d

Завдання 3. Знайти суму всіх позитивних трицифрових чисел, що діляться на 13.

Рішення. Тризначні числа, кратні 13, утворюють арифметичну прогресію з першим членом 104 і 13 різницею; n-й член цієї прогресії має вигляд:

an = 104 + 13(n 1) = 91 + 13n:

Давайте з'ясуємо скільки членів містить наша прогресія. Для цього вирішимо нерівність:

an 6 999; 91 + 13n 6999;

n 6908 13 = 6911 13 ; n 6 69:

Отже, у нашій прогресії 69 членів. За формулою (4 ) знаходимо потрібну суму:

S = 2 104 + 68 13 69 = 37674: 2



Останні матеріали розділу:

«Цар-бомба», або як Радянський Союз створив наймогутнішу ядерну зброю в історії
«Цар-бомба», або як Радянський Союз створив наймогутнішу ядерну зброю в історії

Ядерна зброя – озброєння стратегічного характеру, здатне вирішувати глобальні завдання. Його застосування пов'язане зі страшними наслідками для...

Хто винайшов атомну бомбу?
Хто винайшов атомну бомбу?

Одними з перших практичних кроків Спецкомітету та ПДУ були рішення щодо створення виробничої бази ядерного збройового комплексу. 1946 року був...

'Наш сукин сын' Сомоса наш сукин сын
'Наш сучий син' Сомоса наш сукін син

Коли президент США Франклін Д. Рузвельт одного разу запитав про нікарагуанського диктатора Анастасіо Сомоса (1896-1956), якого Америка...