Довести, що число є межею функції. Межа послідовності та функції

Межі завдають всім студентам, які вивчають математику, чимало клопоту. Щоб вирішити межу, часом доводиться застосовувати масу хитрощів і вибирати з багатьох способів розв'язання саме той, який підійде для конкретного прикладу.

У цій статті ми не допоможемо вам зрозуміти межі своїх можливостей чи осягнути межі контролю, але постараємося відповісти на запитання: як зрозуміти межі у вищій математиці? Розуміння приходить з досвідом, тому зараз приведемо кілька докладних прикладіввирішення меж із поясненнями.

Поняття межі математики

Перше питання: що це взагалі за межу та межу чого? Можна говорити про межі числових послідовностей та функцій. Нас цікавить поняття межі функції, оскільки саме з ними найчастіше стикаються студенти. Але спочатку – саме загальне визначеннямежі:

Допустимо, є деяка змінна величина. Якщо ця величина у процесі зміни необмежено наближається до певному числу a , то a - Межа цієї величини.

Для певної в інтервалі функції f(x)=y межею називається таке число A , якого прагне функція при х , що прагне до певної точки а . Крапка а належить інтервалу, у якому визначено функція.

Звучить громіздко, але записується дуже просто:

Lim- від англійської limit- Межа.

Існує також геометричне пояснення визначення межі, але тут ми не лізтимемо в теорію, оскільки нас більше цікавить практична, ніж теоретична сторона питання. Коли ми говоримо, що х прагне якогось значення, це означає, що змінна не приймає значення числа, але нескінченно близько до нього наближається.

Наведемо конкретний приклад. Завдання – знайти межу.

Щоб вирішити такий приклад, підставимо значення x=3 у функцію. Отримаємо:

До речі, якщо Вас цікавлять, читайте окрему статтю на цю тему.

У прикладах х може прагнути будь-якого значення. Це може бути будь-яке число чи нескінченність. Ось приклад, коли х прагне нескінченності:

Інтуїтивно зрозуміло, що чим більше числоу знаменнику, тим менше значеннябуде приймати функцію. Так, за необмеженого зростання х значення 1/х буде зменшуватись і наближатися до нуля.

Як бачимо, щоб вирішити межу, потрібно просто підставити на функцію значення, якого прагнути х . Однак це найпростіший випадок. Часто перебування межі негаразд очевидне. У межах зустрічаються невизначеності типу 0/0 або нескінченність/нескінченність . Що робити у таких випадках? Вдаватися до хитрощів!


Невизначеності в межах

Невизначеність виду нескінченність/нескінченність

Нехай є межа:

Якщо спробуємо у функцію підставити нескінченність, то отримаємо нескінченність як і чисельнику, і у знаменнику. Взагалі варто сказати, що у вирішенні таких невизначеностей є певний елементМистецтво: потрібно помітити, як можна перетворити функцію таким чином, щоб невизначеність пішла. У нашому випадку розділимо чисельник і знаменник на х у старшому ступені. Що вийде?

З уже розглянутого вище прикладу ми знаємо, що члени, які містять у знаменнику х, прагнутимуть нуля. Тоді рішення межі:

Для розкриття невизначеностей типу нескінченність/нескінченністьділимо чисельник і знаменник на ху найвищому ступені.


До речі! Для наших читачів зараз діє знижка 10% на

Ще один вид невизначеностей: 0/0

Як завжди, підстановка у функцію значення х=-1 дає 0 у чисельнику та знаменнику. Подивіться трохи уважніше і Ви помітите, що у чисельнику у нас квадратне рівняння. Знайдемо коріння та запишемо:

Скоротимо та отримаємо:

Отже, якщо ви стикаєтеся з невизначеністю типу 0/0 - Розкладайте чисельник і знаменник на множники.

Щоб Вам було простіше вирішувати приклади, наведемо таблицю за межами деяких функцій:

Правило Лопіталя в межах

Ще один потужний спосібдозволяє усунути невизначеності обох типів. У чому полягає суть методу?

Якщо межі є невизначеність, беремо похідну від чисельника і знаменника до того часу, поки невизначеність не зникне.

Наочно правило Лопіталя виглядає так:

Важливий момент : межа, в якій замість чисельника та знаменника стоять похідні від чисельника та знаменника, має існувати.

А тепер – реальний приклад:

В наявності типова невизначеність 0/0 . Візьмемо похідні від чисельника та знаменника:

Вуаля, невизначеність усунена швидко та елегантно.

Сподіваємося, що Ви зможете з користю застосувати цю інформацію на практиці та знайти відповідь на питання "як вирішувати межі у вищій математиці". Якщо потрібно обчислити межу послідовності або межу функції в точці, а часу на цю роботу немає від слова «зовсім», зверніться до професійний студентський сервісза швидким та докладним рішенням.

Тут ми розглянемо визначення кінцевої межіпослідовності. Випадок послідовності, що сходить до нескінченності, розглянутий на сторінці «Визначення нескінченно великої послідовності» .

Визначення.
( x n ), якщо для будь-кого позитивного числа ε > 0 існує таке натуральне число N ε , що залежить від ε , що для всіх натуральних n > N ε виконується нерівність
| x n - a |< ε .
Межа послідовності позначається так:
.
Або при .

Перетворимо нерівність:
;
;
.

Відкритий інтервал (a - ε, a + ε) називають ε - околицею точки a.

Послідовність, у якої існує межа називається послідовністю, що збігається. Також кажуть, що послідовність сходитьсядо a. Послідовність, яка не має межі, називається розходиться.

З визначення випливає, що, якщо послідовність має межу a , що яку б ε - околиці точки a ми не вибрали, за її межами може виявитися лише кінцеве число елементів послідовності, або взагалі жодного ( порожня безліч). А будь-яка ε - околиця містить нескінченне числоелементів. Насправді, задавши певне число ε , ми, тим самим, маємо число . Отже, всі елементи послідовності з номерами , за визначенням, знаходяться в ε - околиці точки a . Перші елементи можуть знаходитися де завгодно. Тобто поза ε - околиці може бути трохи більше елементів - тобто кінцеве число.

Також зауважимо, що різниця зовсім не повинна монотонно прагнути до нуля, тобто постійно зменшуватися. Вона може прагнути до нуля не монотонно: може то зростати, то зменшуватися, маючи локальні максимуми. Однак ці максимуми, зі зростанням n, повинні прагнути нуля (можливо теж не монотонно).

За допомогою логічних символів існування та загальності, визначення межі можна записати так:
(1) .

Визначення, що число a не є межею

Тепер розглянемо зворотне затвердження, Що число a не є межею послідовності.

Число a не є межею послідовностіякщо існує таке, що для будь-якого натурального n існує таке натуральне m > n, що
.

Запишемо це твердження з допомогою логічних знаків.
(2) .

Твердження, що число a не є межею послідовності, означає, що
можна вибрати таку ε - околицю точки a , за межами якої перебуватиме нескінченна кількість елементів послідовності.

Розглянемо приклад. Нехай задана послідовність із загальним елементом
(3)
Будь-яка околиця точки містить безліч елементів. Однак ця точка не є межею послідовності, оскільки будь-яка околиця точки також містить нескінченну кількість елементів. Візьмемо ε - околиця точки з ε = 1 . Це буде інтервал (-1, +1) . Усі елементи, крім першого, з парними n належать цьому інтервалу. Але всі елементи з непарними n знаходяться поза цим інтервалом, оскільки вони задовольняють нерівності x n > 2 . Оскільки число непарних елементів нескінченне, то поза обраної околиці буде перебувати нескінченне число елементів. Тому точка не є межею послідовності.

Тепер покажемо це, суворо дотримуючись утвердження (2). Точка не є межею послідовності (3), оскільки існує таке , так що для будь-якого натурального n існує непарне , для якого виконується нерівність
.

Також можна показати, що будь-яка точка a не може бути межею цієї послідовності. Ми можемо вибрати таку ε - околиця точки a , яка містить або точку 0, або точку 2. І тоді поза обраної околиці перебуватиме нескінченне число елементів послідовності.

Еквівалентне визначення

Можна дати еквівалентне визначення межі послідовності, якщо розширити поняття - околиці. Ми отримаємо рівносильне визначення, якщо в ньому замість ε - околиці буде фігурувати будь-яка околиця точки a .

Визначення околиці точки
Околицею точки aназивається будь-який відкритий інтервал, що містить цю точку. Математично околиця визначається так: , де ε 1 та ε 2 - Довільні позитивні числа.

Тоді визначення межі буде наступним.

Еквівалентне визначення межі послідовності
Число a називається межею послідовностіякщо для будь-якої її околиці існує таке натуральне число N , що всі елементи послідовності з номерами належать цьому околиці.

Це визначення можна уявити й у розгорнутому вигляді.

Число a називається межею послідовності, якщо для будь-яких позитивних чисел і існує таке натуральне число N , що залежить від і , що для всіх натуральних виконуються нерівності
.

Доказ рівносильності визначень

Доведемо, що представлені вище, два визначення межі послідовності рівносильні.

    Нехай число a є межею послідовності згідно з першим визначенням. Це означає, що є функція , так що для будь-якого позитивного числа виконуються нерівності:
    (4) при .

    Покажемо, що число a є межею послідовності та за другим визначенням. Тобто нам потрібно показати, що існує така функція, так що для будь-яких позитивних чисел ε 1 та ε 2 виконуються нерівності:
    (5) при .

    Нехай ми маємо два позитивні числа: ε 1 та ε 2 . І нехай ε - найменша з них: . Тоді; ; . Використовуємо це в (5):
    .
    Але нерівності виконуються при . Тоді і нерівності (5) виконуються при .

    Тобто ми знайшли таку функцію , при якій виконуються нерівності (5) для будь-яких позитивних чисел ε 1 та ε 2 .
    Першу частину доведено.

    Тепер нехай число a є межею послідовності згідно з другим визначенням. Це означає, що є функція , так що для будь-яких позитивних чисел ε 1 та ε 2 виконуються нерівності:
    (5) при .

    Покажемо, що число a є межею послідовності та за першим визначенням. Для цього потрібно покласти. Тоді при виконуються нерівності:
    .
    Це відповідає першому визначенню з.
    Рівносильність визначень доведено.

Приклади

Тут ми розглянемо кілька прикладів, у яких потрібно довести, що задане число a є межею послідовності. При цьому потрібно задати довільні позитивне число і визначити функцію N від таку, що для всіх виконується нерівність .

Приклад 1

Довести, що .


(1) .
У нашому випадку ;
.


.
Скористаємося властивостями нерівностей. Тоді якщо і , то
.


.
Тоді
при .
Це означає, що число є межею заданої послідовності:
.

Приклад 2

За допомогою визначення межі послідовності довести, що
.

Випишемо визначення межі послідовності:
(1) .
У нашому випадку , ;
.

Вводимо позитивні числа та:
.
Скористаємося властивостями нерівностей. Тоді якщо і , то
.

Тобто, для будь-якого позитивного ми можемо взяти будь-яке натуральне число, більше або рівне :
.
Тоді
при .
.

Приклад 3


.

Вводимо позначення , .
Перетворюємо різницю:
.
Для натуральних n = 1, 2, 3, ... маємо:
.

Випишемо визначення межі послідовності:
(1) .
Вводимо позитивні числа та:
.
Тоді якщо і , то
.

Тобто, для будь-якого позитивного ми можемо взяти будь-яке натуральне число, більше або рівне :
.
При цьому
при .
Це означає, що число є межею послідовності:
.

Приклад 4

Використовуючи визначення межі послідовності довести, що
.

Випишемо визначення межі послідовності:
(1) .
У нашому випадку , ;
.

Вводимо позитивні числа та:
.
Тоді якщо і , то
.

Тобто, для будь-якого позитивного ми можемо взяти будь-яке натуральне число, більше або рівне :
.
Тоді
при .
Це означає, що число є межею послідовності:
.

Використана література:
Л.Д. Кудрявці. Курс математичного аналізу. Том 1. Москва, 2003.
С.М. Микільський. Курс математичного аналізу. Том 1. Москва, 1983.

Сьогодні на уроці ми розберемо суворе визначення послідовностіі суворе визначення межі функції, а також навчимося вирішувати відповідні завдання теоретичного характеру. Стаття призначена, перш за все, для студентів 1-го курсу природничо-технічних спеціальностей, які почали вивчати теорію математичного аналізу, і зіткнулися з труднощами в плані розуміння цього розділу вищої математики. Крім того, матеріал цілком доступний і учням старших класів.

За роки існування сайту я отримав недобрий десяток листів приблизно такого змісту: "Погано розумію математичний аналіз, що робити?", "Зовсім не розумію матан, думаю кинути навчання" і т.п. Саме матан часто проріджує студентську групупісля першої ж сесії. Чому так справи? Тому що предмет неймовірно складний? Зовсім ні! Теорія математичного аналізу не така важка, як своєрідна. І її потрібно прийняти і полюбити такою, якою вона є =)

Почнемо з найважчого випадку. Перше та головне – не треба кидати навчання. Зрозумійте правильно, кинути, воно завжди встигнеться;-) Безумовно, якщо через рік-два від обраної спеціальності нудитиме, тоді так – слід задуматися (А не пороти гарячку!)про зміну діяльності. Але поки що варто продовжити. І, будь ласка, забудьте фразу «Нічого не розумію» – так не буває, щоб ЗОВСІМ нічого не розуміти.

Що робити, якщо з теорією погано? Це, до речі, стосується як математичного аналізу. Якщо з теорією погано, то спочатку потрібно СЕРЙОЗНО налягти на практику. При цьому вирішуються одразу два стратегічні завдання:

- По-перше, значна частка теоретичних знаньвиникла завдяки практиці. І тому багато людей розуміють теорію через… – вірно! Ні-ні, ви не про те подумали =)

– І, по-друге, практичні навички з великою ймовірністю «витягнуть» вас на іспиті, навіть якщо… але не будемо так налаштовуватися! Все реально і все реально «підняти» достатньо стислі терміни. Математичний аналіз – це мій улюблений розділ вищої математики, і тому я просто не міг не простягнути вам ноги руку допомоги:

На початку 1-го семестру зазвичай проходять межі послідовностей та межі функцій. Чи не розумієте, що це таке і не знаєте, як їх вирішувати? Почніть зі статті Межі функцій, у якій «на пальцях» розглянуто саме поняття та розібрано найпростіші приклади. Далі опрацюйте інші уроки на тему, у тому числі урок про межах послідовностей, На якому я фактично вже сформулював суворе визначення.

Які значки крім знаків нерівностей та модуля ви знаєте?

- Довга вертикальна палиця читається так: "таке, що", "така, що", "такий, що" або "такі, що", у нашому випадку, очевидно, йдеться про номер – тому такий, що;

– для всіх «ен», більших за ;

знак модуля означає відстань, тобто. цей запис повідомляє нам про те, що відстань між значеннями менша за епсілон.

Ну як, вбивчо складно? =)

Після освоєння практики чекаю на вас у наступному параграфі:

І справді, трохи поміркуємо – як сформулювати суворе визначення послідовності? …Перше, що спадає на думку у світлі практичного заняття: «межа послідовності – це число, якого нескінченно близько наближаються члени послідовності».

Добре, розпишемо послідовність :

Неважко вловити, що підпослідовність нескінченно близько наближаються до –1, а члени з парними номерами - До «одиниці».

А може бути межі дві? Але тоді чому якась послідовність їх не може мати десять чи двадцять? Так можна зайти далеко. У зв'язку з цим логічно вважати, що якщо у послідовності існує межа, то він єдиний.

Примітка : у послідовності немає межі, проте з неї можна виділити дві підпослідовності (див. вище), у кожної з яких існує своя межа.

Таким чином, висловлене вище визначення виявляється неспроможним. Так, воно працює для випадків на кшталт (Чим я не зовсім коректно користувався у спрощених поясненнях практичних прикладів), Але тепер нам необхідно знайти суворе визначення.

Спроба друга: «межа послідовності - це число, до якого наближаються ВСІ члени послідовності, за винятком, хіба що їх кінцевогокількості». Це вже ближче до істини, але все одно не зовсім точно. Так, наприклад, у послідовності половина членів зовсім не наближається до нуля - вони йому просто рівні =) До речі, «мигалка» взагалі приймає два фіксованих значення.

Формулювання неважко уточнити, але тоді виникає інше питання: як записати визначення в математичних знаків? Науковий світдовго бився над цією проблемою, поки ситуацію не вирішив відомий маестро, який, по суті, і оформив класичний матаналіз у всій його строгості. Коші запропонував оперувати околицями чим значно просунув теорію.

Розглянемо деяку точку та її довільну-околиця:

Значення «епсілон» завжди позитивне, і, більше того, ми маємо право вибрати його самостійно. Припустимо, що в околиці знаходиться безліч членів (Не обов'язково все)деякої послідовності. Як записати той факт, що, наприклад, десятий член потрапив в околицю? Нехай він знаходиться у правій її частині. Тоді відстань між точками і повинна бути меншою за «епсілон»: . Однак якщо «ікс десяте» розташоване ліворуч від точки «а», то різниця буде негативна, і тому до неї потрібно додати знак модуля: .

Визначення: число називається межею послідовності, якщо для будь-якоїйого околиці (заздалегідь обраною)існує натуральний номер – ТАКИЙ, що ВСІчлени послідовності з більшими номерами виявляться всередині околиці:

Або коротше: якщо

Іншими словами, яке б мале значення «епсілон» ми не взяли, рано чи пізно «нескінченний хвіст» послідовності ПОВНІСТТЮ опиниться в цій околиці.

Так, наприклад, "нескінченний хвіст" послідовності ПОВНІСТТЮ зайде в будь-яку скільки завгодно малу - околицю точки. Таким чином, це значення є межею послідовності визначення. Нагадую, що послідовність, межа якої дорівнює нулю, називають нескінченно малою.

Слід зазначити, що з послідовності не можна сказати «нескінченний хвіст зайде» – члени з непарними номерами за фактом дорівнюють нулю і «нікуди не заходять» =) Саме тому у визначенні використано дієслово «виявляться». І, зрозуміло, члени такої послідовності, як також «нікуди не йдуть». До речі, перевірте, чи буде її числом межею.

Тепер покажемо, що послідовність не має межі. Розглянемо, наприклад, околицю точки. Цілком зрозуміло, що немає такого номера, після якого всі члени опиняться в даній околиці – непарні члени завжди «вискакуватимуть» до «мінус одиниці». З аналогічної причини немає межі й у точці.

Закріпимо матеріал практикою:

Приклад 1

Довести, що межа послідовності дорівнює нулю. Вказати номер, після якого, всі члени послідовності гарантовано виявляться всередині будь-якої скільки завгодно малої околиці точки.

Примітка : у багатьох послідовностей шуканий натуральний номер залежить від значення - звідси і позначення.

Рішення: розглянемо довільну чи знайдетьсяномер – такий, що ВСІ члени з більшими номерами виявляться всередині цієї околиці:

Щоб показати існування шуканого номера, виразимо через.

Так як за будь-якого значення «ен» , то знак модуля можна прибрати:

Використовуємо «шкільні» дії з нерівностями, які я повторював під час уроків Лінійні нерівностіі Область визначення функції. При цьому важливою обставиною є те, що «епсілон» та «ен» позитивні:

Оскільки ліворуч йдеться про натуральні номери, а права частинав загальному випадкудробова, її потрібно округлити:

Примітка : іноді для перестрахування праворуч додають одиницю, але насправді це надмірність. Умовно кажучи, якщо і ми послабимо результат округленням у менший бік, то найближчий відповідний номер («трійка») все одно задовольнятиме початкову нерівність.

А тепер дивимося на нерівність та згадуємо, що спочатку ми розглядали довільну-околиця, тобто. «епсілон» може бути рівним будь-комупозитивного числа.

Висновок: для будь-якої малої -околиці точки знайшлося значення . Таким чином, число є межею послідовності визначення. Що і потрібно було довести.

До речі, з отриманого результату добре проглядається природна закономірність: що менше -околиця – то більше вписувалося номер , після якого ВСІ члени послідовності опиняться у цій околиці. Але яким би малим не було «епсілон» – усередині завжди буде «нескінченний хвіст», а зовні – хай навіть велике, проте кінцевеЧисло членів.

Як враження? =) Згоден, що дивно. Але ж суворо!Будь ласка, перечитайте та осмисліть все ще раз.

Розглянемо аналогічний приклад та познайомимося з іншими технічними прийомами:

Приклад 2

Рішення: за визначенням послідовності потрібно довести, що (Промовляємо вголос!).

Розглянемо довільну-околиця точки і перевіримо, чи існуєнатуральний номер – такий, що для всіх великих номерів виконано нерівність:

Щоб показати існування такого, потрібно висловити "ен" через "епсілон". Спрощуємо вираз під знаком модуля:

Модуль знищує знак "мінус":

Знаменник позитивний за будь-якого «ен», отже, палиці можна прибрати:

Перетасування:

Тепер треба було б витягти квадратний корінь, але загвоздка у тому, що з деяких «эпсилон» права частина буде негативною. Щоб уникнути цієї неприємності посилимонерівність модулем:

Чому можна так зробити? Якщо, умовно кажучи, виявиться, що , то буде виконано і умова . Модуль може тільки збільшитиномер, що розшукується, і це нас теж влаштує! Грубо кажучи, якщо підходить сотий, то підійде і двохсот! Відповідно до визначення, потрібно показати сам факт існування номера(хоча якогось), після якого всі члени послідовності виявляться в околиці. До речі, саме тому нам не страшне фінальне округлення правої частини у більший бік.

Вилучаємо корінь:

І округляємо результат:

Висновок: т.к. значення «епсілон» вибиралося довільно, то для будь-якої скільки завгодно малої околиці точки знайшлося значення , таке, що для всіх великих номерів виконано нерівність . Таким чином, за визначенням. Що і потрібно було довести.

Раджу особливоРозібратися у посиленні та ослабленні нерівностей – це типові та дуже поширені прийоми математичного аналізу. Єдине, слід стежити за коректністю тієї чи іншої дії. Так, наприклад, нерівність ні в якому разі не можна послаблювати, віднімаючи, скажімо, одиницю:

Знову ж умовно: якщо номер точно підійде, попередній може вже й не підійти.

Наступний прикладдля самостійного рішення:

Приклад 3

Використовуючи визначення послідовності, довести, що

Коротке рішеннята відповідь наприкінці уроку.

Якщо послідовність нескінченно великато визначення межі формулюється схожим чином: точка називається межею послідовності, якщо для будь-якого, скільки завгодно великогочисла існує номер , такий, що для всіх більших номерів буде виконано нерівність . Число називають околицею точки «плюс нескінченність»:

Іншими словами, яке б велике значеннями не взяли, «нескінченний хвіст» послідовності обов'язково зайде в околицю точки, залишивши зліва лише кінцеве число членів.

Черговий приклад:

І скорочений запис: якщо

Для випадку запишіть визначення самостійно. Правильна версія наприкінці уроку.

Після того, як ви «набили» руку на практичні прикладиі розібралися з визначенням межі послідовності, можна звернутися до літератури з математичного аналізу та/або свого зошита з лекціями. Рекомендую закачати 1-й том Бохана (простіше – для заочників)та Фіхтенгольця (Детальніше і докладніше). З інших авторів раджу Піскунова, курс якого орієнтований на технічні вузи.

Спробуйте сумлінно вивчити теореми, що стосуються межі послідовності, їх доказів, наслідків. Спочатку теорія може здаватися "каламутною", але це нормально - просто потрібно звикнути. І багато хто навіть увійдуть у смак!

Суворе визначення межі функції

Почнемо з того самого – як сформулювати дане поняття? Словесне визначення межі функції формулюється значно простіше: «число є межею функції , якщо при «ікс», що прагне (І зліва, і праворуч), відповідні значення функції прагнуть до » (Див. креслення). Все начебто нормально, але слова словами, сенс змістом, значок значком, а строгих математичних позначеньобмаль. І в другому параграфі ми познайомимося із двома підходами до вирішення цього питання.

Нехай функція визначена на деякому проміжку, за винятком, можливо, точки . У навчальної літературивважають, що функція там невизначено:

Такий вибір наголошує суть межі функції: «ікс» нескінченно близьконаближається до , і відповідні значення функції – нескінченно близькодо. Іншими словами, поняття межі має на увазі не «точний захід» у крапки, а саме нескінченно близьке наближенняпри цьому не важливо – чи визначена функція в точці чи ні.

Перше визначення межі функції, що не дивно, формулюється за допомогою двох послідовностей. По-перше, поняття споріднені, і, по-друге, межі функцій зазвичай вивчають після меж послідовностей.

Розглянемо послідовність точок (на кресленні відсутні), належать проміжкуі відмінних від, яка сходитьсядо. Тоді відповідні значення функції також утворюють числову послідовністьчлени якої розташовуються на осі ординат.

Межа функції по Гейні для будь-якоїпослідовності точок (належних та відмінних від ), яка сходить до точки , відповідна послідовність значень функції сходить до .

Едуард Гейне – німецький математик. …І не треба тут нічого такого думати, гей у Європі лише один – це Гей-Люссак =)

Друге визначення межі спорудив… так-так, ви маєте рацію. Але спочатку розберемося у його конструкції. Розглянемо довільну околицю точки («чорна» околиця). За мотивами попереднього параграфа запис означає, що деяке значенняФункція знаходиться всередині «епсілон»-околиці.

Тепер знайдемо -околиця, яка відповідає заданій -околиці (подумки проводимо чорні пунктирні лінії зліва направо і потім зверху донизу). Зверніть увагу, що значення вибирається по довжині меншого відрізка, даному випадку- По довжині більш короткого лівого відрізка. Більш того, «малинову» -окраїну точки можна навіть зменшити, оскільки в наступному визначенні важливий сам факт існуванняцієї околиці. І, аналогічно, запис означає, що деяке значення знаходиться всередині «дельта»-околиці.

Межа функції по Коші: число називається межею функції у точці , якщо для будь-якої заздалегідь обраноюоколиці (як завгодно малої), існує-околиця точки, ТАКА, що: ЯК ТІЛЬКИ значення (належні)входять у цю околицю: (червоні стрілки)- ТАК ВІДРАЗУ відповідні значення функції гарантовано зайдуть в околицю: (сині стрілки).

Повинен попередити, що з метою більшої зрозумілості я трохи симпровізував, тому не зловживайте =)

Короткий запис: якщо

У чому суть визначення? Образно кажучи, нескінченно зменшуючи околиця, ми «супроводжуємо» значення функції до своєї межі, не залишаючи їм альтернативи наближатися кудись ще. Досить незвично, але знову ж таки суворо! Щоб як слід перейнятися ідеєю, перечитайте формулювання ще раз.

! Увага: якщо вам потрібно сформулювати тільки визначення по Гейнічи тільки визначення по Коші, будь ласка, не забувайте про суттєвомупопередньому коментарі: "Розглянемо функцію , яка визначена на деякому проміжку за винятком, можливо, точки". Я позначив це одного разу на самому початку і щоразу не повторював.

Відповідно до відповідної теореми математичного аналізу, визначення по Гейні та Коші еквівалентні, проте найбільш відомий другий варіант (ще б!), який також називають «кордон на мові»:

Приклад 4

Використовуючи визначення межі, довести, що

Рішення: функція визначена на всій числовій прямій крім точки. Використовуючи визначення , доведемо існування межі у цій точці.

Примітка : величина «дельта»-околиці залежить від «епсілон», звідси і позначення

Розглянемо довільну-околиця. Завдання полягає в тому, щоб за цим значенням перевірити, чи існує-околиця, ТАКА, що з нерівності слідує нерівність .

Припускаючи, що , перетворимо останню нерівність:
(розклали квадратний тричлен)

(x)у точці x 0 :
,
якщо
1) існує така проколота околиця точки x 0
2) для будь-якої послідовності ( x n ), що сходить до x 0 :
, елементи якої належать околиці ,
послідовність (f(x n))сходиться до a:
.

Тут x 0 і a можуть бути як кінцевими числами, так і нескінченно віддаленими точками. Околиця може бути як двосторонньою, так і односторонньою.


.

Друге визначення межі функції (за Кошою)

Число a називається межею функції f (x)у точці x 0 :
,
якщо
1) існує така проколота околиця точки x 0 , де функція визначена;
2) для будь-якого позитивного числа ε > 0 існує таке число δε > 0 , що залежить від ε , що для всіх x , що належать проколоті δ ε - околиці точки x 0 :
,
значення функції f (x)належать ε - околиці точки a:
.

Крапки x 0 і можуть бути як кінцевими числами, так і нескінченно віддаленими точками. Околиця також може бути як двосторонньою, так і односторонньою.

Запишемо це визначення за допомогою логічних символів існування та загальності:
.

У цьому вся визначенні використовуються околиці з рівновіддаленими кінцями. Можна дати і еквівалентне визначення, використовуючи довільні околиці точок.

Визначення з використанням довільних околиць
Число a називається межею функції f (x)у точці x 0 :
,
якщо
1) існує така проколота околиця точки x 0 , де функція визначена;
2) для будь-якого околиці U (a)точки a існує така проколота околиця точки x 0 , що для всіх x , що належать проколоті околиці точки x 0 :
,
значення функції f (x)належать околиці U (a)точки a:
.

За допомогою логічних символів існування та загальності це визначення можна записати так:
.

Односторонні та двосторонні межі

Наведені вище визначення універсальні тому, що їх можна використовувати будь-яких типів околиць. Якщо, як ми використовуємо лівосторонню проколоту околицю кінцевої точкито отримаємо визначення лівосторонньої межі. Якщо в околиці використовувати околицю нескінченно віддаленої точки, то отримаємо визначення межі на нескінченності.

Для визначення межі по Гейні це зводиться до того що, що на довільну, схожу до , послідовність накладається додаткове обмеження - її елементи повинні належати відповідної проколотої околиці точки .

Для визначення межі по Коші необхідно у кожному разі перетворити висловлювання й у нерівності, використовуючи відповідні визначення околиці точки.
Див. «Навколо точки».

Визначення, що точка a не є межею функції

Часто виникає необхідність використовувати умову, що точка a не є межею функції при . Побудуємо заперечення до викладених вище ухвал. Вони ми припускаємо, що функція f (x)визначена на деякій проколотій околиці точки x 0 . Точки a та x 0 можуть бути як кінцевими числами, так і нескінченно віддаленими. Все сформульоване нижче стосується як двосторонніх, так і односторонніх меж.

За Гейном.
Число a не ємежею функції f (x)у точці x 0 : ,
якщо існує така послідовність ( x n ), що сходить до x 0 :
,
елементи якої належать околиці,
що послідовність (f(x n))не сходиться до a:
.
.

По Коші.
Число a не ємежею функції f (x)у точці x 0 :
,
якщо існує таке позитивне число? > 0 так для будь-якого позитивного числа δ > 0 існує таке x , що належить проколотій δ - околиці точки x 0 :
,
що значення функції f (x)не належить ε - околиці точки a :
.
.

Зрозуміло, якщо точка a не є межею функції при , то це не означає, що у неї не може бути межі. Можливо, існує межа , але вона не дорівнює a . Також можливий випадок, коли функція визначена в проколоті околиці точки , але не має межі при .

Функція f(x) = sin(1/x)не має межі за x → 0.

Наприклад, функція визначена при , але межі немає. Для доказу візьмемо послідовність. Вона сходиться до точки 0 : . Оскільки, то.
Візьмемо послідовність. Вона також сходиться до точки 0 : . Але оскільки, то.
Тоді межа не може дорівнювати жодному числу a. Дійсно, при , Існує послідовність , З якої . Тому будь-яке відмінне від нуля число не є межею. Але також не є межею, оскільки існує послідовність , з якою .

Еквівалентність визначень межі по Гейні та Коші

Теорема
Визначення межі функції по Гейні та Коші еквівалентні.

Доведення

При доказі ми припускаємо, що функція визначена в деякій проколоті околиці точки (кінцевої або нескінченно віддаленої). Точка a також може бути кінцевою чи нескінченно віддаленою.

Доказ Гейне ⇒ Коші

Нехай функція має у точці межу a згідно з першим визначенням (за Гейном). Тобто для будь-якої послідовності, що належить околиці точки і має межу
(1) ,
межа послідовності дорівнює a:
(2) .

Покажемо, що функція має межу в точці Коші. Тобто для кожного існує, що для всіх.

Допустимо неприємне. Нехай умови (1) та (2) виконані, але функція не має межі по Коші. Тобто існує таке, що для будь-кого існує, тож
.

Візьмемо , де n – натуральне число. Тоді існує , причому
.
Таким чином ми побудували послідовність, що сходить до, але межа послідовності не дорівнює a. Це суперечить умові теореми.

Першу частину доведено.

Доказ Коші ⇒ Гейне

Нехай функція має в точці межу a відповідно до другого визначення (за Кошою). Тобто для будь-кого існує, що
(3) для всіх .

Покажемо, що функція має межу a у точці за Гейном.
Візьмемо довільне число. Згідно з визначенням Коші, існує число , так що виконується (3).

Візьмемо довільну послідовність, що належить проколотому околиці і сходить до. За визначенням послідовності, що сходить, для будь-якого існує , що
при .
Тоді з (3) випливає, що
при .
Оскільки це виконується для будь-кого, то
.

Теорему доведено.

Використана література:
Л.Д. Кудрявці. Курс математичного аналізу. Том 1. Москва, 2003.



Останні матеріали розділу:

Список відомих масонів Закордонні знамениті масони
Список відомих масонів Закордонні знамениті масони

Присвячується пам'яті митрополита Санкт-Петербурзького та Ладозького Іоанна (Сничева), який благословив мою працю з вивчення підривної антиросійської...

Що таке технікум - визначення, особливості вступу, види та відгуки Чим відрізняється інститут від університету
Що таке технікум - визначення, особливості вступу, види та відгуки Чим відрізняється інститут від університету

25 Московських коледжів увійшли до рейтингу "Топ-100" найкращих освітніх організацій Росії. Дослідження проводилося міжнародною організацією...

Чому чоловіки не стримують своїх обіцянок Невміння говорити «ні»
Чому чоловіки не стримують своїх обіцянок Невміння говорити «ні»

Вже довгий час серед чоловіків ходить закон: якщо назвати його таким можна, цього не може знати ніхто, чому ж вони не стримують свої обіцянки. По...