Формула n-го члена арифметичної прогресії. Важливі формули арифметичної прогресії

У чому головна сутьформули?

Ця формула дозволяє знайти будь-який ЗА ЙОГО НОМЕРЕ " n" .

Зрозуміло, треба знати ще перший член a 1і різниця прогресії d, Так без цих параметрів конкретну прогресію і не запишеш.

Завчити (або зашпаргалити) цю формулу мало. Потрібно засвоїти її суть і застосувати формулу в різних завданнях. Та ще й не забути в потрібний момент, Так як не забути- я не знаю. А от як згадати,при необхідності - точно підкажу. Тим, хто урок до кінця подужає.)

Отже, розберемося із формулою n-го члена арифметичної прогресії.

Що таке формула взагалі – ми собі уявляємо.) Що таке арифметична прогресія, номер члена, різниця прогресії – доступно викладено у попередньому уроці. Загляньте, до речі, як не читали. Там просто все. Залишилося розібратися, що таке n-й член.

Прогресію в загальному виглядіможна записати у вигляді ряду чисел:

a 1, a 2, a 3, a 4, a 5, .....

a 1- Позначає перший член арифметичної прогресії, a 3- третій член, a 4- Четвертий, і так далі. Якщо нас цікавить п'ятий член, скажімо, ми працюємо з a 5, якщо сто двадцятий - з a 120.

А як позначити у загальному вигляді будь-якийчлен арифметичної прогресії, з будь-якимномером? Дуже просто! Ось так:

a n

Це і є n-й член арифметичної прогресії.Під літерою n ховаються відразу всі номери членів: 1, 2, 3, 4 тощо.

І що нам дає такий запис? Подумаєш, замість цифри букву записали...

Цей запис дає нам потужний інструментдо роботи з арифметичною прогресією. Використовуючи позначення a n, ми можемо швидко знайти будь-якийчлен будь-якийарифметичній прогресії. І ще купу завдань щодо прогресії вирішити. Самі далі побачите.

У формулі n-го члена арифметичної прогресії:

a n = a 1 + (n-1)d

a 1- Перший член арифметичної прогресії;

n- Номер члена.

Формула пов'язує ключові параметри будь-якої прогресії: a n; a 1; dі n. Навколо цих властивостей і крутяться всі завдання з прогресії.

Формула n-го члена можна використовувати й у записи конкретної прогресії. Наприклад, завдання може бути сказано, що прогресія задана умовою:

a n = 5 + (n-1) ·2.

Таке завдання може і в глухий кут поставити ... Немає ні ряду, ні різниці ... Але, порівнюючи умову з формулою, легко збагнути, що в цій прогресії a 1 =5, а d=2.

А буває ще зліше!) Якщо взяти ту ж умову: a n = 5 + (n-1) · 2,та розкрити дужки та привести подібні? Отримаємо нову формулу:

a n = 3 + 2n.

Це Тільки не загальна, а для конкретної прогресії. Ось тут і ховається підводний камінь. Деякі думають, що перший член – це трійка. Хоча реально перший член - п'ятірка... Трохи нижче ми попрацюємо з такою формулою.

У завдання на прогресію зустрічається ще одне позначення - a n+1. Це, як ви здогадалися, "ен плюс перший" член прогресії. Сенс його простий і нешкідливий.) Це член прогресії, номер якого більший за номер n на одиницю. Наприклад, якщо в якомусь завданні ми беремо за a nп'ятий член, то a n+1буде шостим членом. І тому подібне.

Найчастіше позначення a n+1зустрічається у рекурентних формулах. Не лякайтеся цього страшного слова!) Це просто спосіб вираження члена арифметичної прогресії через попередній.Припустимо, нам дана арифметична прогресія ось у такому вигляді, за допомогою рекурентної формули:

a n+1 = a n +3

a 2 = a 1 + 3 = 5+3 = 8

a 3 = a 2 + 3 = 8+3 = 11

Четвертий – через третій, п'ятий – через четвертий, тощо. А як порахувати одразу, скажімо двадцятий член, a 20? А ніяк!) Поки 19-й член не дізнаємось, 20-й не порахувати. У цьому є принципова відмінністьрекурентної формули від формули n-го члена. Рекурентна працює тільки через попереднійчлен, а формула n-го члена – через першийі дозволяє відразузнаходити будь-який член за його номером. Не прораховуючи цілий ряд чисел по порядку.

В арифметичній прогресії рекурентну формулулегко перетворити на звичайну. Порахувати пару послідовних членів, обчислити різницю d,знайти, якщо треба, перший член a 1, Записати формулу у звичайному вигляді, та й працювати з нею. У ДПА подібні завдання часто зустрічаються.

Застосування формули n члена арифметичної прогресії.

Для початку розглянемо пряме застосуванняформули В кінці попереднього урокубуло завдання:

Дана арифметична прогресія (a n). Знайти a 121 якщо a 1 =3, а d=1/6.

Це завдання можна без будь-яких формул вирішити, просто з сенсу арифметичної прогресії. Додавати, та додавати... Годинник-другий.)

А за формулою рішення займе менше хвилини. Можете засікати час.) Вирішуємо.

В умовах наведено всі дані для використання формули: a 1 =3, d=1/6.Залишається збагнути, чому одно n.Не питання! Нам треба знайти a 121. Ось і пишемо:

Прошу звернути увагу! Замість індексу nз'явилося конкретне число: 121. Що цілком логічно.) Нас цікавить член арифметичної прогресії номер сто двадцять один.Ось це і буде наше n.Саме це значення n= 121 ми і підставимо далі до формули, до дужок. Підставляємо всі числа у формулу та вважаємо:

a 121 = 3 + (121-1) · 1/6 = 3 +20 = 23

Ось і всі справи. Так само швидко можна було знайти і п'ятсот десятий член, і тисяча третій, кожен. Ставимо замість nпотрібний номер в індексі у літери " a"і в дужках, та й рахуємо.

Нагадаю суть: ця формула дозволяє знайти будь-якийчлен арифметичної прогресії ЗА ЙОГО НОМЕРЕ " n" .

Вирішимо завдання хитрішим. Нехай нам трапилося таке завдання:

Знайдіть перший член арифметичної прогресії (a n), якщо a 17 = -2; d=-0,5.

Якщо виникли труднощі, підкажу перший крок. Запишіть формулу n члена арифметичної прогресії!Так Так. Руками запишіть, прямо в зошиті:

a n = a 1 + (n-1)d

А тепер, дивлячись на літери формули, розуміємо, які дані ми маємо, а чого не вистачає? Є d=-0,5,є сімнадцятий член ... Все? Якщо вважаєте, що все, то завдання не вирішите, так...

У нас ще є номер n! В умові a 17 =-2заховані два параметри.Це значення сімнадцятого члена (-2), та її номер (17). Тобто. n=17.Ця "дрібниця" часто проскакує повз голову, а без неї, (без "дрібниці", а не голови!) завдання не вирішити. Хоча... і без голови теж.)

Тепер можна просто тупо підставити наші дані у формулу:

a 17 = a 1 + (17-1) · (-0,5)

Ах да, a 17нам відомо, що це -2. Ну гаразд, підставимо:

-2 = a 1 + (17-1) · (-0,5)

Ось по суті, і все. Залишилося висловити перший член арифметичної прогресії з формули, та порахувати. Вийде відповідь: a 1 = 6.

Такий прийом - запис формули та проста підстановка відомих даних - чудово допомагає в простих завданнях. Ну, треба, звичайно, вміти висловлювати змінну з формули, а що робити! Без цього вміння математику можна взагалі не вивчати.

Ще одне популярне завдання:

Знайдіть різницю арифметичної прогресії (a n), якщо a 1 =2; a 15 = 12.

Що робимо? Ви здивуєтеся, пишемо формулу!)

a n = a 1 + (n-1)d

Розуміємо, що нам відомо: a 1 = 2; a 15 = 12; та (спеціально виокремлю!) n=15. Сміливо підставляємо у формулу:

12 = 2 + (15-1) d

Вважаємо арифметику.)

12 = 2 + 14d

d=10/14 = 5/7

Це правильна відповідь.

Так, завдання на a n , a 1і dвирішили. Залишилося навчитися знаходити:

Число 99 є членом арифметичної прогресії (a n), де a 1 = 12; d=3. Знайти номер члена.

Підставляємо у формулу n-го члена відомі нам величини:

a n = 12 + (n-1) · 3

На перший погляд, тут дві невідомі величини: a n та n.Але a n- це якийсь член прогресії з номером n... І цей член прогресії ми знаємо! Це 99. Ми не знаємо його номер n,так цей номер і потрібно знайти. Підставляємо член прогресії 99 у формулу:

99 = 12 + (n-1) · 3

Висловлюємося з формули nвважаємо. Отримаємо відповідь: n=30.

А тепер завдання на ту саму тему, але більш творча):

Визначте, чи буде число 117 членом арифметичної прогресії (a n):

-3,6; -2,4; -1,2 ...

Знову пишемо формулу. Що немає ніяких параметрів? Гм... А очі нам навіщо дано?) Перший член прогресії бачимо? Бачимо. Це –3,6. Можна сміливо записати: a 1 = -3,6.Різниця dможна з ряду визначити? Легко, якщо знаєте, що таке різницю арифметичної прогресії:

d = -2,4 - (-3,6) = 1,2

Так, найпростіше зробили. Залишилося розібратися з невідомим номером nі незрозумілим числом 117. У попередній задачі хоч було відомо, що дано саме член прогресії. А тут і того не знаємо... Як бути! Ну, як бути, як бути... Включити творчі здібності!)

Ми припустимо,що 117 - це все-таки член нашої прогресії. З невідомим номером n. І, як у попередній задачі, спробуємо знайти цей номер. Тобто. пишемо формулу (так-так!) і підставляємо наші числа:

117 = -3,6 + (n-1) · 1,2

Знову висловлюємося з формулиn, вважаємо та отримуємо:

Опаньки! Номер вийшов дробовий!Сто один із половиною. А дрібних номерів у прогресіях не буває.Який висновок зробимо? Так! Число 117 не єчленом нашої прогресії. Воно знаходиться десь між сто першим і сто другим членом. Якби номер вийшов натуральним, тобто. позитивним цілим, число було б членом прогресії зі знайденим номером. А в нашому випадку відповідь завдання буде: ні.

Завдання на основі реального варіантуДІА:

Арифметична прогресіязадана умовою:

a n = -4 + 6,8 n

Знайти перший і десятий члени прогресії.

Тут прогресію задано не зовсім звичним чином. Формула якась... Буває.) Однак, ця формула (як я писав вище) - теж формула n-го члена арифметичної прогресії!Вона також дозволяє знайти будь-який член прогресії за його номером.

Шукаємо перший член. Той, хто думає. що перший член – мінус чотири, фатально помиляється!) Тому, що формула у завданні – видозмінена. Перший член арифметичної прогресії у ній захований.Нічого, зараз знайдемо.)

Так само, як і в попередніх завданнях, підставляємо n=1в цю формулу:

a 1 = -4 + 6,8 · 1 = 2,8

Ось! Перший член 2,8, а чи не -4!

Аналогічно шукаємо десятий член:

a 10 = -4 + 6,8 · 10 = 64

Ось і всі справи.

А тепер тим, хто дочитав до цих рядків, - обіцяний бонус.)

Припустимо, у складній бойовій обстановці ГІА або ЄДІ, ви призабули корисну формулу n-го члена арифметичної прогресії. Щось пригадується, але невпевнено якось... Чи то nтам, чи n+1, чи то n-1...Як бути!?

Спокій! Цю формулу легко вивести. Не дуже суворо, але для впевненості та правильного рішенняточно вистачить!) Для висновку досить пам'ятати елементарний зміст арифметичної прогресії і мати кілька хвилин. Потрібно просто намалювати картинку. Для наочності.

Малюємо числову вісь та відзначаємо на ній перший. другий, третій тощо. члени. І відзначаємо різницю dміж членами. Ось так:

Дивимося на картинку і розуміємо: чому дорівнює другий член? Другий одне d:

a 2 =a 1 + 1 ·d

Чому дорівнює третій член? Третійчлен дорівнює перший член плюс два d.

a 3 =a 1 + 2 ·d

Уловлюєте? Я не дарма деякі слова виділяю жирним шрифтом. Ну гаразд, ще один крок).

Чому дорівнює четвертий член? Четвертийчлен дорівнює перший член плюс три d.

a 4 =a 1 + 3 ·d

Час зрозуміти, що кількість проміжків, тобто. d, завжди один менше, ніж номер шуканого члена n. Тобто, до номера n, кількість проміжківбуде n-1.Отже, формула буде (без варіантів!):

a n = a 1 + (n-1)d

Взагалі, наочні картинки дуже допомагають вирішувати багато завдань у математиці. Не нехтуйте картинками. Але якщо картинку намалювати важко, то... тільки формула!) Крім того, формула n-го члена дозволяє підключити до вирішення весь потужний арсенал математики - рівняння, нерівності, системи і т.д. Картинку в рівняння не вставиш...

Завдання для самостійного вирішення.

Для розминки:

1. В арифметичній прогресії (a n) a 2 = 3; a 5 =5,1. Знайти a 3 .

Підказка: за картинкою завдання вирішується секунд за 20... За формулою – складніше виходить. Але для освоєння формули - корисніше.) У Розділі 555 це завдання вирішено і з картинці, і за формулою. Відчуйте різницю!)

А це – вже не розминка.)

2. В арифметичній прогресії (a n) a 85 = 19,1; a 236 = 49, 3. Знайти a 3 .

Що, не хочеться малюнок малювати?) Ще б пак! Краще за формулою, так...

3. Арифметична прогресія задана умовою:a 1 =-5,5; an+1 = an+0,5. Знайдіть сто двадцять п'ятий член цієї прогресії.

У цьому вся завдання прогресія задана рекурентним способом. Але рахувати до сто двадцять п'ятого члена... Не всім такий подвиг під силу. Зате формула n-го члена під силу кожному!

4. Дана арифметична прогресія (a n):

-148; -143,8; -139,6; -135,4, .....

Знайти номер найменшого позитивного членапрогресії.

5. За умовою завдання 4 знайти суму найменшого позитивного та найбільшого негативного членів прогресії.

6. Добуток п'ятого та дванадцятого членів зростаючої арифметичної прогресії дорівнює -2,5, а сума третього та одинадцятого членів дорівнює нулю. Знайти a 14 .

Не найпростіше завдання, так ...) Тут спосіб "на пальцях" не прокотить. Прийде формули писати і рівняння розв'язувати.

Відповіді (безладно):

3,7; 3,5; 2,2; 37; 2,7; 56,5

Вийшло? Це приємно!)

Чи не все виходить? Буває. До речі, в останньому завданні є один тонкий момент. Уважність під час читання завдання буде потрібна. І логіка.

Розв'язання всіх цих завдань докладно розібрано в Розділі 555. І елемент фантазії для четвертої, і тонкий момент для шостої, і загальні підходина вирішення будь-яких завдань на формулу n-го члена - все розписано. Рекомендую.

Якщо Вам подобається цей сайт...

До речі, у мене є ще кілька цікавих сайтів для Вас.)

Можна потренуватися у вирішенні прикладів та дізнатися свій рівень. Тестування з миттєвою перевіркою. Вчимося – з інтересом!)

можна познайомитися з функціями та похідними.

Калькулятор онлайн.
Вирішення арифметичної прогресії.
Дано: a n, d, n
Знайти: a 1

Ця математична програмазнаходить (a_1) арифметичної прогресії, виходячи із заданих користувачем чисел (a_n, d) і (n).
Числа (a_n) і (d) можна задати не тільки цілі, але і дробові. Причому, дробове числоможна ввести у вигляді десяткового дробу (\(2,5 \)) та у вигляді звичайного дробу(\(-5\frac(2)(7) \)).

Програма не тільки дає відповідь на завдання, а й відображає процес знаходження рішення.

Цей калькулятор онлайн може бути корисним учням старших класів загальноосвітніх шкіл при підготовці до контрольним роботамта іспитів, під час перевірки знань перед ЄДІ, батькам для контролю вирішення багатьох завдань з математики та алгебри. А може вам занадто накладно наймати репетитора чи купувати нові підручники? Або ви просто хочете якнайшвидше зробити домашнє завданняз математики чи алгебри? У цьому випадку ви можете скористатися нашими програмами з докладним рішенням.

Таким чином ви можете проводити своє власне навчання та/або навчання своїх молодших братівабо сестер, при цьому рівень освіти в галузі розв'язуваних завдань підвищується.

Якщо ви не знайомі з правилами введення чисел, рекомендуємо ознайомитися з ними.

Правила введення чисел

Числа (a_n) і (d) можна задати не тільки цілі, але і дробові.
Число (n) може бути тільки цілим позитивним.

Правила введення десяткових дробів.
Ціла та дрібна частинау десяткових дробах може розділятися як точкою, так і комою.
Наприклад, можна вводити десяткові дробитак 2.5 чи так 2,5

Правила введення звичайних дробів.
Як чисельник, знаменник і цілої частини дробу може виступати тільки ціле число.

Знаменник може бути негативним.

При введенні числового дробучисельник відокремлюється від знаменника знаком поділу: /
Введення:
Результат: \(-\frac(2)(3) \)

Ціла частинавідокремлюється від дробу знаком амперсанд: &
Введення:
Результат: \(-1\frac(2)(3) \)

Введіть числа a n, d, n


Знайти a 1

Виявлено, що не завантажилися деякі скрипти, необхідні для вирішення цього завдання, і програма може не працювати.
Можливо у вас увімкнено AdBlock.
У цьому випадку вимкніть його та оновіть сторінку.

У браузері вимкнено виконання JavaScript.
Щоб рішення з'явилося, потрібно включити JavaScript.
Ось інструкції, як включити JavaScript у вашому браузері.

Т.к. охочих вирішити завдання дуже багато, ваш запит поставлено в чергу.
За кілька секунд рішення з'явиться нижче.
Будь ласка зачекайте сік...


Якщо ви помітили помилку у рішенні, то про це ви можете написати у Формі зворотного зв'язку.
Не забудьте вказати яке завданняви вирішуєте і що вводьте у поля.



Наші ігри, головоломки, емулятори:

Трохи теорії.

Числова послідовність

У повсякденній практиці часто використовується нумерація різних предметів, щоб вказати порядок їхнього розташування. Наприклад, будинки на кожній вулиці нумеруються. У бібліотеці нумеруються читацькі абонементи і розташовуються в порядку присвоєних номерів у спеціальних картотеках.

У ощадному банку за номером особового рахунку вкладника можна легко знайти цей рахунок та подивитися, який вклад на ньому лежить. Нехай на рахунку № 1 лежить внесок а1 рублів, на рахунку № 2 лежить внесок а2 рублів і т. д. Виходить числова послідовність
a 1 , a 2 , a 3 , ..., a N
де N – число всіх рахунків. Тут кожному натуральному числу n від 1 до N поставлено у відповідність число a n.

В математиці також вивчаються нескінченні числові послідовності:
a 1, a 2, a 3, ..., a n, ....
Число a 1 називають першим членом послідовності, число a 2 - другим членом послідовності, число a 3 - третім членом послідовностіі т.д.
Число a n називають n-м (енним) членом послідовності, а натуральне число n – його номером.

Наприклад, у послідовності квадратів натуральних чисел 1, 4, 9, 16, 25, ..., n 2 , (n + 1) 2 ... а 1 = 1 - перший член послідовності; а n = n 2 є n-м членомпослідовності; a n+1 = (n + 1) 2 є (n + 1)-м (ен плюс першим) членом послідовності. Часто послідовність можна задати формулою її n-го члена. Наприклад, формулою \(a_n=\frac(1)(n), \; n \in \mathbb(N) \) задана послідовність \(1, \; \frac(1)(2) , \; \frac( 1)(3) , \;\frac(1)(4) , \dots,\frac(1)(n) , \dots \)

Арифметична прогресія

Тривалість року приблизно дорівнює 365 діб. Більше точне значеннядорівнює \(365\frac(1)(4) \) діб, тому кожні чотири роки накопичується похибка, що дорівнює одній добі.

Для обліку цієї похибки до кожного четвертого року додається доба, і подовжений рік називають високосним.

Наприклад, у третьому тисячолітті високосними рокамиє роки 2004, 2008, 2012, 2016, ... .

У цій послідовності кожен її член, починаючи з другого, дорівнює попередньому, складеному з тим самим числом 4. Такі послідовності називають арифметичними прогресіями.

Визначення.
Числова послідовність a 1 , a 2 , a 3 , ..., a n , ... називається арифметичною прогресієюякщо для всіх натуральних n виконується рівність
\(a_(n+1) = a_n+d, \)
де d – деяке число.

З цієї формули випливає, що n+1 - an = d. Число d називають різницею арифметичної прогресії.

За визначенням арифметичної прогресії маємо:
\(a_(n+1)=a_n+d, \quad a_(n-1)=a_n-d, \)
звідки
\(a_n= \frac(a_(n-1) +a_(n+1))(2) \), де \(n>1 \)

Таким чином, кожен член арифметичної прогресії, починаючи з другого, дорівнює середньому арифметичному двох сусідніх із ним членів. Цим пояснюється назва «арифметична» прогресія.

Зазначимо, що якщо a 1 і d задані, інші члени арифметичної прогресії можна обчислити за рекурентною формулою a n+1 = a n + d. У такий спосіб неважко обчислити кілька перших членів прогресії, однак, наприклад, для a 100 вже знадобиться багато обчислень. Зазвичай при цьому використовується формула n-го члена. За визначенням арифметичної прогресії
\(a_2=a_1+d, \)
\(a_3=a_2+d=a_1+2d, \)
\(a_4=a_3+d=a_1+3d \)
і т.д.
Взагалі,
\(a_n=a_1+(n-1)d, \)
оскільки n-й член арифметичної прогресії виходить із першого члена додаванням (n-1) разів числа d.
Цю формулу називають формулою n-го члена арифметичної прогресії.

Сума n перших членів арифметичної прогресії

Знайдемо суму всіх натуральних чисел від 1 до 100.
Запишемо цю суму двома способами:
S = l + 2 + 3 + ... + 99 + 100,
S = 100+99+98+...+2+1.
Складемо почленно ці рівності:
2S = 101 + 101 + 101 + ... + 101 + 101.
У цій сумі 100 доданків
Отже, 2S = 101*100, звідки S=101*50=5050.

Розглянемо тепер довільну арифметичну прогресію
a 1, a 2, a 3, ..., a n, ...
Нехай S n - сума n перших членів цієї прогресії:
S n = a 1, a 2, a 3, ..., a n
Тоді сума n перших членів арифметичної прогресії дорівнює
\(S_n = n \cdot \frac(a_1+a_n)(2) \)

Оскільки \(a_n=a_1+(n-1)d \), то замінивши у цій формулі a n отримаємо ще одну формулу для знаходження суми n перших членів арифметичної прогресії:
\(S_n = n \cdot \frac(2a_1+(n-1)d)(2) \)

Книги (підручники) Реферати ЄДІ та ОДЕ тести онлайн Ігри, головоломки Побудова графіків функцій Орфографічний словник російської мови Словник молодіжного сленгу

При вивченні алгебри в загальноосвітній школі(9 клас) однією з важливих темє вивчення числових послідовностей, До яких відносяться прогресії -геометрична та арифметична. У цій статті розглянемо арифметичну прогресію та приклади з рішеннями.

Що являє собою арифметична прогресія?

Щоб це зрозуміти, необхідно дати визначення прогресії, що розглядається, а також навести основні формули, які далі будуть використані при вирішенні завдань.

Арифметична або - це такий набір упорядкованих раціональних чисел, кожен член якого відрізняється від попереднього на певну постійну величину. Ця величина називається різницею. Тобто, знаючи будь-який член упорядкованого ряду чисел та різницю, можна відновити всю арифметичну прогресію.

Наведемо приклад. Наступна послідовність чисел буде арифметичною прогресією: 4, 8, 12, 16, ..., оскільки різниця в цьому випадку дорівнює 4 (8 - 4 = 12 - 8 = 16 - 12). А ось набір чисел 3, 5, 8, 12, 17 вже не можна віднести до виду прогресії, що розглядається, оскільки різниця для нього не є постійною величиною (5 - 3 ≠ 8 - 5 ≠ 12 - 8 ≠ 17 - 12).

Важливі формули

Наведемо тепер основні формули, які знадобляться вирішення завдань з використанням арифметичної прогресії. Позначимо символом a n n член послідовності, де n - ціле число. Різницю позначимо латинською літерою d. Тоді справедливі такі вирази:

  1. Для визначення значення n-го члена підійде формула: n = (n-1) * d + a 1 .
  2. Для визначення суми перших n доданків: S n = (a n +a 1) * n/2.

Щоб зрозуміти будь-які приклади арифметичної прогресії з рішенням у 9 класі, достатньо запам'ятати ці дві формули, оскільки на їх використанні будуються будь-які завдання типу, що розглядається. Також слід пам'ятати, що різниця прогресії визначається за формулою: d = a n - a n-1 .

Приклад №1: знаходження невідомого члена

Наведемо простий приклад арифметичної прогресії і формул, які необхідно використовувати для вирішення.

Нехай дана послідовність 10, 8, 6, 4, ..., необхідно знайти п'ять членів.

З умови завдання вже випливає, що перші 4 доданки відомі. П'яте можна визначити двома способами:

  1. Обчислимо для початку різницю. Маємо: d = 8 – 10 = -2. Аналогічним чином можна було взяти будь-які два інших члени, стоять поручодин з одним. Наприклад, d = 4 – 6 = -2. Оскільки відомо, що d = a n - a n-1 тоді d = a 5 - a 4 , звідки отримуємо: a 5 = a 4 + d. Підставляємо відомі значення: a 5 = 4 + (-2) = 2.
  2. Другий спосіб вимагає знання різниці аналізованої прогресії, тому спочатку потрібно визначити її, як показано вище (d = -2). Знаючи, що перший член a 1 = 10, скористаємося формулою для числа n послідовності. Маємо: a n = (n - 1) * d + a 1 = (n - 1) * (-2) + 10 = 12 - 2 * n. Підставляючи останній вираз n = 5, отримуємо: a 5 = 12-2 * 5 = 2.

Як видно, обидва способи рішення привели до того самого результату. Зазначимо, що у цьому прикладі різниця d прогресії є негативною величиною. Такі послідовності називаються спадними, оскільки кожен наступний член менший за попередній.

Приклад №2: різниця прогресії

Тепер ускладнимо трохи завдання, наведемо приклад, як знайти різницю прогресії арифметичної.

Відомо, що в деякій алгебраїчній прогресії 1-й член дорівнює 6, а 7-й член дорівнює 18. Необхідно знайти різницю і відновити цю послідовність до 7 члена.

Скористаємося формулою визначення невідомого члена: a n = (n - 1) * d + a 1 . Підставимо до неї відомі дані з умови, тобто числа a 1 і a 7 маємо: 18 = 6 + 6 * d. З цього виразу можна легко обчислити різницю: d = (18 - 6) / 6 = 2. Отже, відповіли першу частину завдання.

Щоб відновити послідовність до 7 членів, слід скористатися визначенням алгебраїчної прогресіїтобто a 2 = a 1 + d, a 3 = a 2 + d і так далі. У результаті відновлюємо всю послідовність: a 1 = 6, a 2 = 6 + 2 = 8, a 3 = 8 + 2 = 10, a 4 = 10 + 2 = 12, a 5 = 12 + 2 = 14, a 6 = 14 + 2 = 16, а 7 = 18.

Приклад №3: складання прогресії

Ускладнимо ще сильніша умовазавдання. Тепер необхідно відповісти на питання, як знаходити арифметичну прогресію. Можна навести наступний приклад: дані два числа, наприклад, - 4 і 5. Необхідно скласти алгебраїчну прогресію так, щоб між цими містилося ще три члени.

Перш ніж починати вирішувати це завдання, необхідно зрозуміти, яке місце займатимуть задані числау майбутній прогресії. Оскільки між ними будуть ще три члени, тоді a 1 = -4 і a 5 = 5. Встановивши це, переходимо до завдання, яке аналогічне попередньому. Знову для n-го члена скористаємося формулою, отримаємо: a 5 = a 1 + 4*d. Звідки: d = (a 5 - a 1) / 4 = (5 - (-4)) / 4 = 2,25. Тут набули не ціле значення різниці, проте воно є раціональним числом, Тому формули для алгебраїчної прогресії залишаються тими самими.

Тепер додамо знайдену різницю до a 1 і відновимо члени прогресії, що бракують. Отримуємо: a 1 = - 4, a 2 = - 4 + 2,25 = - 1,75, a 3 = -1,75 + 2,25 = 0,5, a 4 = 0,5 + 2,25 = 2,75, a 5 = 2,75 + 2,25 = 5, що збіглося з умовою задачі.

Приклад №4: перший член прогресії

Продовжимо наводити приклади арифметичної прогресії із рішенням. У всіх попередніх завданнях було відоме перше число прогресу алгебри. Тепер розглянемо завдання іншого типу: нехай дані два числа, де a 15 = 50 і a 43 = 37. Необхідно знайти, з якого числа починається ця послідовність.

Формули, якими користувалися досі, припускають знання a 1 і d. За умови завдання про ці числа нічого невідомо. Проте випишемо вирази для кожного члена, про який є інформація: a 15 = a 1 + 14 * d і a 43 = a 1 + 42 * d. Отримали два рівняння, у яких 2 невідомі величини (a 1 та d). Це означає, що завдання зводиться до розв'язання системи лінійних рівнянь.

Вказану систему найпростіше вирішити, якщо виразити у кожному рівнянні a 1 , а потім порівняти отримані вирази. Перше рівняння: a 1 = a 15 - 14 * d = 50 - 14 * d; друге рівняння: a 1 = a 43 - 42 * d = 37 - 42 * d. Прирівнюючи ці вирази, отримаємо: 50 - 14 * d = 37 - 42 * d, звідки різниця d = (37 - 50) / (42 - 14) = - 0,464 (наведено лише 3 знаки точності після коми).

Знаючи d, можна скористатися будь-яким із 2 наведених вище виразів для a 1 . Наприклад, першим: a 1 = 50 - 14 * d = 50 - 14 * (- 0,464) = 56,496.

Якщо виникають сумніви в отриманому результаті, можна його перевірити, наприклад, визначити член прогресії, який заданий в умові. Отримаємо: a 43 = a 1 + 42 * d = 56,496 + 42 * (- 0,464) = 37,008. Невелика похибка пов'язані з тим, що з обчисленнях використовувалося округлення до тисячних часток.

Приклад №5: сума

Тепер розглянемо кілька прикладів із рішеннями на суму арифметичної прогресії.

Нехай дана числова прогресія наступного виду: 1, 2, 3, 4, ...,. Як розрахувати суму 100 цих чисел?

Завдяки розвитку комп'ютерних технологійможна це завдання вирішити, тобто послідовно скласти всі числа, що обчислювальна машиназробить відразу, як тільки людина натисне клавішу Enter. Однак завдання можна вирішити в умі, якщо звернути увагу, що представлений ряд чисел є алгебраїчною прогресією, причому її різниця дорівнює 1. Застосовуючи формулу для суми, отримуємо: S n = n * (a 1 + a n) / 2 = 100 * (1 + 100)/2 = 5050.

Цікаво відзначити, що це завдання носить назву "гаусової", оскільки в початку XVIIIстоліття знаменитий німецький ще у віці всього 10 років, зміг вирішити її в умі за кілька секунд. Хлопчик не знав формули для суми алгебраїчної прогресії, але він помітив, що якщо складати попарно числа, що знаходяться на краях послідовності, то виходить завжди один результат, тобто 1 + 100 = 2 + 99 = 3 + 98 = ..., а оскільки цих сум буде рівно 50 (100/2), то для отримання правильної відповіді достатньо помножити 50 на 101.

Приклад №6: сума членів від n до m

Ще одним типовим прикладомсуми арифметичної прогресії є наступний: дано такий чисел ряд: 3, 7, 11, 15, ..., потрібно знайти, чому дорівнюватиме сума його членів з 8 по 14.

Завдання вирішується двома способами. Перший передбачає перебування невідомих членів з 8 по 14, а потім їх послідовне підсумовування. Оскільки доданків небагато, такий спосіб не є досить трудомістким. Проте пропонується вирішити це завдання другим методом, який є більш універсальним.

Ідея полягає в отриманні формули для суми прогресу алгебри між членами m і n, де n > m - цілі числа. Випишемо для обох випадків два вирази для суми:

  1. S m = m*(a m + a 1)/2.
  2. S n = n*(a n + a 1)/2.

Оскільки n > m, то очевидно, що 2 сума включає першу. Останній висновок означає, що якщо взяти різницю між цими сумами, і додати до неї член a m (у разі взяття різниці він віднімається із суми S n), то отримаємо необхідну відповідь на завдання. Маємо: S mn = S n - S m + a m = n * (a 1 + a n) / 2 - m * (a 1 + a m) / 2 + a m = a 1 * (n - m) / 2 + a n * n / 2 + a m * (1-m/2). У цей вираз необхідно підставити формули для a n і a m. Тоді отримаємо: S mn = a 1 * (n - m) / 2 + n * (a 1 + (n - 1) * d) / 2 + (a 1 + (m - 1) * d) * (1 - m / 2) = a 1 * (n - m + 1) + d * n * (n - 1) / 2 + d * (3 * m - m 2 - 2) / 2.

Отримана формула є дещо громіздкою, проте сума S mn залежить від n, m, a 1 і d. У нашому випадку a 1 = 3, d = 4, n = 14, m = 8. Підставляючи ці числа отримаємо: S mn = 301.

Як видно з наведених рішень, всі завдання ґрунтуються на знанні виразу для n-го члена та формули для суми набору перших доданків. Перед тим як приступити до вирішення будь-якого з цих завдань, рекомендується уважно прочитати умову, ясно зрозуміти, що потрібно знайти, і потім приступати до вирішення.

Ще одна порада полягає у прагненні до простоти, тобто якщо можна відповісти на питання, не застосовуючи складні математичні викладки, то необхідно чинити саме так, оскільки в цьому випадку ймовірність припуститися помилки менше. Наприклад, у прикладі арифметичної прогресії з рішенням №6 можна було б зупинитися на формулі S mn = n * (a 1 + a n) / 2 - m * (a 1 + a m) / 2 + a m і розбити загальне завданняна окремі завдання (в даному випадкуспочатку знайти члени a n та a m).

Якщо виникають сумніви в отриманому результаті, то рекомендується перевіряти, як це було зроблено в деяких наведених прикладах. Як знаходити арифметичну прогресію, з'ясували. Якщо розібратися, це не так складно.


Наприклад, послідовність (2); \ (5 \); \ (8 \); \ (11 \); \(14\)... є арифметичною прогресією, бо кожен наступний елементвідрізняється від попереднього на три (може бути отриманий з попереднього додаванням трійки):

У цій прогресії різниця (d) позитивна (рівна (3)), і тому кожен наступний член більший за попередній. Такі прогресії називаються зростаючими.

Однак (d) може бути і негативним числом. Наприклад, в арифметичній прогресії \(16\); \ (10 ​​\); \ (4 \); \(-2\); \ (-8 \) ... Різниця прогресії \ (d \) дорівнює мінус шести.

І в цьому випадку кожен наступний елемент буде меншим, ніж попередній. Ці прогресії називаються спадаючими.

Позначення арифметичної прогресії

Прогресію позначають маленькою латинською літерою.

Числа, що утворюють прогресію, називають її членами(або елементами).

Їх позначають тією ж літерою як і арифметичну прогресію, але з числовим індексом, рівним номеру елемента по порядку.

Наприклад, арифметична прогресія (a_n = \ left \ (2; 5; 8; 11; 14 ... \ right \) \) складається з елементів \ (a_1 = 2 \); \ (a_2 = 5 \); \ (a_3 = 8 \) і так далі.

Іншими словами, для прогресії (a_n = \ left \ (2; 5; 8; 11; 14 ... \ right \) \)

Розв'язання задач на арифметичну прогресію

У принципі, викладеної вище інформації вже достатньо, щоб вирішувати практично будь-яке завдання на арифметичну прогресію (у тому числі з тих, що пропонують на ОДЕ).

Приклад (ОДЕ). Арифметична прогресія задана умовами (b_1 = 7; d = 4). Знайдіть (b_5).
Рішення:

Відповідь: \ (b_5 = 23 \)

Приклад (ОДЕ). Дано перші три члени арифметичної прогресії: \(62; 49; 36…\) Знайдіть значення першого негативного члена цієї прогресії.
Рішення:

Нам дано перші елементи послідовності та відомо, що вона – арифметична прогресія. Тобто, кожен елемент відрізняється від сусіднього на те саме число. Дізнаємось на яке, віднімаючи з наступного елемента попередній: \(d=49-62=-13\).

Тепер ми можемо відновити нашу прогресію до потрібного (першого негативного) елемента.

Готово. Можна писати відповідь.

Відповідь: \(-3\)

Приклад (ОДЕ). Дано кілька елементів арифметичної прогресії, що йдуть поспіль: \(…5; x; 10; 12,5...\) Знайдіть значення елемента, позначеного буквою \(x\).
Рішення:


Щоб знайти (x), нам потрібно знати наскільки наступний елемент відрізняється від попереднього, інакше кажучи - різницю прогресії. Знайдемо її з двох відомих сусідніх елементів: (d = 12,5-10 = 2,5).

Нині ж без проблем знаходимо шукане: \(x=5+2,5=7,5\).


Готово. Можна писати відповідь.

Відповідь: \(7,5\).

Приклад (ОДЕ). Арифметична прогресія задана такими умовами: (a_1=-11); \(a_(n+1)=a_n+5\) Знайдіть суму перших шести членів цієї прогресії.
Рішення:

Нам потрібно знайти суму перших шістьох членів прогресії. Але ми не знаємо їх значень, нам дано лише перший елемент. Тому спочатку обчислюємо значення по черзі, використовуючи дане нам:

\ (n = 1 \); \(a_(1+1)=a_1+5=-11+5=-6\)
\ (n = 2 \); \(a_(2+1)=a_2+5=-6+5=-1\)
\ (n = 3 \); \(a_(3+1)=a_3+5=-1+5=4\)
А обчисливши потрібні нам шість елементів – знаходимо їхню суму.

\(S_6=a_1+a_2+a_3+a_4+a_5+a_6=\)
\(=(-11)+(-6)+(-1)+4+9+14=9\)

Шукану суму знайдено.

Відповідь: \ (S_6 = 9 \).

Приклад (ОДЕ). В арифметичній прогресії \(a_(12)=23\); \ (a_ (16) = 51 \). Знайдіть різницю цієї прогресії.
Рішення:

Відповідь: \ (d = 7 \).

Важливі формули арифметичної прогресії

Як бачите, багато завдань з арифметичної прогресії можна вирішувати, просто зрозумівши головне – те, що арифметична прогресія є ланцюжок чисел, і кожен наступний елемент у цьому ланцюжку виходить додаванням до попереднього одного і того ж числа (різниці прогресії).

Однак часом трапляються ситуації, коли вирішувати «в лоб» дуже незручно. Наприклад, уявіть, що в першому прикладі нам потрібно знайти не п'ятий елемент \(b_5\), а триста вісімдесят шостий \(b_(386)\). Це що ж, нам (385) разів додавати четвірку? Або уявіть, що у передостанньому прикладі треба знайти суму перших сімдесяти трьох елементів. Вважати замучаєшся ...

Тому в таких випадках «у лоб» не вирішують, а використовують спеціальні формули, виведені для арифметичної прогресії. І головні їх це формула енного члена прогресії і формула суми (n) перших членів.

Формула \(n\)-го члена: \(a_n=a_1+(n-1)d\), де \(a_1\) - перший член прогресії;
\ (n \) - Номер шуканого елемента;
\(a_n\) - член прогресії з номером \(n\).


Ця формула дозволяє нам швидко знайти хоч триста, хоч мільйонний елемент, знаючи лише перший і різницю прогресії.

приклад. Арифметична прогресія задана умовами: (b_1=-159); (d = 8,2). Знайдіть \(b_(246)\).
Рішення:

Відповідь: \ (b_ (246) = 1850).

Формула суми n перших членів: \(S_n=\frac(a_1+a_n)(2) \cdot n\), де



\(a_n\) – останній підсумований член;


Приклад (ОДЕ). Арифметична прогресія задана умовами (a_n = 3,4n-0,6 \). Знайдіть суму перших (25) членів цієї прогресії.
Рішення:

\(S_(25)=\)\(\frac(a_1+a_(25))(2 )\) \(\cdot 25\)

Щоб обчислити суму перших двадцяти п'яти елементів, нам потрібно знати значення першого та двадцять п'ятого члена.
Наша прогресія задана формулою енного члена в залежності від його номера (детальніше дивись). Давайте обчислимо перший елемент, підставивши замість (n) одиницю.

\(n = 1; \) \ (a_1 = 3,4 · 1-0,6 = 2,8 \)

Тепер знайдемо двадцять п'ятий член, підставивши замість двадцять п'ять.

\ (n = 25; \) \ (a_ (25) = 3,4 · 25-0,6 = 84,4 \)

Ну, а зараз без проблем обчислюємо потрібну суму.

\(S_(25)=\)\(\frac(a_1+a_(25))(2)\) \(\cdot 25=\)
\(=\) \(\frac(2,8+84,4)(2)\) \(\cdot 25 =\)\(1090\)

Відповідь готова.

Відповідь: \ (S_ (25) = 1090 \).

Для суми перших членів можна отримати ще одну формулу: потрібно просто в (S_(25)=\)\(\frac(a_1+a_(25))(2)\) \(\cdot 25\ ) замість \(a_n\) підставити формулу для нього \(a_n=a_1+(n-1)d\). Отримаємо:

Формула суми n перших членів: \(S_n=\)\(\frac(2a_1+(n-1)d)(2)\) \(\cdot n\), де

\ (S_n \) - Шукана сума \ (n \) перших елементів;
\(a_1\) – перший сумований член;
(d) - різниця прогресії;
\(n\) – кількість елементів у сумі.

приклад. Знайдіть суму перших (33)-їх членів арифметичної прогресії: (17); \ (15,5 \); \ (14 \) ...
Рішення:

Відповідь: \ (S_ (33) = -231 \).

Більш складні завдання на арифметичну прогресію

Тепер у вас є вся необхідна інформаціядля вирішення практично будь-якого завдання на арифметичну прогресію. Завершимо тему розглядом завдань, у яких треба не просто застосовувати формули, але й трохи думати (в математиці це корисно ☺)

Приклад (ОДЕ). Знайдіть суму всіх негативних членів прогресії: (-19,3); \ (-19 \); \ (-18,7 \) ...
Рішення:

\(S_n=\)\(\frac(2a_1+(n-1)d)(2)\) \(\cdot n\)

Завдання дуже схоже на попереднє. Починаємо вирішувати також: спочатку знайдемо (d).

\(d=a_2-a_1=-19-(-19,3)=0,3\)

Тепер би підставити (d) у формулу для суми… і ось тут спливає маленький нюанс – ми не знаємо (n). Інакше кажучи, не знаємо, скільки членів потрібно буде скласти. Як це з'ясувати? Давайте думати. Ми припинимо складати елементи тоді, коли дійдемо першого позитивного елемента. Тобто потрібно дізнатися номер цього елемента. Як? Запишемо формулу обчислення будь-якого елемента арифметичної прогресії: (a_n=a_1+(n-1)d) для нашого випадку.

\(a_n=a_1+(n-1)d\)

\(a_n=-19,3+(n-1)·0,3\)

Нам потрібно, щоб \(a_n\) став більше нуля. З'ясуємо, за якого \(n\) це станеться.

\(-19,3+(n-1)·0,3>0\)

\((n-1)·0,3>19,3\) \(|:0,3\)

Ділимо обидві частини нерівності на (0,3).

\(n-1>\)\(\frac(19,3)(0,3)\)

Переносимо мінус одиницю, не забуваючи міняти знаки

\(n>\)\(\frac(19,3)(0,3)\) \(+1\)

Обчислюємо…

\(n>65,333…\)

…і з'ясовується, що перший позитивний елемент матиме номер (66). Відповідно, останній негативний має \(n=65\). Про всяк випадок, перевіримо це.

\(n=65;\) \(a_(65)=-19,3+(65-1)·0,3=-0,1\)
\(n=66;\) \(a_(66)=-19,3+(66-1)·0,3=0,2\)

Таким чином, нам потрібно скласти перші (65) елементів.

\(S_(65)=\) \(\frac(2 \cdot (-19,3)+(65-1)0,3)(2)\)\(\cdot 65\)
\(S_(65)=\)\((-38,6+19,2)(2)\)\(\cdot 65=-630,5\)

Відповідь готова.

Відповідь: \ (S_ (65) = -630,5 \).

Приклад (ОДЕ). Арифметична прогресія задана умовами: (a_1=-33); \(a_(n+1)=a_n+4\). Знайдіть суму від \(26\)-го до \(42\) елемента включно.
Рішення:

\(a_1=-33;\) \(a_(n+1)=a_n+4\)

У цьому завдання також потрібно знайти суму елементів, але починаючи не з першого, а з (26)-го. Для такої нагоди у нас формули немає. Як вирішувати?
Легко - щоб отримати суму з \(26\)-го до \(42\)-ой, треба спочатку знайти суму з \(1\)-ого ​​по \(42\)-ой, а потім відняти від неї суму з першого до (25)-ого ​​(см картинку).


Для нашої прогресії \(a_1=-33\), а різниця \(d=4\) (адже саме четвірку ми додаємо до попереднього елементу, щоб визначити наступний). Знаючи це, знайдемо суму перших (42)-ух елементів.

\(S_(42)=\) \(\frac(2 \cdot (-33)+(42-1)4)(2)\)\(\cdot 42=\)
\(=\)\(\frac(-66+164)(2)\) \(\cdot 42=2058\)

Тепер суму перших (25) елементів.

\(S_(25)=\) \(\frac(2 \cdot (-33)+(25-1)4)(2)\)\(\cdot 25=\)
\(=\)\(\frac(-66+96)(2)\) \(\cdot 25=375\)

Ну і нарешті обчислюємо відповідь.

\ (S = S_ (42)-S_ (25) = 2058-375 = 1683 \)

Відповідь: (S = 1683).

Для арифметичної прогресії існує ще кілька формул, які ми не розглядали в цій статті через їхню малу практичну корисність. Однак ви легко можете знайти їх .



Останні матеріали розділу:

Перше ополчення у смутні часи презентація
Перше ополчення у смутні часи презентація

Слайд 1Смутний час Слайд 2На початку XVII століття Російська держава була охоплена пожежею громадянської війни та глибокою кризою. Сучасники...

Слова паразити у дитячій мові
Слова паразити у дитячій мові

Однією з найважливіших проблем сучасного суспільства є проблема мови. Ні для кого не секрет, що останнім часом наша мова зазнала...

Презентація для уроків літературного читання у початковій школі про Е
Презентація для уроків літературного читання у початковій школі про Е

Слайд 2 04.11.2009р. Н.С. Папулова 2 Олена Олександрівна Благініна. (1903-1989) – російський поет, перекладач. Слайд 3 Дочка багажного касира на...