Похідна функції y x 10. Похідна функції

Визначення.Нехай функція \(y = f(x) \) визначена в деякому інтервалі, що містить у собі точку \(x_0 \). Дамо аргументу приріст (Delta x) таке, щоб не вийти з цього інтервалу. Знайдемо відповідне збільшення функції \(\Delta y \) (при переході від точки \(x_0 \) до точки \(x_0 + \Delta x \)) і складемо відношення \(\frac(\Delta y)(\Delta x) \). Якщо існує межа цього відношення при \(\Delta x \rightarrow 0 \), то вказану межу називають похідної функції\(y=f(x) \) у точці \(x_0 \) і позначають \(f"(x_0) \).

$$ \lim_(\Delta x \to 0) \frac(\Delta y)(\Delta x) = f"(x_0) $$

Для позначення похідної часто використовують символ y". Зазначимо, що y" = f(x) - це нова функція, але, природно, пов'язана з функцією y = f(x), визначена у всіх точках x, в яких існує вказана вище межа . Цю функцію називають так: похідна функції у = f(x).

Геометричний зміст похідноїполягає у наступному. Якщо до графіку функції у = f(x) у точці з абсцисою х=a можна провести дотичну, непаралельну осі y, то f(a) виражає кутовий коефіцієнт дотичної:
\(k = f"(a) \)

Оскільки \(k = tg(a) \), то вірна рівність \(f"(a) = tg(a) \).

А тепер витлумачимо визначення похідної з погляду наближених рівностей. Нехай функція \(y = f(x) \) має похідну в конкретній точці \(x \):
$$ \lim_(\Delta x \to 0) \frac(\Delta y)(\Delta x) = f"(x) $$
Це означає, що біля точки х виконується наближена рівність \(\frac(\Delta y)(\Delta x) \approx f"(x) \), тобто \(\Delta y \approx f"(x) \cdot \Delta x \). Змістовний зміст отриманої наближеної рівності полягає в наступному: збільшення функції «майже пропорційно» збільшенню аргументу, причому коефіцієнтом пропорційності є значення похідної в заданій точціх. Наприклад, для функції \(y = x^2 \) справедливо наближена рівність \(\Delta y \approx 2x \cdot \Delta x \). Якщо уважно проаналізувати визначення похідної, ми виявимо, що у ньому закладено алгоритм її знаходження.

Сформулюємо його.

Як знайти похідну функції у = f (x)?

1. Зафіксувати значення \(x \), знайти \(f(x) \)
2. Дати аргументу \(x \) збільшення \(\Delta x \), перейти в нову точку\(x+ \Delta x \), знайти \(f(x+ \Delta x) \)
3. Знайти збільшення функції: \(\Delta y = f(x + \Delta x) - f(x) \)
4. Скласти відношення \(\frac(\Delta y)(\Delta x) \)
5. Обчислити $$ \lim_(\Delta x \to 0) \frac(\Delta y)(\Delta x) $$
Ця межа і є похідною функцією в точці x.

Якщо функція у = f(x) має похідну в точці х, її називають диференційованою в точці х. Процедуру знаходження похідної функції у = f(x) називають диференціюваннямфункції у = f(x).

Обговоримо таке питання: як пов'язані між собою безперервність та диференційність функції у точці.

Нехай функція у = f(x) диференційована у точці х. Тоді до графіку функції в точці М(х; f(x)) можна провести дотичну, причому, нагадаємо, кутовий коефіцієнт дотичної дорівнює f"(x). Такий графік не може «розриватися» у точці М, тобто функція зобов'язана бути безперервною у точці х.

Це були міркування "на пальцях". Наведемо більш строгу міркування. Якщо функція у = f(x) диференційована в точці х, то виконується наближена рівність \(\Delta y \approx f"(x) \cdot \Delta x \). Якщо в цій рівності \(\Delta x \) спрямувати до нулю, то й \(\Delta y \) прагнутиме до нуля, а це і є умова безперервності функції в точці.

Отже, якщо функція диференційована у точці х, вона і безперервна у цій точці.

Зворотне твердження не так. Наприклад: функція у = | х | безперервна скрізь, зокрема у точці х = 0, але щодо графіку функції в «точці стику» (0; 0) не існує. Якщо деякій точці до графіку функції не можна провести дотичну, то цій точці немає похідна.

Ще один приклад. Функція \(y=\sqrt(x) \) безперервна на всій числовій прямій, у тому числі в точці х = 0. І дотична до графіка функції існує в будь-якій точці, у тому числі в точці х = 0. Але в цій точці дотична збігається з віссю у, тобто перпендикулярна до осі абсцис, її рівняння має вигляд х = 0. Кутового коефіцієнта у такої прямої немає, значить, не існує і \(f"(0) \)

Отже, ми познайомилися з новою властивістю функції - диференціювання. А як за графіком функції можна дійти невтішного висновку про її диференційованості?

Відповідь фактично отримано вище. Якщо деякій точці до графіку функції можна провести дотичну, не перпендикулярну осі абсцис, то цій точці функція диференційована. Якщо у певній точці дотична до графіку функції немає чи вона перпендикулярна осі абсцис, то цій точці функція не диференційована.

Правила диференціювання

Операція знаходження похідної називається диференціюванням. За виконання цієї операції часто доводиться працювати з приватними, сумами, творами функцій, і навіть з «функціями функцій», тобто складними функціями. Виходячи з визначення похідної, можна вивести правила диференціювання, що полегшують роботу. Якщо C - постійне числоі f = f (x), g = g (x) - деякі функції, що диференціюються, то справедливі наступні правила диференціювання:

$$ C"=0 $$ $$ x"=1 $$ $$ (f+g)"=f"+g" $$ $$ (fg)"=f"g + fg" $$ $$ ( Cf)"=Cf" $$ $$ \left(\frac(f)(g) \right) " = \frac(f"g-fg")(g^2) $$ $$ \left(\frac (C)(g) \right) " = -\frac(Cg")(g^2) $$ Похідна складної функції:
$$ f"_x(g(x)) = f"_g \cdot g"_x $$

Таблиця похідних деяких функцій

$$ \left(\frac(1)(x) \right) " = -\frac(1)(x^2) $$ $$ (\sqrt(x)) " = \frac(1)(2\ sqrt(x)) $$ $$ \left(x^a \right) " = a x^(a-1) $$ $$ \left(a^x \right) " = a^x \cdot \ln a $$ $$ \left(e^x \right) " = e^x $$ $$ (\ln x)" = \frac(1)(x) $$ $$ (\log_a x)" = \frac (1)(x\ln a) $$ $$ (\sin x)" = \cos x $$ $$ (\cos x)" = -\sin x $$ $$ (\text(tg) x) " = \frac(1)(\cos^2 x) $$ $$ (\text(ctg) x)" = -\frac(1)(\sin^2 x) $$ $$ (\arcsin x) " = \frac(1)(\sqrt(1-x^2)) $$ $$ (\arccos x)" = \frac(-1)(\sqrt(1-x^2)) $$ $$ (\text(arctg) x)" = \frac(1)(1+x^2) $$ $$ (\text(arcctg) x)" = \frac(-1)(1+x^2) $ $

Операція відшукання похідної називається диференціюванням.

В результаті вирішення завдань про відшукання похідних у найпростіших (і не дуже простих) функцій визначення похідної як межі відношення прирощення до прирощення аргументу з'явилися таблиця похідних і точно певні правиладиференціювання. Першими на ниві знаходження похідних попрацювали Ісаак Ньютон (1643-1727) та Готфрід Вільгельм Лейбніц (1646-1716).

Тому в наш час, щоб знайти похідну будь-якої функції, не треба обчислювати згадану вище межу відношення збільшення функції до збільшення аргументу, а потрібно лише скористатися таблицею похідних та правилами диференціювання. Для знаходження похідної підходить наступний алгоритм.

Щоб знайти похідну, треба вираз під знаком штриха розібрати на складові прості функціїта визначити, якими діями (твір, сума, приватна)пов'язані ці функції. Далі похідні елементарних функційзнаходимо у таблиці похідних, а формули похідних твори, суми та частки - у правилах диференціювання. Таблиця похідних та правила диференціювання дані після перших двох прикладів.

приклад 1.Знайти похідну функції

Рішення. З правил диференціювання з'ясовуємо, що похідна суми функцій є сума похідних функцій, тобто.

З таблиці похідних з'ясовуємо, що похідна "ікса" дорівнює одиниці, а похідна синуса - косінус. Підставляємо ці значення у суму похідних і знаходимо необхідну умовою завдання похідну:

приклад 2.Знайти похідну функції

Рішення. Диференціюємо як похідну суми, в якій другий доданок з постійним множником, його можна винести за знак похідної:

Якщо поки що виникають питання, звідки береться, вони, як правило, прояснюються після ознайомлення з таблицею похідних та найпростішими правилами диференціювання. До них ми і переходимо зараз.

Таблиця похідних простих функцій

1. Похідна константи (числа). Будь-якого числа (1, 2, 5, 200 ...), яке є у виразі функції. Завжди дорівнює нулю. Це дуже важливо пам'ятати, тому що потрібно дуже часто
2. Похідна незалежною змінною. Найчастіше "ікса". Завжди дорівнює одиниці. Це також важливо запам'ятати надовго
3. Похідна ступеня. У ступінь під час вирішення завдань необхідно перетворювати неквадратні коріння.
4. Похідна змінної у ступені -1
5. Похідна квадратного кореня
6. Похідна синуса
7. Похідна косинуса
8. Похідна тангенса
9. Похідна котангенсу
10. Похідна арксинусу
11. Похідна арккосинусу
12. Похідна арктангенса
13. Похідна арккотангенса
14. Похідна натурального логарифму
15. Похідна логарифмічна функція
16. Похідна експоненти
17. Похідна показової функції

Правила диференціювання

1. Похідна суми чи різниці
2. Похідна твори
2a. Похідна вирази, помноженого на постійний множник
3. Похідна приватного
4. Похідна складної функції

Правило 1.Якщо функції

диференційовані в деякій точці, то в тій же точці диференційовані і функції

причому

тобто. похідна алгебраїчної суми функцій дорівнює алгебраїчній суміпохідних цих функцій.

Слідство. Якщо дві функції, що диференціюються, відрізняються на постійний доданок, то їх похідні рівні, тобто.

Правило 2Якщо функції

диференційовані в деякій точці, то в тій же точці диференційовано та їх добуток

причому

тобто. похідна твори двох функцій дорівнює сумі творів кожної з цих функцій похідну інший.

Наслідок 1. Постійний множник можна виносити за знак похідної:

Наслідок 2. Похідна твори декількох функцій, що диференціюються, дорівнює сумі творів похідної кожного з співмножників на всі інші.

Наприклад, для трьох множників:

Правило 3Якщо функції

диференційовані в деякій точці і , то в цій точці диференційовано та їх приватнеu/v , причому

тобто. похідна приватного двох функцій дорівнює дробу, чисельник якого є різниця творів знаменника на похідну чисельника і чисельника на похідну знаменника, а знаменник є квадрат колишнього чисельника.

Де що шукати на інших сторінках

При знаходженні похідної твору та приватного реальних задачахзавжди потрібно застосовувати відразу кілька правил диференціювання, тому більше прикладівна ці похідні – у статті"Виробничі твори та приватні функції".

Зауваження.Слід не плутати константу (тобто число) як доданок у сумі і як постійний множник! У випадку доданку її похідна дорівнює нулю, а у випадку постійного множникавона виноситься за знак похідних. Це типова помилка, яка зустрічається на початковому етапівивчення похідних, але в міру вирішення вже кількох одно-двоскладових прикладів середній студентцю помилку вже не робить.

А якщо при диференціюванні твору чи приватного у вас з'явився доданок u"v, в котрому u- число, наприклад, 2 або 5, тобто константа, то похідна цього числа дорівнюватиме нулю і, отже, все доданок буде дорівнює нулю (такий випадок розібраний у прикладі 10).

Інша часта помилка- механічне рішення похідної складної функції як похідної простий функції. Тому похідної складної функціїприсвячено окрему статтю. Але спочатку вчитимемося знаходити похідні простих функцій.

По ходу не обійтися без перетворень виразів. Для цього може знадобитися відкрити у нових вікнах посібники Дії зі ступенями та коріннямі Дії з дробами .

Якщо Ви шукаєте рішення похідних дробів зі ступенями та корінням, тобто, коли функція має вигляд начебто , то слідуйте на заняття "Похідна суми дробів зі ступенями та корінням".

Якщо ж перед Вами завдання начебто , то Вам на заняття "Виробні простих тригонометричних функцій".

Покрокові приклади - як знайти похідну

приклад 3.Знайти похідну функції

Рішення. Визначаємо частини виразу функції: весь вираз представляє твір, яке співмножники - суми, у другий у тому числі одне з доданків містить постійний множник. Застосовуємо правило диференціювання твору: похідна твори двох функцій дорівнює сумі творів кожної з цих функцій на похідну інший:

Далі застосовуємо правило диференціювання суми: похідна суми алгебраїчної функцій дорівнює сумі алгебри похідних цих функцій. У нашому випадку в кожній сумі другий доданок зі знаком мінус. У кожній сумі бачимо і незалежну змінну, похідна якої дорівнює одиниці, і константу (число), похідна якої дорівнює нулю. Отже, "ікс" у нас перетворюється на одиницю, а мінус 5 - на нуль. У другому виразі "ікс" помножено на 2, так що двійку множимо на ту ж одиницю як похідну "ікса". Отримуємо наступні значенняпохідних:

Підставляємо знайдені похідні у суму творів і отримуємо необхідну умовою завдання похідну всієї функції:

приклад 4.Знайти похідну функції

Рішення. Від нас потрібно знайти похідну приватного. Застосовуємо формулу диференціювання частки: похідна частки двох функцій дорівнює дробу, чисельник якого є різниця творів знаменника на похідну чисельника і чисельника на похідну знаменника, а знаменник є квадрат колишнього чисельника. Отримуємо:

Похідну співмножників у чисельнику ми вже знайшли в прикладі 2. Не забудемо також, що твір, що є другим співмножником у чисельнику в поточному прикладі береться зі знаком мінус:

Якщо Ви шукаєте вирішення таких завдань, в яких треба знайти похідну функції, де суцільне нагромадження коренів та ступенів, як, наприклад, , то ласкаво просимо на заняття "Виробна суми дробів зі ступенями і корінням" .

Якщо ж Вам потрібно дізнатися більше про похідні синуси, косінуси, тангенси та інші тригонометричних функцій, тобто, коли функція має вигляд начебто , то Вам на урок "Виробні простих тригонометричних функцій" .

Приклад 5.Знайти похідну функції

Рішення. У цій функції бачимо твір, один із співмножників яких - квадратний корінь із незалежної змінної, з похідною якого ми ознайомились у таблиці похідних. За правилом диференціювання твору та табличного значенняпохідної квадратного кореня отримуємо:

Приклад 6.Знайти похідну функції

Рішення. У цій функції бачимо приватне, ділене якого - квадратний корінь із незалежної змінної. За правилом диференціювання приватного, яке ми повторили і застосували в прикладі 4, та табличного значення похідної квадратного кореня отримуємо:

Щоб позбутися дробу в чисельнику, множимо чисельник і знаменник на .

Початковий рівень

Похідна функції. Вичерпне керівництво (2019)

Уявімо пряму дорогу, що проходить по горбистій місцевості. Тобто вона йде то вгору, то вниз, але праворуч чи ліворуч не повертає. Якщо вісь направити вздовж дороги горизонтально, а вертикально, то лінія дороги буде дуже схожа на графік якоїсь безперервної функції:

Вісь - це певний рівень нульової висоти, в житті ми використовуємо як рівень моря.

Рухаючись вперед такою дорогою, ми також рухаємося вгору або вниз. Також можемо сказати: при зміні аргументу (просування вздовж осі абсцис) змінюється значення функції (рух вздовж осі ординат). А тепер давай подумаємо, як визначити «крутість» нашої дороги? Що може бути за величина? Дуже просто: на скільки зміниться висота під час просування вперед на певну відстань. Адже на різних ділянках дороги, просуваючись вперед (вздовж осі абсцис) на один кілометр, ми піднімемося або опустимося на різна кількістьметрів щодо рівня моря (вздовж осі ординат).

Просування вперед позначимо (читається "дельта ікс").

Грецьку букву (дельта) в математиці зазвичай використовують як приставку, що означає зміну. Тобто – це зміна величини, – зміна; тоді що таке? Правильно, зміна величини.

Важливо: вираз – це єдине ціле, одна змінна. Ніколи не можна відривати «дельту» від «ікса» чи будь-якої іншої літери! Тобто, наприклад, .

Отже, ми просунулися вперед, по горизонталі, на. Якщо лінію дороги ми порівнюємо з графіком функції, як ми позначимо підйом? Звичайно, . Тобто, при просуванні вперед на ми піднімаємось вище.

Величину порахувати легко: якщо спочатку ми знаходилися на висоті, а після переміщення опинилися на висоті, то. Якщо кінцева точкавиявилася нижчою за початкову, буде негативною - це означає, що ми не піднімаємося, а спускаємося.

Повернемося до «крутості»: це величина, яка показує, наскільки сильно (круто) збільшується висота при переміщенні вперед на одиницю відстані:

Припустимо, що на якійсь ділянці шляху під час просування на км дорога піднімається нагору на км. Тоді крутість у цьому місці дорівнює. А якщо дорога при просуванні на м опустилася на кілометр? Тоді крутість дорівнює.

А тепер розглянемо вершину якогось пагорба. Якщо взяти початок ділянки за півкілометра до вершини, а кінець через півкілометра після нього, видно, що висота практично однакова.

Тобто за нашою логікою виходить, що крутість тут майже дорівнює нулю, що явно не відповідає дійсності. Просто на відстані в кілометрах може багато чого змінитися. Потрібно розглядати більш маленькі ділянки для більш адекватної та точної оцінки крутості. Наприклад, якщо вимірювати зміну висоти при переміщенні на один метр, результат буде набагато точнішим. Але й цієї точності нам може бути недостатньо - адже якщо посеред дороги стоїть стовп, ми можемо просто проскочити. Яку відстань тоді виберемо? Сантиметр? Міліметр? Чим менше тим краще!

У реального життявимірювати відстань з точністю до міліметра - більш ніж достатньо. Але математики завжди прагнуть досконалості. Тому було вигадано поняття нескінченно малого, тобто величина по модулю менше за будь-яке число, яке тільки можемо назвати. Наприклад, ти скажеш: одна трильйонна! Куди менше? А ти поділи це число на - і буде ще менше. І так далі. Якщо хочемо написати, що величина нескінченно мала, пишемо так: (читаємо «ікс прагне нуля»). Дуже важливо розуміти, що це число не дорівнює нулю!Але дуже близько до нього. Це означає, що на нього можна ділити.

Поняття, протилежне нескінченно малому – нескінченно велике (). Ти вже напевно стикався з ним, коли займався нерівностями: це число за модулем більше за будь-яке число, яке тільки можеш придумати. Якщо ти придумав найбільше з можливих чисел, просто помнож його на два, і вийде ще більше. А нескінченність ще більш тогощо вийде. Фактично нескінченно велике і нескінченно мале обернені один одному, тобто при, і навпаки: при.

Тепер повернемось до нашої дороги. Ідеально порахована крутість - це куртизна, обчислена для нескінченно малого відрізка шляху, тобто:

Зауважу, що при нескінченно малому переміщенні зміна висоти теж буде нескінченно малою. Але нагадаю, нескінченно мале - не означає рівне нулю. Якщо поділити один на одного нескінченно малі числа, може вийти цілком звичайне числонаприклад, . Тобто одна мала величина може бути рівно в рази більша за іншу.

Навіщо все це? Дорога, крутість… Адже ми не в автопробіг вирушаємо, а математику вчимо. А в математиці все так само, тільки називається по-іншому.

Поняття похідної

Похідна функції це відношення збільшення функції до збільшення аргументу при нескінченно малому збільшення аргументу.

Збільшенняму математиці називають зміну. Те, наскільки змінився аргумент () при просуванні вздовж осі, називається збільшенням аргументуі позначається Те, наскільки змінилася функція (висота) при просуванні вперед уздовж осі на відстань, називається збільшенням функціїта позначається.

Отже, похідна функції – це відношення до при. Позначаємо похідну тією ж літерою, що й функцію, тільки зі штрихом зверху праворуч: або просто. Отже, запишемо формулу похідної, використовуючи ці позначення:

Як і в аналогії з дорогою тут при зростанні функції похідна позитивна, а при зменшенні негативна.

А чи похідна буває дорівнює нулю? Звичайно. Наприклад, якщо ми їдемо рівною горизонтальною дорогою, крутість дорівнює нулю. І справді, висота ж не зовсім змінюється. Так і з похідною: похідна постійної функції(Константи) дорівнює нулю:

оскільки збільшення такої функції дорівнює нулю за будь-якого.

Давай згадаємо приклад із вершиною пагорба. Там виходило, що можна так розташувати кінці відрізка по різні сторонивід вершини, що висота на кінцях виявляється однаковою, тобто відрізок розташовується паралельно осі:

Але великі відрізки – ознака неточного виміру. Підніматимемо наш відрізок вгору паралельно самому собі, тоді його довжина буде зменшуватися.

Зрештою, коли ми будемо нескінченно близькі до вершини, довжина відрізка стане нескінченно малою. Але при цьому він залишився паралельний осі, тобто різниця висот на його кінцях дорівнює нулю (не прагне, а саме дорівнює). Значить, похідна

Зрозуміти це можна так: коли ми стоїмо на самій вершині, дрібне зміщення вліво чи вправо змінює нашу висоту мізерно мало.

Є й суто алгебраїчне пояснення: лівіше вершини функція зростає, а правіше - зменшується. Як ми вже з'ясували раніше, у разі зростання функції похідна позитивна, а при зменшенні - негативна. Але змінюється вона плавно, без стрибків (бо дорога ніде не змінює нахил різко). Тому між негативними та позитивними значеннямиобов'язково має бути. Він і буде там, де функція не збільшується, не зменшується - у точці вершини.

Те саме справедливо і для западини (область, де функція зліва зменшується, а праворуч - зростає):

Трохи докладніше про збільшення.

Отже, ми змінюємо аргумент на величину. Змінюємо від якого значення? Яким він (аргумент) тепер став? Можемо вибрати будь-яку точку, і зараз від неї танцюватимемо.

Розглянемо точку з координатою. Значення функції у ній одно. Потім робимо те саме збільшення: збільшуємо координату на. Чому тепер рівний аргумент? Дуже легко: . А чому тепер дорівнює значення функції? Куди аргумент, туди та функція: . А що із збільшенням функції? Нічого нового: це, як і раніше, величина, на яку змінилася функція:

Потренуйся знаходити збільшення:

  1. Знайди збільшення функції в точці при збільшенні аргументу, що дорівнює.
  2. Те саме для функції в точці.

Рішення:

У різних точкахпри тому самому збільшенні аргументу збільшення функції буде різним. Значить, і похідна у кожній точці своя (це ми обговорювали на самому початку - крутість дороги у різних точках різна). Тому коли пишемо похідну, треба зазначати, в якій точці:

Ступінна функція.

Ступіньною називають функцію, де аргумент певною мірою (логічно, так?).

Причому - будь-якою мірою: .

Найпростіший випадок- це коли показник ступеня:

Знайдемо її похідну у точці. Згадуємо визначення похідної:

Отже, аргумент змінюється з до. Яке збільшення функції?

Приріст – це. Але функція у будь-якій точці дорівнює своєму аргументу. Тому:

Похідна дорівнює:

Похідна від рівна:

b) Тепер розглянемо квадратичну функцію (): .

А тепер згадаємо, що. Це означає, що значення приросту можна знехтувати, оскільки воно нескінченно мало, і тому незначно на тлі іншого доданку:

Отже, у нас народилося чергове правило:

c) Продовжуємо логічний ряд: .

Цей вираз можна спростити по-різному: розкрити першу дужку за формулою скороченого множення куб суми, або розкласти весь вираз на множники за формулою різниці кубів. Спробуй зробити це сам будь-яким із запропонованих способів.

Отже, у мене вийшло таке:

І знову пригадаємо, що. Це означає, що можна знехтувати всіма складовими, що містять:

Отримуємо: .

d) Аналогічні правила можна отримати і для більших ступенів:

e) Виявляється, це правило можна узагальнити для статечної функції з довільним показником, навіть не цілим:

(2)

Можна сформулювати правило словами: "ступінь виноситься вперед як коефіцієнт, а потім зменшується на".

Доведемо це правило пізніше (майже наприкінці). А зараз розглянемо кілька прикладів. Знайди похідну функцій:

  1. (двома способами: за формулою та використовуючи визначення похідної - порахувавши збільшення функції);
  1. . Не повіриш, але це статечна функція. Якщо у тебе виникли питання на кшталт «Як це? А де ж ступінь?», Згадуй тему «»!
    Так-так, корінь - це теж ступінь, лише дрібна: .
    Отже, наш квадратний корінь - це лише ступінь із показником:
    .
    Похідну шукаємо за нещодавно вивченою формулою:

    Якщо тут знову стало незрозуміло, повторюй тему « »!!! (про ступінь з негативним показником)

  2. . Тепер показник ступеня:

    А тепер через визначення (не забув ще?):
    ;
    .
    Тепер, як завжди, нехтуємо доданком, що містить:
    .

  3. . Комбінація попередніх випадків: .

Тригонометричні функції.

Тут будемо використовувати один факт із вищої математики:

При виразі.

Доказ ти дізнаєшся на першому курсі інституту (а щоб там опинитися, треба добре здати ЄДІ). Зараз лише покажу це графічно:

Бачимо, що при функції не існує - точка на графіку виколота. Але що ближче до значення, то ближче функція до. Це і є те саме «прагне».

Додатково можна перевірити це правило за допомогою калькулятора. Так-так, не соромся, бери калькулятор, адже ми не на ЄДІ ще.

Отже, пробуємо: ;

Не забудь перевести калькулятор у режим Радіани!

і т.д. Бачимо, що менше, тим ближче значення ставлення до.

a) Розглянемо функцію. Як завжди, знайдемо її збільшення:

Перетворимо різницю синусів на твір. І тому використовуємо формулу (згадуємо тему « »): .

Тепер похідна:

Зробимо заміну: . Тоді при нескінченно малому і нескінченно мало: . Вираз для набуває вигляду:

А тепер згадуємо, що при виразі. А також, що якщо нескінченно малою величиною можна знехтувати суму (тобто при).

Отже, отримуємо наступне правило:похідна синуса дорівнює косінусу:

Це базові («табличні») похідні. Ось вони одним списком:

Пізніше ми до них додамо ще кілька, але ці найважливіші, оскільки використовуються найчастіше.

Потренуйся:

  1. Знайди похідну функції у точці;
  2. Знайди похідну функцію.

Рішення:

  1. Спершу знайдемо похідну в загальному вигляді, а потім підставимо замість його значення:
    ;
    .
  2. Тут у нас щось схоже на статечну функцію. Спробуємо привести її до
    нормальному вигляду:
    .
    Відмінно тепер можна використовувати формулу:
    .
    .
  3. . Ееєєєє….. Що це????

Гаразд, ти маєш рацію, такі похідні знаходити ми ще не вміємо. Тут ми маємо комбінацію кількох типів функцій. Щоб працювати з ними, потрібно вивчити ще кілька правил:

Експонента та натуральний логарифм.

Є в математиці така функція, похідна якої за будь-якого дорівнює значенню самої функції при цьому. Називається вона «експонента» і є показовою функцією

Підстава цієї функції – константа – це нескінченна десятковий дрібтобто число ірраціональне (таке як). Його називають число Ейлера, тому і позначають буквою.

Отже, правило:

Запам'ятати дуже просто.

Ну і не будемо далеко ходити, одразу ж розглянемо зворотну функцію. Яка функція є зворотною для показової функції? Логарифм:

У нашому випадку основою є число:

Такий логарифм (тобто логарифм із основою) називається «натуральним», і для нього використовуємо особливе позначення: замість пишемо.

Чому дорівнює? Звичайно ж, .

Похідна від натурального логарифму теж дуже проста:

Приклади:

  1. Знайди похідну функцію.
  2. Чому дорівнює похідна функції?

Відповіді: Експонента та натуральний логарифм- Функції унікально прості з точки зору похідної. Показові та логарифмічні функції з будь-якою іншою основою будуть мати іншу похідну, яку ми з тобою розберемо пізніше, після того як пройдемо правиладиференціювання.

Правила диференціювання

Правила чого? Знову новий термін, знову?!

Диференціювання- Це процес знаходження похідної.

Тільки і всього. А як ще назвати цей процес одним словом? Не производнование ж... Диференціалом математики називають те саме збільшення функції при. Походить цей термін від латинського differentia - різниця. Ось.

При виведенні всіх цих правил використовуватимемо дві функції, наприклад, в. Нам знадобляться також формули їх прирощень:

Усього є 5 правил.

Константа виноситься за знак похідної.

Якщо – якесь постійне число (константа), тоді.

Очевидно, це правило працює і для різниці: .

Доведемо. Нехай, чи простіше.

приклади.

Знайдіть похідні функції:

  1. у точці;
  2. у точці;
  3. у точці;
  4. у точці.

Рішення:

  1. (похідна однакова у всіх точках, оскільки це лінійна функція, пам'ятаєш?);

Похідна робота

Тут все аналогічно: введемо нову функціюі знайдемо її приріст:

Похідна:

Приклади:

  1. Знайдіть похідні функцій та;
  2. Знайдіть похідну функцію в точці.

Рішення:

Похідна показової функції

Тепер твоїх знань достатньо, щоб навчитися знаходити похідну будь-якої показової функції, а не лише експоненти (не забув ще, що це таке?).

Отже, де – це якесь число.

Ми вже знаємо похідну функцію, тому давай спробуємо привести нашу функцію до нової основи:

Для цього скористаємося простим правилом: . Тоді:

Ну ось, вийшло. Тепер спробуй знайти похідну, і не забудь, що ця функція – складна.

Вийшло?

Ось, перевір себе:

Формула вийшла дуже схожа на похідну експоненти: як було, так і залишилося, з'явився лише множник, який є просто числом, але не змінною.

Приклади:
Знайди похідні функції:

Відповіді:

Це просто число, яке неможливо порахувати без калькулятора, тобто ніяк не записати до більш простому вигляді. Тому у відповіді його у такому вигляді і залишаємо.

Похідна логарифмічна функція

Тут аналогічно: ти вже знаєш похідну від натурального логарифму:

Тому, щоб знайти довільну від логарифму з іншою основою, наприклад:

Потрібно привести цей логарифм до основи. А як змінити основу логарифму? Сподіваюся, ти пам'ятаєш цю формулу:

Тільки тепер замість писатимемо:

У знаменнику вийшла просто константа (постійне число без змінної). Похідна виходить дуже просто:

Похідні показової та логарифмічної функцій майже не зустрічаються в ЄДІ, але не буде зайвим знати їх.

Похідна складна функція.

Що таке " складна функція»? Ні, це не логарифм і не арктангенс. Дані функції може бути складними для розуміння (хоча, якщо логарифм тобі здається складним, прочитай тему «Логарифми» і все пройде), але з точки зору математики слово «складна» не означає «важка».

Уяви собі маленький конвеєр: сидять дві людини і роблять якісь дії з якимись предметами. Наприклад, перший загортає шоколадку в обгортку, а другий обв'язує її стрічкою. Виходить такий складовий об'єкт: шоколадка, обгорнена та обв'язана стрічкою. Щоб з'їсти шоколадку, тобі потрібно зробити зворотні діїв зворотному порядку.

Давай створимо подібний математичний конвеєр: спочатку знаходитимемо косинус числа, а потім отримане число зводитимемо в квадрат. Отже, нам дають число (шоколадка), я знаходжу його косинус (обгортка), а ти потім зводиш те, що в мене вийшло, у квадрат (обв'язуєш стрічкою). Що вийшло? функція. Це і є приклад складної функції: коли для знаходження її значення ми робимо першу дію безпосередньо зі змінною, а потім ще другу дію з тим, що вийшло в результаті першого.

Ми цілком можемо робити ті ж дії і в зворотному порядку: спочатку ти зводиш у квадрат, а потім шукаю косинус отриманого числа: . Нескладно здогадатися, що результат майже завжди буде різним. Важлива особливістьскладних функцій: зміна порядку дій функція змінюється.

Іншими словами, складна функція – це функція, аргументом якої є інша функція: .

Для першого прикладу .

Другий приклад: (те саме). .

Дію, яку робимо останнім, називатимемо "зовнішньої" функцією, а дія, що чиниться першим - відповідно «внутрішньою» функцією(це неформальні назви, я їх вживаю лише для того, щоб пояснити матеріал простою мовою).

Спробуй визначити сам, яка функція є зовнішньою, а яка внутрішньою:

Відповіді:Поділ внутрішньої та зовнішньої функцій дуже схожий заміну змінних: наприклад, у функції

  1. Першим виконуватимемо яку дію? Спершу порахуємо синус, а потім зведемо в куб. Отже, внутрішня функція, а зовнішня.
    А вихідна функція є їх композицією: .
  2. Внутрішня: ; зовнішня: .
    Перевірка: .
  3. Внутрішня: ; зовнішня: .
    Перевірка: .
  4. Внутрішня: ; зовнішня: .
    Перевірка: .
  5. Внутрішня: ; зовнішня: .
    Перевірка: .

виконуємо заміну змінних та отримуємо функцію.

Ну що ж, тепер витягуватимемо нашу шоколадку - шукати похідну. Порядок дій завжди зворотний: спочатку шукаємо похідну зовнішньої функції, потім множимо результат на похідну внутрішньої функції. Стосовно вихідного прикладу це так:

Інший приклад:

Отже, сформулюємо, нарешті, офіційне правило:

Алгоритм знаходження похідної складної функції:

Начебто все просто, так?

Перевіримо на прикладах:

Рішення:

1) Внутрішня: ;

Зовнішня: ;

2) Внутрішня: ;

(Тільки не здумай тепер скоротити на! З-під косинуса нічого не виноситься, пам'ятаєш?)

3) Внутрішня: ;

Зовнішня: ;

Відразу видно, що тут трирівнева складна функція: адже - це вже сама по собі складна функція, а з неї витягаємо корінь, тобто виконуємо третю дію (шоколадку в обгортці і з стрічкою кладемо в портфель). Але лякатися немає причин: все одно «розпаковувати» цю функцію будемо в тому ж порядку, що і зазвичай: з кінця.

Тобто спершу продиференціюємо корінь, потім косинус, і лише потім вираз у дужках. А потім все це перемножимо.

У разі зручно пронумерувати дії. Тобто уявімо, що нам відомий. У якому порядку робитимемо дії, щоб обчислити значення цього виразу? Розберемо з прикладу:

Чим пізніше відбувається дія, тим більше «зовнішньої» буде відповідна функція. Послідовність дій - як і раніше:

Тут вкладеність взагалі 4-рівнева. Давайте визначимо порядок дій.

1. Підкорене вираз. .

2. Корінь. .

3. Синус. .

4. Квадрат. .

5. Збираємо все до купи:

ВИРОБНИЧА. КОРОТКО ПРО ГОЛОВНЕ

Похідна функції- Відношення збільшення функції до збільшення аргументу при нескінченно малому збільшення аргументу:

Базові похідні:

Правила диференціювання:

Константа виноситься за знак похідної:

Похідна сума:

Похідна робота:

Похідна приватна:

Похідна складної функції:

Алгоритм знаходження похідної від складної функції:

  1. Визначаємо "внутрішню" функцію, знаходимо її похідну.
  2. Визначаємо "зовнішню" функцію, знаходимо її похідну.
  3. Помножуємо результати першого та другого пунктів.
Обчислення похідної- одна з самих важливих операційв диференційному обчисленні. Нижче наведено таблицю знаходження похідних простих функцій. Більше складні правиладиференціювання дивіться в інших уроках:
  • Таблиця похідних експоненційних та логарифмічних функцій
Наведені формули використовуйте як довідкові значення. Вони допоможуть у вирішенні диференціальних рівняньта завдань. На малюнку, в таблиці похідних простих функцій, наведена "шпаргалка" основних випадків знаходження похідної у зрозумілому для застосування вигляді, поряд з ним дано пояснення для кожного випадку.

Похідні простих функцій

1. Похідна від числа дорівнює нулю
с = 0
Приклад:
5 '= 0

Пояснення:
Похідна показує швидкість зміни значення функції за зміни аргументу. Оскільки число ніяк не змінюється за жодних умов - швидкість його зміни завжди дорівнює нулю.

2. Похідна змінноїдорівнює одиниці
x' = 1

Пояснення:
При кожному збільшенні аргументу (х) на одиницю значення функції (результату обчислень) збільшується на цю саму величину. Таким чином, швидкість зміни значення функції y = x точно дорівнює швидкості зміни значення аргументу.

3. Похідна змінної та множника дорівнює цьому множнику
сx = с
Приклад:
(3x)' = 3
(2x)' = 2
Пояснення:
У даному випадку, при кожній зміні аргументу функції ( х) її значення (y) зростає в зразів. Таким чином, швидкість зміни значення функції по відношенню до швидкості зміни аргументу точно дорівнює величині з.

Звідки випливає, що
(cx + b)" = c
тобто диференціал лінійної функції y=kx+b дорівнює кутовому коефіцієнтунахилу прямий (k).


4. Похідна змінної за модулемдорівнює частці цієї змінної до її модуля
|x|"= x / | x | за умови, що х ≠ 0
Пояснення:
Оскільки похідна змінної (див. формулу 2) дорівнює одиниці, похідна модуля відрізняється лише тим, що значення швидкості зміни функції змінюється на протилежне при перетині точки початку координат (спробуйте намалювати графік функції y = | x | і переконайтеся в цьому самі. Саме таке значення і повертає вираз x / | x |< 0 оно равно (-1), а когда x >0 – одиниці. Тобто при негативних значенняхзмінної х при кожному збільшенні зміні аргументу значення функції зменшується на таке саме значення, а при позитивних - навпаки, зростає, але точно на таке ж значення.

5. Похідна змінної у мірідорівнює добутку числа цього ступеня та змінної до ступеня, зменшеної на одиницю
(x c)" = cx c-1, за умови, що x c і сx c-1 визначені а з ≠ 0
Приклад:
(x 2)" = 2x
(x 3)" = 3x 2
Для запам'ятовування формули:
Знесіть ступінь змінної "вниз" як множник, а потім зменшіть самий ступінь на одиницю. Наприклад, для x 2 - двійка виявилася попереду ікса, та був зменшена ступінь (2-1=1) просто дала нам 2х. Те саме сталося для x 3 - трійку "спускаємо вниз", зменшуємо її на одиницю і замість куба маємо квадрат, тобто 3x2. Дещо "не науково", але дуже просто запам'ятати.

6.Похідна дроби 1/х
(1/х)" = - 1 / x 2
Приклад:
Оскільки дріб можна уявити як зведення в негативний ступінь
(1/x)" = (x -1)" , Тоді можна застосувати формулу з правила 5 похідних таблиці
(x -1)" = -1x -2 = - 1 / х 2

7. Похідна дроби зі змінною довільного ступеня у знаменнику
(1 / x c)" = - c/x c+1
Приклад:
(1/x2)" = - 2/x3

8. Похідне коріння(Похідна змінної під квадратним коренем)
(√x)" = 1 / (2√x)або 1/2 х -1/2
Приклад:
(√x)" = (х 1/2)" означає можна застосувати формулу з правила 5
(х 1/2)" = 1/2 х -1/2 = 1 / (2√х)

9. Похідна змінної під коренем довільного ступеня
(n√x)" = 1 / (nn√xn-1)

Урок на тему: "Що таке похідна? Визначення похідної"

Додаткові матеріали
Шановні користувачі, не забувайте залишати свої коментарі, відгуки, побажання! Усі матеріали перевірені антивірусною програмою.

Навчальні посібники та тренажери в інтернет-магазині "Інтеграл" для 10 класу
Алгебраїчні завдання з параметрами, 9–11 класи
Програмне середовище "1С: Математичний конструктор 6.1"

Що вивчатимемо:
1. Введення у поняття похідної.
2. Трохи історії.

4. Похідна на графіку функції. Геометричний зміст похідної.

6. Диференціювання функції.
7. Приклади.

Введення у поняття похідної

Існує безліч завдань абсолютно різних за змістом, але при цьому є математичні моделі, які дозволяють розраховувати на вирішення наших завдань абсолютно однаковим способом. Наприклад, якщо розглянути такі завдання як:

А) Є певний рахунок у банку, який постійно змінюється один раз на кілька днів, сума постійно зростає, потрібно знайти з якою швидкістю зростає рахунок.
б) Завод випускає цукерки, є певний постійний приріст випуску цукерок, знайти наскільки швидко збільшується приріст цукерок.
в) Швидкість руху автомобіля в деякий момент часу t, якщо відомо положення автомобіля, і він рухається прямою лінією.
г) Нам дано графік функції й у певній точці щодо нього проведена дотична, потрібно знайти тангенс кута нахилу до дотичної.
Формулювання наших завдань абсолютно різне, і, здається, що вони вирішуються абсолютно різними способами, але математики вигадали як можна вирішити всі ці завдання абсолютно однаковим способом. Було запроваджено поняття похідної.

Трохи історії

Термін похідна ввів великий математик– Лагранж, переклад на російську мову виходить з французького слова derivee, він і ввів сучасні позначення похідної які ми розглянемо пізніше.
Розглядали поняття похідної у своїх роботах Лейбніц та Ньютон, застосування нашого терміну вони знаходили у геометрії та механіки відповідно.
Трохи пізніше ми дізнаємося, що похідна визначається через межу, але існує невеликий парадокс в історії математики. Математики навчилися вважати похідну раніше, ніж запровадили поняття межі і власне зрозуміли, що таке похідна.

Нехай функція y=f(x) визначена на деякому інтервалі, що містить у собі деяку точку x0. Приріст аргументу Δx – не виходить із нашого інтервалу. Знайдемо збільшення Δy і складемо відношення Δy/Δx, якщо існує межа цього відношення при Δx, що прагне до нуля, то зазначену межу називають похідною функції y=f(x) у точці x0 і позначають f'(x0).

Спробуємо пояснити, що таке похідна не математичною мовою:
на математичною мовою: похідна - межа відношення збільшення функції до збільшення її аргументу при прагненні збільшення аргументу до нуля.
на звичайною мовою: похідна – швидкість зміни функції у точці x0.
Давайте подивимося на графіки трьох функцій:

Хлопці, як ви вважаєте, яка з кривих росте швидше?
Відповідь, здається, очевидна всім 1 крива росте швидше за інших. Ми дивимося, наскільки круто йде вгору графік функції. Інакше кажучи - наскільки швидко змінюється ордината за зміни х. Одна й та сама функція у різних точках може мати різне значенняпохідною - тобто може змінюватися швидше чи повільніше.

Похідна на графіку функції. Геометричний зміст похідної

Тепер давайте подивимося, як знайти похідну за допомогою графіків функції:


Подивимося на наш графік функції: Проведемо в точці з абсцисою x0, що стосується графіку функції. Відносна і графік нашої функції стикаються в точці А. Нам треба оцінити, наскільки круто вгору йде графік функції. Зручна величина для цього – тангенс кута нахилу дотичної.

Визначення. Похідна функції у точці x0 дорівнює тангенсу кута нахилу дотичної, проведеної до графіка функції у цій точці.

Кут нахилу дотичної вибирається як кут між дотичною та позитивним напрямком осі абсцис.
І так похідна нашої функції дорівнює:


І так похідна в точці x0 дорівнює тангенсу кута нахилу дотичної, це геометричний змістпохідною.

Алгоритм знаходження похідної функції y = f (x).
а) Зафіксувати значення x знайти f(x).
б) Знайти збільшення аргументу x+ Δx, і значення збільшення функції f(x+ Δx).
в) Знайти збільшення функції Δy= f(x+ Δx)-f(x).
г) Скласти співвідношення: Δy/Δx
д) Обчислити

Це і є похідна нашої функції.

Диференціювання функції

Якщо функції y = f (x) має похідну в точці x, то її називають диференційованою в точці x. Процес знаходження похідної називають диференціюванням функції y = f (x).
Повернемося до питання безперервності функції. Якщо функція диференційована у певній точці, тоді графік функції у цій точці можна провести дотичну, функція неспроможна мати розрив цієї точки, тоді просто не можна провести дотичну.
І так запишемо вище сказане як визначення:
Визначення. Якщо функція диференційована у точці x, вона безперервна у цій точці.
Однак, якщо функція безперервна в точці, це не означає, що вона диференційована в цій точці. Наприклад, функція y=|x| у точці x=0 безперервна, але дотичну провести не можна, а отже, і похідної не існує.

Приклади похідної

Знайти похідну функції: y=3x
Рішення:
Користуватимемося алгоритмом пошуку похідної.
1) Для фіксованого значення x значення функції y=3x
2) У точці x+ Δx, y=f(x+ Δx)=3(x+ Δx)=3x+3 Δx

3) Знайдемо збільшення функції: Δy= f(x+ Δx)-f(x)= 3x+3 Δx-3x=3



Останні матеріали розділу:

Валентин Олексійович Соболєв
Валентин Олексійович Соболєв

Заступник секретаря Ради Безпеки РФ з квітня 1999 р. (був знову затверджений на цій посаді у травні 2000 р.); народився 11 березня 1947 р. в аулі.

Сума проекцій сил на вісь
Сума проекцій сил на вісь

У тих випадках, коли на тіло діє більше трьох сил, а також коли невідомі напрямки деяких сил, зручніше під час вирішення завдань користуватися...

Чому неприйнятні уроки статевого «освіти» у школах?
Чому неприйнятні уроки статевого «освіти» у школах?

Статеве виховання в російській школі: чи потрібний нам досвід Америки? Р.Н.Федотова, Н.А.Самарец Малюки ростуть на очах, і, не встигнувши озирнутися, ми...