Геометричний зміст коефіцієнтів квадратичної функції. Квадратична функція

Даний методичний матеріалносить довідковий характер і відноситься до широкому колутим. У статті наведено огляд графіків основних елементарних функцій та розглянуто найважливіше питанняяк правильно і ШВИДКО побудувати графік. У ході вивчення вищої математикибез знання графіків основних елементарних функційдоведеться важко, тому дуже важливо згадати, як виглядають графіки параболи, гіперболи, синуса, косинуса і т.д., запам'ятати деякі значення функцій. Також мова підепро деякі властивості основних функцій.

Я не претендую на повноту та наукову обґрунтованість матеріалів, наголос буде зроблено, перш за все, на практиці – тих речах, з якими доводиться стикатися буквально на кожному кроці, у будь-якій темі вищої математики. Графіки для чайників? Можна сказати і так.

На численні прохання читачів клікабельний зміст:

Крім того, є надкороткий конспект на тему
– освойте 16 видів графіків, вивчивши шість сторінок!

Серйозно, шість, здивувався навіть сам. Цей конспектмістить покращену графіку і доступний за символічну плату, демо-версію можна подивитися. Файл зручно надрукувати, щоб графіки завжди були під рукою. Дякуємо за підтримку проекту!

І одразу починаємо:

Як правильно збудувати координатні осі?

На практиці контрольні роботи майже завжди оформлюються студентами в окремих зошитах, розлинених у клітку. Навіщо потрібна картата розмітка? Адже роботу, загалом, можна зробити і на листах А4. А клітка необхідна якраз для якісного та точного оформлення креслень.

Будь-яке креслення графіка функції починається з координатних осей.

Креслення бувають двомірними та тривимірними.

Спочатку розглянемо двовимірний випадок декартової прямокутної системи координат:

1) Чортимо координатні осі. Вісь називається віссю абсцис , а вісь – віссю ординат . Рисувати їх завжди намагаємося акуратно і не криво. Стрілки теж не повинні нагадувати бороду Папи Карло.

2) Підписуємо осі великими літерами«ікс» та «ігрок». Не забуваємо підписувати осі.

3) Задаємо масштаб по осях: малюємо нуль і дві одиниці. При виконанні креслення найзручніший і найпоширеніший масштаб: 1 одиниця = 2 клітинки (креслення зліва) – по можливості дотримуйтеся саме його. Однак іноді трапляється так, що креслення не вміщається на зошит - тоді масштаб зменшуємо: 1 одиниця = 1 клітинка (креслення праворуч). Рідко, але буває, що масштаб креслення доводиться зменшувати (чи збільшувати) ще більше

НЕ ТРЕБА «строчити з кулемету» …-5, -4, -3, -1, 0, 1, 2, 3, 4, 5, ….Бо координатна площина – не пам'ятник Декартові, а студент – не голуб. Ставимо нульі дві одиниці по осях. Іноді замістьодиниць зручно "засікти" інші значення, наприклад, "двійку" на осі абсцис і "трійку" на осі ординат - і ця система (0, 2 і 3) теж однозначно задасть координатну сітку.

Передбачувані розміри креслення краще оцінити ще до побудови креслення. Так, наприклад, якщо в завданні потрібно накреслити трикутник з вершинами , , , то зрозуміло, що популярний масштаб 1 одиниця = 2 клітинки не підійде. Чому? Подивимося на точку - тут доведеться відміряти п'ятнадцять сантиметрів вниз, і, очевидно, що креслення не вмоститься (або вмоститься ледве) на зошит. Тому одночасно вибираємо дрібніший масштаб 1 одиниця = 1 клітинка.

До речі, про сантиметри і зошити. Чи правда, що у 30 зошитових клітинах міститься 15 сантиметрів? Відміряйте у зошиті для інтересу 15 сантиметрів лінійкою. У СРСР, можливо, це було правдою… Цікаво відзначити, що якщо відміряти ці сантиметри по горизонталі та вертикалі, то результати (у клітинах) будуть різними! Строго кажучи, сучасні зошити не картаті, а прямокутні. Можливо, це здасться нісенітницею, але, креслити, наприклад, коло циркулем при таких розкладах дуже незручно. Якщо чесно, в такі моменти починаєш замислюватися про правоту товариша Сталіна, який відправляв у табори за халтуру на виробництві, не кажучи вже про вітчизняне автомобілебудування, літаки, що падають, або вибухові електростанції.

До речі про якість, або коротка рекомендація щодо канцтоварів. На сьогоднішній день більшість зошитів у продажу, поганих слівне кажучи, повне гомно. Тому, що вони промокають, причому не тільки від гелевих, а й від кулькових ручок! На папері заощаджують. Для оформлення контрольних робітрекомендую використовувати зошити Архангельського ЦПК (18 аркушів, клітинка) або «П'ятірочка», щоправда, вона дорожча. Ручку бажано вибрати гелеву, навіть найдешевший китайський гелевий стрижень набагато краще, ніж кулькова ручка, яка маже, то б'є папір. Єдиною «конкурентоспроможною» кульковою ручкоюна моїй пам'яті є Еріх Краузе. Вона пише чітко, красиво та стабільно – що з повним стрижнем, що із практично порожнім.

Додатково: бачення прямокутної системи координат очима аналітичної геометріївисвітлюється у статті Лінійна (не) залежність векторів. Базис векторів, детальну інформаціюпро координатні чверті можна знайти у другому параграфі уроку Лінійні нерівності.

Тривимірний випадок

Тут майже так само.

1) Чортимо координатні осі. Стандарт: вісь аплікат – спрямована вгору, вісь – спрямована вправо, вісь – ліворуч вниз суворопід кутом 45 градусів.

2) Підписуємо осі.

3) Задаємо масштаб по осях. Масштаб по осі – вдвічі менше, ніж масштаб по інших осях. Також зверніть увагу, що на правому кресленні я використав нестандартну «засічку» по осі (про таку можливість вже згадано вище). На мій погляд, так точніше, швидше і естетичніше – не потрібно під мікроскопом вишукувати середину клітини і «ліпити» одиницю впритул до початку координат.

При виконанні тривимірного креслення знову ж таки – віддавайте пріоритет масштабу
1 одиниця = 2 клітини (креслення зліва).

Навіщо потрібні всі ці правила? Правила існують у тому, щоб їх порушувати. Чим я зараз і займусь. Справа в тому, що наступні креслення статті будуть виконані мною в Екселі, і координатні осі будуть виглядати некоректно з погляду правильного оформлення. Я б міг накреслити всі графіки від руки, але креслити їх насправді жах як небажання Ексель їх накреслить набагато точніше.

Графіки та основні властивості елементарних функцій

Лінійна функціязадається рівнянням. Графік лінійної функцій є пряму. Для того, щоб побудувати пряму, достатньо знати дві точки.

Приклад 1

Побудувати графік функції. Знайдемо дві точки. Як одну з точок вигідно вибрати нуль.

Якщо то

Беремо ще якусь точку, наприклад, 1.

Якщо то

При оформленні завдань координати точок зазвичай зводяться до таблиці:


А самі значення розраховуються усно чи на чернетці, калькуляторі.

Дві точки знайдені, виконаємо креслення:


При оформленні креслення завжди підписуємо графіки.

Не зайвим буде згадати окремі випадки лінійної функції:


Зверніть увагу, як я розташував підписи, підписи не повинні допускати різночитань щодо креслення. У даному випадкувкрай небажано було поставити підпис поруч із точкою перетину прямих, або праворуч унизу між графіками.

1) Лінійна функція виду () називається прямою пропорційністю. Наприклад, . Графік прямої пропорційності завжди проходить через початок координат. Таким чином, побудова прямої спрощується - достатньо знайти лише одну точку.

2) Рівняння виду задає пряму, паралельну осі, зокрема, сама вісь задається рівнянням. Графік функції будується відразу, без будь-яких точок. Тобто запис слід розуміти так: «гравець завжди дорівнює -4, при будь-якому значенні ікс».

3) Рівняння виду задає пряму, паралельну осі, зокрема, сама вісь задається рівнянням. Графік функції також будується одразу. Запис слід розуміти так: «ікс завжди, за будь-якого значення ігор, дорівнює 1».

Дехто запитає, ну навіщо згадувати 6 клас?! Так-то воно, може і так, тільки за роки практики я зустрів добрий десяток студентів, яких ставило в глухий кут завдання побудови графіка на кшталт або .

Побудова прямий – найпоширеніша дія у виконанні креслень.

Пряма лінія детально розглядається в курсі аналітичної геометрії, і бажаючі можуть звернутись до статті Рівняння прямої на площині.

Графік квадратичної, кубічної функції, графік багаточлена

Парабола. Графік квадратичної функції () являє собою параболу. Розглянемо знаменитий випадок:

Згадуємо деякі властивості функції.

Отже, рішення нашого рівняння: - Саме в цій точці і знаходиться вершина параболи. Чому це так, можна дізнатися з теоретичної статті про похідну та уроку про екстремуми функції . А поки що розраховуємо відповідне значення «гравець»:

Таким чином, вершина знаходиться в точці

Тепер знаходимо інші точки, при цьому нахабно користуємося симетричністю параболи. Слід зауважити, що функція не є парноюПроте, симетричність параболи ніхто не скасовував.

В якому порядку знаходити інші точки, гадаю, буде зрозуміло з підсумкової таблиці:

Даний алгоритм побудови образно можна назвати "човником" або принципом "туди-сюди" з Анфісою Чеховою.

Виконаємо креслення:


З розглянутих графіків згадується ще один корисна ознака:

Для квадратичної функції () справедливо наступне:

Якщо , то гілки параболи спрямовані нагору.

Якщо , то гілки параболи спрямовані вниз.

Поглиблені знання про криву можна отримати на уроці гіпербола і парабола.

Кубічна парабола задається функцією. Ось знайоме зі школи креслення:


Перерахуємо основні властивості функції

Графік функції

Він є однією з гілок параболи. Виконаємо креслення:


Основні властивостіфункції:

В даному випадку вісь є вертикальною асимптотою для графіка гіперболи при .

Буде ГРУБИЙ помилкою, якщо при оформленні креслення з недбалості допустити перетин графіка з асимптотою .

Також односторонні межі говорять нам про те, що гіпербола не обмежена зверхуі не обмежена знизу.

Досліджуємо функцію на нескінченності: тобто якщо ми почнемо йти по осі вліво (або вправо) на нескінченність, то «ігреки» струнким кроком будуть нескінченно близьконаближатися до нуля, і, відповідно, гілки гіперболи нескінченно близьконаближатися до осі.

Таким чином, вісь є горизонтальною асимптотою для графіка функції, якщо «ікс» прагне плюс або мінус нескінченності.

Функція є непарний, отже, гіпербола симетрична щодо початку координат. Цей факточевидний з креслення, крім того, легко перевіряється аналітично: .

Графік функції виду () являє собою дві гілки гіперболи.

Якщо , то гіпербола розташована в першій та третій координатних чвертях(Див. малюнок вище).

Якщо , то гіпербола розташована у другій та четвертій координатних чвертях..

Зазначену закономірність місця проживання гіперболи неважко проаналізувати з погляду геометричних перетворень графіків.

Приклад 3

Побудувати праву гілку гіперболи

Використовуємо поточковий метод побудови, при цьому значення вигідно підбирати так, щоб ділилося націло:

Виконаємо креслення:


Не важко побудувати і ліву гілку гіперболи, тут якраз допоможе непарність функції. Грубо кажучи, в таблиці поточкового побудови подумки додаємо до кожного мінус, ставимо відповідні точкиі прокреслюємо другу гілку.

Детальну геометричну інформаціюпро розглянуту лінію можна знайти у статті Гіперболу та параболу.

Графік показової функції

У даному параграфія одразу розгляну експоненційну функцію, оскільки у завданнях вищої математики у 95% випадків зустрічається саме експонента.

Нагадую, що це ірраціональне число: , це знадобиться при побудові графіка, який, власне, я без церемоній і побудую. Трьох точок, мабуть, вистачить:

Графік функції поки дамо спокій, про нього пізніше.

Основні властивості функції:

Принципово так само виглядають графіки функцій, і т.д.

Повинен сказати, що другий випадок зустрічається на практиці рідше, але він зустрічається, тому я вважав за потрібне включити його до цієї статті.

Графік логарифмічної функції

Розглянемо функцію з натуральним логарифмом.
Виконаємо крапковий креслення:

Якщо забули, що таке логарифм, будь ласка, зверніться до шкільних підручників.

Основні властивості функції:

Область визначення:

Область значень: .

Функція не обмежена зверху: , Нехай і повільно, але гілка логарифму йде на нескінченність.
Досліджуємо поведінку функції поблизу нуля праворуч: . Таким чином, вісь є вертикальною асимптотою для графіка функції при «ікс», що прагне до нуля праворуч.

Обов'язково потрібно знати та пам'ятати типове значення логарифму: .

Принципово так само виглядає графік логарифму на підставі : , , ( десятковий логарифмна підставі 10) і т.д. При цьому, що більша підстава, то більш пологім буде графік.

Випадок розглядати не будемо, щось я не пригадаю, коли останній разбудував графік із такою підставою. Та й логарифм начебто в завданнях вищої математики дуже рідкісний гість.

На закінчення параграфа скажу ще про один факт: Експонентна функціяі логарифмічна функція – це дві взаємно зворотні функції . Якщо придивитися до графіка логарифму, то можна побачити, що це - та сама експонента, просто вона розташована трохи по-іншому.

Графіки тригонометричних функцій

З чого починаються тригонометричні муки у школі? Правильно. З синуса

Побудуємо графік функції

Ця лініяназивається синусоїдою.

Нагадую, що «пі» – це ірраціональне число: і в тригонометрії від нього в очах рябить.

Основні властивості функції:

Ця функціяє періодичноїз періодом. Що це означає? Подивимося на відрізок. Зліва і праворуч від нього нескінченно повторюється такий самий шматок графіка.

Область визначення: , тобто для будь-якого значення ікс існує значення синуса.

Область значень: . Функція є обмеженою: тобто всі «ігреки» сидять строго у відрізку .
Такого не буває: або, точніше, буває, але вказані рівняннянемає рішення.

Що таке парабола знають, мабуть, усі. А ось як її правильно, грамотно використовувати при вирішенні різних практичних завдань, Розберемося нижче.

Спочатку позначимо основні поняття, що дає цьому терміну алгебра та геометрія. Розглянемо все можливі видицього графіка.

Дізнаємося всі основні характеристики цієї функції. Зрозуміємо основипобудови кривої (геометрія). Навчимося знаходити вершину, інші основні величини графіка цього типу.

Дізнаємося: як правильно будується крива за рівнянням, на що треба звернути увагу. Подивимося головне практичне застосуванняцієї унікальної величини у житті людини.

Що таке парабола і як вона виглядає

Алгебра: під цим терміном розуміється графік квадратичної функції.

Геометрія: це крива другого порядку, що має низку певних особливостей:

Канонічне рівняння параболи

На малюнку зображено прямокутна системакоординат (XOY), екстремум, напрямок гілок креслення функції вздовж осі абсцис.

Канонічне рівняння має вигляд:

y 2 = 2 * p * x,

де коефіцієнт p – фокальний параметр параболи (AF).

В алгебрі воно запишеться інакше:

y = a x 2 + b x + c (відомий шаблон: y = x 2).

Властивості та графік квадратичної функції

Функція має віссю симетрії та центром (екстремум). Область визначення – всі значення осі абсцис.

Область значень функції – (-∞, М) або (М, +∞) залежить від напрямку гілок кривої. Параметр М тут означає величину функції вершині лінії.

Як визначити, куди спрямовані гілки параболи

Щоб знайти напрямок кривої такого типу із виразу, потрібно визначити знак перед першим параметром алгебраїчного виразу. Якщо а 0 0, то вони спрямовані вгору. Якщо навпаки – вниз.

Як знайти вершину параболи за формулою

Знаходження екстремуму є основним етапом під час вирішення безлічі практичних завдань. Звичайно, можна відкрити спеціальні онлайн калькуляториАле краще це вміти робити самому.

Як її визначити? Є спеціальна формула. Коли b дорівнює 0, треба шукати координати цієї точки.

Формули знаходження вершини:

  • x 0 = -b/(2*a);
  • y0 = y(x0).

приклад.

Є функція у = 4 * x 2 + 16 * x - 25. Знайдемо вершини цієї функції.

Для такої лінії:

  • х = -16/(2*4) = -2;
  • y = 4 * 4 - 16 * 2 - 25 = 16 - 32 - 25 = -41.

Отримуємо координати вершини (-2, -41).

Зміщення параболи

Класичний випадок, коли у квадратичній функції y = a x 2 + b x + c, другий та третій параметри дорівнюють 0, а = 1 – вершина знаходиться в точці (0; 0).

Рух осями абсцис або ординат обумовлено зміною параметрів b і c відповідно.Зсув лінії на площині буде здійснюватися рівно на кількість одиниць, чому дорівнює значення параметра.

приклад.

Маємо: b=2, c=3.

Це означає, що класичний вид кривої зрушить на 2 одиничні відрізки по осі абсцис і на 3 - по осі ординат.

Як будувати параболу за квадратним рівнянням

Школярам важливо засвоїти, як правильно накреслити параболу за заданими параметрами.

Аналізуючи вирази та рівняння, можна побачити наступне:

  1. Точка перетину шуканої лінії з вектором ординат матиме значення, рівну величиніс.
  2. Всі точки графіка (осі абсцис) будуть симетричні щодо основного екстремуму функції.

Крім того, місця перетину з ОХ можна знайти, знаючи дискримінант (D) такої функції:

D = (b 2 - 4 * a * c).

Для цього потрібно прирівняти вираз до нуля.

Наявність коренів параболи залежить від результату:

  • D 0 , то х 1,2 = (-b ± D 0,5) / (2 * a);
  • D = 0, то х 1, 2 = -b/(2*a);
  • D 0 0, то немає точок перетину з вектором ОХ.

Отримуємо алгоритм побудови параболи:

  • визначити напрямок гілок;
  • знайти координати вершини;
  • знайти перетин з віссю ординат;
  • знайти перетин з віссю абсцис.

приклад 1.

Дана функція у = х 2 - 5 * х + 4. Необхідно побудувати параболу. Діємо за алгоритмом:

  1. а = 1, отже, гілки спрямовані нагору;
  2. координати екстремуму: х = - (-5) / 2 = 5/2; y = (5/2) 2 - 5 * (5/2) + 4 = -15/4;
  3. з віссю ординат перетинається у значенні у = 4;
  4. знайдемо дискримінант: D = 25 – 16 = 9;
  5. шукаємо коріння:
  • Х 1 = (5 + 3)/2 = 4; (4, 0);
  • Х 2 = (5 – 3) / 2 = 1; (1, 0).

приклад 2.

Для функції у = 3 * х 2 - 2 * х - 1 потрібно побудувати параболу. Діємо за наведеним алгоритмом:

  1. а = 3, отже, гілки спрямовані нагору;
  2. координати екстремуму: х = - (-2) / 2 * 3 = 1/3; y = 3 * (1/3) 2 - 2 * (1/3) - 1 = -4/3;
  3. з віссю у перетинатиметься у значенні у = -1;
  4. знайдемо дискримінант: D = 4 + 12 = 16. Значить коріння:
  • Х 1 = (2 + 4)/6 = 1; (1; 0);
  • Х 2 = (2 – 4) / 6 = -1/3; (-1/3; 0).

За отриманими точками можна побудувати параболу.

Директриса, ексцентриситет, фокус параболи

Виходячи з канонічного рівняння, фокус F має координати (p/2, 0).

Пряма АВ – директриса (свого роду хорда параболи певної довжини). Її рівняння: х = -р/2.

Ексцентриситет (константа) = 1.

Висновок

Ми розглянули тему, яку вивчають школярі у середній школі. Тепер ви знаєте, дивлячись на квадратичну функцію параболи, як знайти її вершину, в яку сторону будуть спрямовані гілки, чи є зміщення по осях, і, маючи алгоритм побудови, зможете накреслити її графік.

Функція виду, де називається квадратичною функцією.

Графік квадратичної функції – парабола.


Розглянемо випадки:

I ВИПАДК, КЛАСИЧНА ПАРАБОЛА

Тобто , ,

Для побудови заповнюємо таблицю, підставляючи значення x формулу:


Зазначаємо точки (0; 0); (1; 1); (-1; 1) і т.д. на координатної площини(чим із меншим кроком ми беремо значення х (в даному випадку крок 1), і чим більше беремо значень х, тим плавніше буде крива), отримуємо параболу:


Неважко помітити, що й ми візьмемо випадок , , , тобто , ми отримаємо параболу, симетричну щодо осі (ох). Переконатись у цьому нескладно, заповнивши аналогічну таблицю:


II ВИПАД, «a» ВІДМІННО ВІД ОДИНИЦІ

Що ж буде, якщо ми братимемо , , ? Як зміниться поведінка параболи? При title="Rendered by QuickLaTeX.com" height="20" width="55" style="vertical-align: -5px;"> парабола изменит форму, она “похудеет” по сравнению с параболой (не верите – заполните соответствующую таблицу – и убедитесь сами):!}


На першій картинці (див. вище) добре видно, що точки з таблиці для параболи (1; 1), (-1; 1) трансформувалися в точки (1; 4), (1; -4), тобто при тих же значення ординату кожної точки помножилася на 4. Це станеться з усіма ключовими точками вихідної таблиці. Аналогічно міркуємо у випадках картинок 2 та 3.

А при параболі «стане ширше» параболи:


Давайте підсумуємо:

1)Знак коефіцієнта відповідає за напрямок гілок. При title="Rendered by QuickLaTeX.com" height="14" width="47" style="vertical-align: 0px;"> ветви направлены вверх, при - вниз. !}

2) Абсолютна величина коефіцієнта (модуля) відповідає за “розширення”, “стиснення” параболи. Чим більше , тим уже парабола, чим менше |a|, тим ширше парабола.

ІІІ ВИПАД, З'ЯВЛЯЄТЬСЯ «С»

Тепер давайте введемо в гру (тобто розглядаємо випадок, коли), розглядатимемо параболи виду. Неважко здогадатися (ви завжди можете звернутися до таблиці), що відбуватиметься зміщення параболи вздовж осі вгору або вниз залежно від знака:



IV ВИПАД, З'ЯВЛЯЄТЬСЯ «b»

Коли ж парабола "відірветься" від осі і, нарешті, "гулятиме" по всій координатній площині? Коли перестане бути рівним.

Тут для побудови параболи нам знадобиться формула для обчислення вершини: , .

Так ось у цій точці (як у точці (0; 0)) нової системикоординат) ми будуватимемо параболу, що вже нам під силу. Якщо маємо справу з нагодою, то від вершини відкладаємо один одиничний відрізоквправо, один вгору, – отримана точка – наша (аналогічно крок вліво, крок вгору – наша точка); якщо маємо справу з , наприклад, то від вершини відкладаємо один одиничний відрізок праворуч, два - вгору і т.д.

Наприклад, вершина параболи:

Тепер головне усвідомити, що в цій вершині ми будуватимемо параболу за шаблоном параболи, адже в нашому випадку.

При побудові параболи після знаходження координат вершини дужезручно враховувати такі моменти:

1) парабола обов'язково пройде через точку . Справді, підставивши формулу x=0, отримаємо, що . Тобто ордината точки перетину параболи з віссю (оу) це . У прикладі (вище), парабола перетинає вісь ординат у точці , оскільки .

2) віссю симетрії параболи є пряма , тому всі точки параболи будуть симетричні щодо неї. У нашому прикладі ми відразу беремо точку (0; -2) і будуємо їй симетричну щодо осі симетрії параболи, отримаємо точку (4; -2), через яку буде проходити парабола.

3) Прирівнюючи до ми дізнаємося точки перетину параболи з віссю (ох). Для цього вирішуємо рівняння. Залежно від дискримінанта, отримуватимемо одну (, ), дві (title="Rendered by QuickLaTeX.com)" height="14" width="54" style="vertical-align: 0px;">, ) или нИсколько () точек пересечения с осью (ох) !} . У попередньому прикладі у нас корінь з дискримінанта - не ціле число, при побудові нам особливо немає сенсу знаходити коріння, але ми бачимо чітко, що дві точки перетину з віссю (ох) у нас будуть (бо title="Rendered by QuickLaTeX.com" height="14" width="54" style="vertical-align: 0px;">), хотя, в общем, это видно и без дискриминанта.!}

Отже, давайте виробимо

Алгоритм для побудови параболи, якщо вона задана у вигляді

1) визначаємо напрямок гілок (а>0 – вгору, a<0 – вниз)

2) знаходимо координати вершини параболи за формулою , .

3) знаходимо точку перетину параболи з віссю (оу) по вільному члену , будуємо точку, симетричну даної щодо осі симетрії параболи (треба зауважити, буває, що цю точку невигідно відзначати, наприклад, тому, що значення велике ... пропускаємо цей пункт ...)

4) У знайденій точці – вершині параболи (як і точці (0;0) нової системи координат) будуємо параболу . Якщо title="Rendered by QuickLaTeX.com" height="20" width="55" style="vertical-align: -5px;">, то парабола становится у’же по сравнению с , если , то парабола расширяется по сравнению с !}

5) Знаходимо точки перетину параболи з віссю (оу) (якщо вони самі “не спливли”), вирішуючи рівняння

Приклад 1


Приклад 2


Зауваження 1.Якщо ж парабола спочатку нам задана у вигляді де - деякі числа (наприклад, ), то побудувати її буде ще легше, тому що нам вже задані координати вершини . Чому?

Візьмемо квадратний тричлені виділимо в ньому повний квадрат: Подивіться, ось ми і отримали, що . Ми з вами раніше називали вершину параболи, тобто тепер.

Наприклад, . Зазначаємо на площині вершину параболи, розуміємо, що гілки спрямовані вниз, парабола розширена (відносно). Тобто виконуємо пункти 1; 3; 4; 5 з алгоритму побудови параболи (див. вище).

Примітка 2.Якщо парабола задана у вигляді, подібному до цього (тобто представлений у вигляді добутку двох лінійних множників), то відразу видно точки перетину параболи з віссю (ох). У разі – (0;0) і (4;0). В іншому ж діємо згідно з алгоритмом, розкривши дужки.

- — [] Квадратна функція Функція виду y = ax2 + bx + c (a ? 0). Графік К.Ф. — парабола, вершина якої має координати [b/2a, (b2 4ac) /4a], при а>0 гілки параболи…

КВАДРАТИЧНА ФУНКЦІЯ, математична ФУНКЦІЯзначення якої залежить від квадрата незалежної змінної, х, і задається, відповідно, квадратичним МНОГОЧЛЕНОМ, наприклад: f(x) = 4х2 + 17 або f(x) = х2 + 3х + 2. див. також КВАДРАТНЕ РІВНЯННЯ … Науково-технічний енциклопедичний словник

Квадратична функція - Квадратична функція- Функція виду y = ax2 + bx + c (a ≠ 0). Графік К.Ф. — парабола, вершина якої має координати [b/2a, (b2 4ac) /4a], при а> 0 гілки параболи спрямовані вгору, при a< 0 –вниз… …

- (quadratic) Функція, що має наступний вигляд: у=ах2+bх+с, де a≠0 і найвищий ступіньх – квадрат. Квадратне рівняння у=ах2 +bх+с=0 може бути вирішене з використанням наступної формули: х= –b+ √ (b2–4ac) /2а. Це коріння є дійсним … Економічний словник

Афінно квадратичною функцією на афінному просторі S називається будь-яка функція Q: S→K, що має у векторизованій формі вигляд Q(x)=q(x)+l(x)+c, де q квадратична функція, l лінійна функція, з константа. Зміст 1 Перенесення початку відліку 2… … Вікіпедія

Афінно квадратичною функцією на афінному просторі називається будь-яка функція, що має у векторизованій формі вигляд, де симетрична матриця, лінійна функція, константа. Зміст … Вікіпедія

Функція на векторному просторі, що задається однорідним многочленом другого ступеня координат вектора. Зміст 1 Визначення 2 Пов'язані визначення… Вікіпедія

- - функція, яка в теорії статистичних рішеньхарактеризує втрати при неправильному прийнятті рішень на основі даних, що спостерігаються. Якщо вирішується завдання оцінки параметра сигналу на тлі перешкод, то функція втрат є мірою розбіжності.

цільова функція- - [Я.Н.Лугинський, М.С.Фезі Жилінська, Ю.С.Кабіров. Англо-російський словник з електротехніки та електроенергетики, Москва, 1999 р.] Цільова функція В екстремальних завданнях - функція, мінімум або максимум якої потрібно знайти. Це… … Довідник технічного перекладача

Цільова функція- в екстремальних завданнях функція, мінімум чи максимум якої потрібно знайти. Це ключове поняттяоптимальне програмування. Знайшовши екстремум Ц.Ф. і, отже, визначивши значення керованих змінних, які щодо нього… … Економіко-математичний словник

Книги

  • Набір таблиць. Математика. Графіки функцій (10 таблиць), . Навчальний альбом із 10 аркушів. Лінійна функція. Графічне та аналітичне завданняфункцій. Квадратична функція. Перетворення графіка квадратичної функції. Функція y = sinx. Функція y=cosx.
  • Найважливіша функція шкільної математики – квадратична – у завданнях та рішеннях, Петров Н.Н.. Квадратична функція є основною функцією шкільного курсуматематики. Це не дивно. З одного боку - простота цієї функції, з другого - глибокий зміст. Багато завдань…

Квадратичною функцією називається функція виду:
y=a*(x^2)+b*x+c,
де а - коефіцієнт при старшому ступені невідомої х,
b - коефіцієнт при невідомій х,
а з – вільний член.
Графіком квадратичної функції є крива, яка називається параболою. Загальний виглядпараболи представлений малюнку нижче.

Рис.1 Загальний вид параболи.

є декілька різних способівпобудови графіка квадратичної функції. Ми розглянемо основний і найзагальніший із них.

Алгоритм побудови графіка квадратичної функції y=a*(x^2)+b*x+c

1. Побудувати систему координат, відзначити одиничний відрізок та підписати координатні осі.

2. Визначити напрямок гілок параболи (вгору чи вниз).
І тому треба подивитися на знак коефіцієнта a. Якщо плюс - то гілки спрямовані вгору, якщо мінус - гілки спрямовані вниз.

3. Визначити координату x вершини параболи.
Для цього слід використовувати формулу Хвершини = -b/2*a.

4. Визначити координату у вершини параболи.
Для цього підставити в рівняння Вершини = a*(x^2)+b*x+c замість х, знайдене в попередній крокЗначення Хвершини.

5. Нанести отриману точку на графік та провести через неї вісь симетрії, паралельно координатній осі Оу.

6. Знайти точки перетину графіка із віссю Ох.
Для цього потрібно вирішити квадратне рівняння a*(x^2)+b*x+c = 0 одним з відомих способів. Якщо рівняння немає речових коренів, то графік функції не перетинає вісь Ох.

7. Знайти координати точки перетину графіка із віссю Оу.
Для цього підставляємо рівняння значення х = 0 і обчислюємо значення у. Відзначаємо цю та симетричну їй точку на графіку.

8. Знаходимо координати довільної точки А(х,у)
Для цього вибираємо довільне значення координати х і підставляємо його в наше рівняння. Отримуємо значення у цій точці. Нанести крапку на графік. А також відзначити на графіку точку, симетричну точкуА(х,у).

9. З'єднати отримані точки на графіку плавною лінією і продовжити графік крайні точкидо кінця координатної осі. Підписати графік або на виносці, або, якщо дозволяє місце, уздовж графіка.

Приклад побудови графіка

Як приклад, побудуємо графік квадратичної функції заданою рівнянням y=x^2+4*x-1
1. Малюємо координатні осі, підписуємо їх та відзначаємо одиничний відрізок.
2. Значення коефіцієнтів а = 1, b = 4, c = -1. Оскільки а=1, що більше нулягілки параболи спрямовані вгору.
3. Визначаємо координату Х вершини параболи Хвершини = -b/2*a = -4/2*1 = -2.
4. Визначаємо координату У вершини параболи
Увершини = a * (x ^ 2) + b * x + c = 1 * ((-2) ^ 2) + 4 * (-2) - 1 = -5.
5. Відзначаємо вершину та проводимо вісь симетрії.
6. Знаходимо точки перетину графіка квадратичної функції із віссю Ох. Вирішуємо квадратне рівняння x^2+4*x-1=0.
х1=-2-√3 х2 = -2+√3. Зазначаємо отримані значення на графіку.
7. Знаходимо точки перетину графіка із віссю Оу.
х = 0; у=-1
8. Вибираємо довільну точку B. Нехай має координату х=1.
Тоді у = (1) ^ 2 + 4 * (1) -1 = 4.
9. З'єднуємо отримані точки та підписуємо графік.



Останні матеріали розділу:

Як правильно заповнити шкільний щоденник
Як правильно заповнити шкільний щоденник

Сенс читацького щоденника в тому, щоб людина змогла згадати, коли і які книги вона читала, який їх сюжет. Для дитини це може бути своєю...

Рівняння площини: загальне, через три точки, нормальне
Рівняння площини: загальне, через три точки, нормальне

Рівняння площини. Як скласти рівняння площини? Взаємне розташування площин. Просторова геометрія не набагато складніше...

Старший сержант Микола Сиротінін
Старший сержант Микола Сиротінін

5 травня 2016, 14:11 Микола Володимирович Сиротинін (7 березня 1921 року, Орел – 17 липня 1941 року, Кричев, Білоруська РСР) – старший сержант артилерії. У...