Спрощення виразів алгебри онлайн. Як спростити вираз алгебри

За допомогою будь-якої мови можна висловити ту саму інформацію різними словамита оборотами. Не є винятком і математична мова. Але те саме вираз можна еквівалентним чином записати по-різному. І в деяких ситуаціях один із записів є більш простим. Про спрощення висловлювань ми й поговоримо на цьому уроці.

Люди спілкуються на різних мовах. Для нас важливим порівнянням є пара «російська - математична мова». Одну й ту саму інформацію можна повідомити різними мовами. Але, крім цього, її можна і однією мовою вимовити по-різному.

Наприклад: «Петя товаришує з Васею», «Вася товаришує з Петею», «Петя з Васею друзі». Сказано по-різному, але те саме. За будь-якою з цих фраз ми зрозуміли б, про що йдеться.

Давайте подивимося таку фразу: «Хлопчик Петя і хлопчик Вася дружать». Ми зрозуміли, про що йде мова. Проте нам не подобається, як звучить ця фраза. Чи не можемо ми її спростити, сказати те саме, але простіше? «Хлопчик і хлопчик» - можна один раз сказати: «Хлопчики Петя і Вася дружать».

Хлопчики ... Хіба за іменами не зрозуміло, що вони не дівчатка. Прибираємо «хлопчики»: «Петя та Вася дружать». А слово «дружать» можна замінити на «друзі»: «Петя та Вася – друзі». У результаті першу, довгу негарну фразу замінили еквівалентним висловлюванням, яке простіше сказати та простіше зрозуміти. Ми спростили цю фразу. Спростити - означає сказати простіше, але не втратити, не спотворити сенс.

У математичною мовоювідбувається приблизно те саме. Одне й те саме можна сказати, записати по-різному. Що означає спростити вираз? Це означає, що з вихідного висловлювання існує безліч еквівалентних виразів, тобто тих, що означають те саме. І з усієї цієї множини ми повинні вибрати найпростіше, на наш погляд, чи найпридатніше для наших подальших цілей.

Наприклад, розглянемо числове вираз . Йому еквівалентне буде.

Також буде еквівалентно першим двом: .

Виходить, що ми спростили наші вирази і знайшли найкоротший еквівалентний вираз.

Для числових виразів завжди потрібно виконувати всі дії та отримувати еквівалентний вираз у вигляді одного числа.

Розглянемо приклад літерного виразу . Очевидно, що простіше буде.

У разі спрощення буквених виразів необхідно виконати всі дії, які можливі.

Чи завжди потрібно спрощувати вираз? Ні, іноді нам зручніше буде еквівалентний, але довший запис.

приклад: від числа потрібно відібрати число .

Обчислити можна, але якби перше число було представлено своїм еквівалентним записом: , то обчислення були миттєвими: .

Тобто спрощене вираження не завжди нам вигідне для подальших обчислень.

Проте дуже часто ми стикаємося із завданням, яке так і звучить «спростити вираз».

Спростити вираз: .

Рішення

1) Виконаємо дії у перших та у других дужках: .

2) Обчислимо твори: .

Очевидно, останній вираз має простіший вигляд, ніж початковий. Ми його спростили.

Щоб спростити вираз, його необхідно замінити на еквівалентне (рівне).

Для визначення еквівалентного виразу необхідно:

1) виконати всі можливі дії,

2) користуватися властивостями додавання, віднімання, множення та поділу для спрощення обчислень.

Властивості додавання та віднімання:

1. Переміщувальна властивістьдодавання: від перестановки доданків сума змінюється.

2. Сполучна властивістьскладання: щоб до суми двох чисел додати третє число, можна до першого числа додати суму другого та третього числа.

3. Властивість віднімання суми з числа: щоб відняти суму з числа, можна віднімати кожен доданок окремо.

Властивості множення та поділу

1. Переміщувальна властивість множення: від перестановки множників твір не змінюється.

2. Сполучна властивість: щоб помножити число на добуток двох чисел, можна спочатку помножити його на перший множник, а потім отриманий добуток помножити на другий множник.

3. Розподільча властивість множення: щоб число помножити на суму, потрібно його помножити на кожен доданок окремо.

Подивимося, як ми насправді робимо обчислення в умі.

Обчисліть:

Рішення

1) Уявимо як

2) Представимо перший множник як суму розрядних доданківі виконаємо множення:

3) можна уявити як і виконати множення:

4) Замінимо перший множник еквівалентною сумою:

Розподільний закон можна використовувати і в зворотний бік: .

Виконайте дії:

1) 2)

Рішення

1) Для зручності можна скористатися розподільчим законом, тільки використовувати його у зворотний бік – винести загальний множникза дужки.

2) Винесемо за дужки загальний множник

Необхідно купити лінолеум на кухню та передпокій. Площа кухні - , вітальні - . Є три види лінолеумів: по , і за . Скільки буде коштувати кожен з трьох видівлінолеуму? (Мал. 1)

Мал. 1. Ілюстрація до умови завдання

Рішення

Спосіб 1. Можна окремо знайти, скільки грошей потрібно на купівлю лінолеуму на кухню, а потім у передпокій та отримані твори скласти.

У п'ятому столітті до нашої ери давньогрецький філософ Зенон Елейський сформулював свої знамениті апорії, найвідомішою з яких є апорія "Ахілес і черепаха". Ось як вона звучить:

Припустимо, Ахіллес біжить у десять разів швидше, ніж черепаха, і знаходиться позаду неї на відстані тисячу кроків. За той час, за який Ахіллес пробіжить цю відстань, черепаха в той самий бік проповзе сто кроків. Коли Ахіллес пробіжить сто кроків, черепаха проповзе ще десять кроків, і таке інше. Процес продовжуватиметься до нескінченності, Ахіллес так ніколи і не наздожене черепаху.

Ця міркування стала логічним шоком для всіх наступних поколінь. Аристотель, Діоген, Кант, Гегель, Гільберт... Усі вони однак розглядали апорії Зенона. Шок виявився настільки сильним, що " ... дискусії продовжуються і в даний час, прийти до спільної думки про сутність парадоксів науковій спільнотіпоки що не вдалося... до дослідження питання залучалися математичний аналіз, теорія множин, нові фізичні та філософські підходи; жоден із них не став загальновизнаним вирішенням питання.[Вікіпедія, "Апорії Зенона"]. Всі розуміють, що їх дурять, але ніхто не розуміє, в чому полягає обман.

З погляду математики, Зенон у своїй апорії наочно продемонстрував перехід від величини до . Цей перехід передбачає застосування замість постійних. Наскільки я розумію, математичний апаратзастосування змінних одиниць виміру або ще розроблено, або його застосовували до апорії Зенона. Застосування нашої звичайної логіки приводить нас у пастку. Ми, за інерцією мислення, застосовуємо постійні одиниці виміру часу до оберненої величини. З фізичної точки зору це виглядає як уповільнення часу до його повної зупинки в момент, коли Ахілес порівняється з черепахою. Якщо час зупиняється, Ахілес вже не може перегнати черепаху.

Якщо перевернути звичну нам логіку, все стає на свої місця. Ахіллес біжить з постійною швидкістю. Кожен наступний відрізок його шляху вдесятеро коротший за попередній. Відповідно, і час, що витрачається на його подолання, у десять разів менший за попередній. Якщо застосовувати поняття "нескінченність" у цій ситуації, то правильно буде говорити "Ахіллес нескінченно швидко наздожене черепаху".

Як уникнути цієї логічної пастки? Залишатися в постійних одиницяхвимірювання часу і переходити до зворотним величинам. Мовою Зенона це виглядає так:

За той час, за який Ахіллес пробіжить тисячу кроків, черепаха в той самий бік проповзе сто кроків. За наступний інтервал часу рівний першомуАхіллес пробіжить ще тисячу кроків, а черепаха проповзе сто кроків. Тепер Ахіллес на вісімсот кроків випереджає черепаху.

Цей підхід адекватно визначає реальність без жодних логічних парадоксів. Але це не повне рішенняпроблеми. На Зеноновську апорію "Ахіллес і черепаха" дуже схоже твердження Ейнштейна про непереборність швидкості світла. Цю проблему нам ще належить вивчити, переосмислити та вирішити. І рішення потрібно шукати не в нескінченно великих числах, а в одиницях виміру.

Інша цікава апорія Зенона оповідає про стрілу, що летить.

Летяча стріла нерухома, тому що в кожний момент часу вона спочиває, а оскільки вона спочиває в кожний момент часу, вона завжди спочиває.

У цій апорії логічний парадоксдолається дуже просто - достатньо уточнити, що в кожний момент часу стріла, що летить, спочиває в різних точках простору, що, власне, і є рухом. Тут слід зазначити інший момент. За однією фотографією автомобіля на дорозі неможливо визначити ані факт його руху, ані відстань до нього. Для визначення факту руху автомобіля потрібні дві фотографії, зроблені з однієї точки в різні моментичасу, але з них не можна визначити відстань. Для визначення відстані до автомобіля потрібні дві фотографії, зроблені з різних точокпростору в один момент часу, але за ними не можна визначити факт руху (звісно, ​​ще потрібні додаткові дані для розрахунків, тригонометрія вам на допомогу). На що я хочу звернути особливу увагуТак це на те, що дві точки в часі і дві точки в просторі - це різні речі, які не варто плутати, адже вони надають різні можливості для дослідження.

середа, 4 липня 2018 р.

Дуже добре відмінності між безліччю та мультимножиною описані у Вікіпедії. Дивимося.

Як бачите, "у множині не може бути двох ідентичних елементів", але якщо ідентичні елементи у множині є, така множина називається "мультимножина". Подібна логіка абсурду розумним істотамне зрозуміти ніколи. Це рівень папуг, що говорять, і дресованих мавп, у яких розум відсутній від слова "зовсім". Математики виступають у ролі звичайних дресирувальників, проповідуючи нам свої абсурдні ідеї.

Колись інженери, які збудували міст, під час випробувань мосту перебували у човні під мостом. Якщо міст обрушувався, бездарний інженер гинув під уламками свого творіння. Якщо міст витримував навантаження, талановитий інженер будував інші мости.

Як би математики не ховалися за фразою "чур, я в будиночку", точніше "математика вивчає абстрактні поняттяЄ одна пуповина, яка нерозривно пов'язує їх з реальністю. Цією пуповиною є гроші. математичну теоріюмножин до самих математиків.

Ми дуже добре вчили математику і зараз сидимо у касі, видаємо зарплатню. Ось приходить до нас математик по свої гроші. Відраховуємо йому всю суму та розкладаємо у себе на столі на різні стопки, в які складаємо купюри однієї гідності. Потім беремо з кожної стопки по одній купюрі та вручаємо математику його "математичну безліч зарплати". Пояснюємо математику, що решта купюр він отримає тільки тоді, коли доведе, що безліч без однакових елементів не дорівнює безлічі з однаковими елементами. Ось тут почнеться найцікавіше.

Насамперед спрацює логіка депутатів: "до інших це застосовувати можна, до мене - низьзя!". Далі почнуться запевнення нас у тому, що на купюрах однакової гідності є різні номери купюр, а отже, їх не можна вважати однаковими елементами. Добре, відраховуємо зарплату монетами – на монетах немає номерів. Тут математик почне судомно згадувати фізику: на різних монетах є різна кількістьбруду, кристалічна структурата розташування атомів у кожної монети унікально...

А тепер у мене самий цікаве питання: де проходить та грань, за якою елементи мультимножини перетворюються на елементи множини і навпаки? Такої межі не існує – все вирішують шамани, наука тут і близько не валялася.

Ось дивіться. Ми відбираємо футбольні стадіони із однаковою площею поля. Площа полів однакова – значить у нас вийшло мультимножина. Але якщо розглядати назви цих стадіонів - у нас виходить безліч, адже назви різні. Як бачите, той самий набір елементів одночасно є і безліччю, і мультимножиною. Як правильно? А ось тут математик-шаман-шуллер дістає з рукава козирний туз і починає нам розповідати або про множину, або про мультимножину. У будь-якому разі він переконає нас у своїй правоті.

Щоб зрозуміти, як сучасні шамани оперують теорією множин, прив'язуючи її до реальності, достатньо відповісти на одне питання: чим елементи однієї множини відрізняються від елементів іншої множини? Я вам покажу, без усяких "мислиме як єдине ціле" чи "не мислиме як єдине ціле".

неділя, 18 березня 2018 р.

Сума цифр числа - це танець шаманів з бубном, який до математики жодного стосунку не має. Так, на уроках математики нас вчать знаходити суму цифр числа та користуватися нею, але на те вони й шамани, щоб навчати нащадків своїм навичкам та премудростям, інакше шамани просто вимруть.

Вам потрібні докази? Відкрийте Вікіпедію та спробуйте знайти сторінку "Сума цифр числа". Її немає. Немає в математиці формули, якою можна знайти суму цифр будь-якого числа. Адже цифри - це графічні символи, з яких записуємо числа і мовою математики завдання звучить так: "Знайти суму графічних символів, що зображують будь-яке число". Математики це завдання вирішити що неспроможні, тоді як шамани - елементарно.

Давайте розберемося, що як ми робимо у тому, щоб знайти суму цифр заданого числа. Тож нехай у нас є число 12345. Що потрібно зробити для того, щоб знайти суму цифр цього числа? Розглянемо всі кроки по порядку.

1. Записуємо число на папірці. Що ми зробили? Ми перетворили число на графічний символ числа. Це не математична дія.

2. Розрізаємо одну отриману картинку на кілька картинок, що містять окремі цифри. Розрізання картинки - це математична дія.

3. Перетворюємо окремі графічні символи на числа. Це не математична дія.

4. Складаємо отримані числа. Це вже математика.

Сума цифр числа 12345 дорівнює 15. Ось такі ось "курси крою та шиття" від шаманів застосовують математики. Але це ще не все.

З погляду математики немає значення, у якій системі числення ми записуємо число. Так ось, у різних системахобчислення сума цифр однієї й тієї числа буде різною. У математиці система числення вказується як нижнього індексу праворуч від числа. З більшим числом 12345 я не хочу голову морочити, розглянемо число 26 зі статті про . Запишемо це число у двійковій, вісімковій, десятковій та шістнадцятковій системах числення. Ми не розглядатимемо кожен крок під мікроскопом, це ми вже зробили. Подивимося результат.

Як бачите, у різних системах числення сума цифр одного й того ж числа виходить різною. Подібний результат до математики жодного стосунку не має. Це все одно, що при визначенні площі прямокутника в метрах і сантиметрах ви отримували б різні результати.

Нуль у всіх системах числення виглядає однаково і суми цифр немає. Це ще один аргумент на користь того, що . Питання математикам: як у математиці позначається те, що є числом? Що для математиків нічого, крім чисел, не існує? Для шаманів я можу таке припустити, але для вчених – ні. Реальність складається не лише з чисел.

Отриманий результат слід як доказ те, що системи числення є одиницями виміру чисел. Адже ми не можемо порівнювати числа з різними одиницямивимірювання. Якщо одні й самі дії з різними одиницями виміру однієї й тієї величини призводять до різних результатів після їх порівняння, це має нічого спільного з математикою.

Що таке справжня математика? Це коли результат математичної діїне залежить від величини числа, що застосовується одиниці виміру і від того, хто цю дію виконує.

Табличка на дверях Відчиняє двері і каже:

Ой! А це хіба не жіночий туалет?
- Дівчино! Це лабораторія з вивчення індефільної святості душ під час вознесіння на небеса! Німб зверху і стрілка вгору. Який ще туалет?

Жіночий... Німб зверху та стрілочка вниз – це чоловічий.

Якщо у вас перед очима кілька разів на день мелькає ось такий витвір дизайнерського мистецтва,

Тоді не дивно, що у своєму автомобілі ви раптом виявляєте дивний значок:

Особисто я роблю над собою зусилля, щоб в людині, яка кавала (одна картинка), побачити мінус чотири градуси (композиція з декількох картинок: знак мінус, цифра чотири, позначення градусів). І я не вважаю цю дівчину дурою, не знає фізику. Просто у неї дугою стереотип сприйняття графічних образів. І математики нас цього постійно навчають. Ось приклад.

1А - це не "мінус чотири градуси" або "один а". Це "какая людина" або число "двадцять шість" у шістнадцятковій системі числення. Ті люди, які постійно працюють у цій системі числення, автоматично сприймають цифру та букву як один графічний символ.

Серед різних виразів, які розглядаються в алгебрі, важливе місцезаймають суми одночленів. Наведемо приклади таких виразів:
\(5a^4 - 2a^3 + 0,3a^2 - 4,6a + 8 \)
\(xy^3 - 5x^2y + 9x^3 - 7y^2 + 6x + 5y - 2 \)

Суму одночленів називають багаточленом. Доданки в многочлен називають членами многочлена. Одночлени також відносять до многочленів, вважаючи одночлен, що складається з одного члена.

Наприклад, багаточлен
\(8b^5 - 2b \cdot 7b^4 + 3b^2 - 8b + 0,25b \cdot (-12)b + 16 \)
можна спростити.

Представимо всі складові у вигляді одночленів стандартного вигляду:
\(8b^5 - 2b \cdot 7b^4 + 3b^2 - 8b + 0,25b \cdot (-12)b + 16 = \)
\(= 8b^5 - 14b^5 + 3b^2 -8b -3b^2 + 16 \)

Наведемо в отриманому багаточлені такі члени:
\(8b^5 -14b^5 +3b^2 -8b -3b^2 + 16 = -6b^5 -8b + 16 \)
Вийшов багаточлен, усі члени якого є одночленами стандартного виду, причому серед них немає подібних. Такі багаточлени називають багаточленами стандартного вигляду.

За ступінь багаточленастандартного виду приймають найбільший із ступенів його членів. Так, двочлен \(12a^2b - 7b \) має третій ступінь, а тричлен \(2b^2 -7b + 6 \) - другий.

Зазвичай члени многочленів стандартного виду, що містять одну змінну, мають у своєму розпорядженні в порядку зменшення показників її ступеня. Наприклад:
\(5x - 18x^3 + 1 + x^5 = x^5 - 18x^3 + 5x + 1 \)

Суму кількох багаточленів можна перетворити (спростити) на багаточлен стандартного виду.

Іноді члени багаточлена потрібно розбити на групи, укладаючи кожну групу на дужки. Оскільки укладання в дужки - це перетворення, зворотне розкриття дужок, то легко сформулювати правила розкриття дужок:

Якщо перед дужками ставиться знак «+», то члени, які укладаються у дужки, записуються з тими самими знаками.

Якщо перед дужками ставиться знак «-», то члени, які укладаються в дужки, записуються протилежними знаками.

Перетворення (спрощення) твору одночлена та багаточлена

За допомогою розподільної властивостімноження можна перетворити (спростити) на багаточлен твір одночлена та багаточлена. Наприклад:
\(9a^2b(7a^2 - 5ab - 4b^2) = \)
\(= 9a^2b \cdot 7a^2 + 9a^2b \cdot (-5ab) + 9a^2b \cdot (-4b^2) = \)
\(= 63a^4b - 45a^3b^2 - 36a^2b^3 \)

Твір одночлена та багаточлена тотожно дорівнює сумі творів цього одночлена та кожного з членів багаточлена.

Цей результат зазвичай формулюють як правила.

Щоб помножити одночлен на багаточлен, треба помножити цей одночлен на кожен із членів багаточлена.

Ми вже не раз використовували це правило для множення на суму.

Добуток багаточленів. Перетворення (спрощення) твору двох багаточленів

Взагалі, добуток двох багаточленів тотожно дорівнює сумі добутку кожного члена одного багаточлена і кожного члена іншого.

Зазвичай користуються наступним правилом.

Щоб помножити багаточлен на багаточлен, треба кожен член одного помножити на кожен член іншого і скласти отримані твори.

Формули скороченого множення. Квадрати суми, різниці та різниця квадратів

З деякими виразами в алгебраїчних перетворенняхдоводиться мати справу частіше, ніж із іншими. Мабуть, найчастіше зустрічаються вирази \((a + b)^2, \;(a - b)^2 \) і \(a^2 - b^2 \), тобто квадрат суми, квадрат різниці і різницю квадратів. Ви помітили, що назви зазначених виразів як би не закінчені, наприклад, \((a + b)^2 \) - це, звичайно, не просто квадрат суми, а квадрат суми а і b. Однак квадрат суми а і b зустрічається не так часто, як правило, замість букв а і b в ньому виявляються різні, іноді досить складні вирази.

Вирази \((a + b)^2, \; (a - b)^2 \) неважко перетворити (спростити) на багаточлени стандартного виду, власне, ви вже зустрічалися з таким завданням при множенні багаточленів:
\((a + b)^2 = (a + b)(a + b) = a^2 + ab + ba + b^2 = \)
\(= a^2 + 2ab + b^2 \)

Отримані тотожності корисно запам'ятати та застосовувати без проміжних викладок. Допомагають цьому короткі словесні формулювання.

\((a + b)^2 = a^2 + b^2 + 2ab \) - Квадрат суми дорівнює суміквадратів та подвоєного твору.

\((a - b)^2 = a^2 + b^2 - 2ab \) - Квадрат різниці дорівнює сумі квадратів без подвоєного добутку.

\(a^2 - b^2 = (a - b)(a + b) \) - Різниця квадратів дорівнює добутку різниці на суму.

Ці три тотожності дозволяють у перетвореннях замінювати свої ліві частини правими і назад - праві частини лівими. Найважче при цьому - побачити відповідні вирази та зрозуміти, чим у них замінені змінні а та b. Розглянемо кілька прикладів використання формул скороченого множення.

Вирази, перетворення виразів

Ступінні вирази (вирази зі ступенями) та їх перетворення

У цій статті ми поговоримо про перетворення виразів зі ступенями. Спочатку ми зупинимося на перетвореннях, які виконуються з виразами будь-яких видів, у тому числі й статечними виразами, таких як розкриття дужок, приведення подібних доданків. А далі розберемо перетворення, властиві саме виразам зі ступенями: робота з основою та показником ступеня, використання властивостей ступенів тощо.

Навігація на сторінці.

Що таке статечні вирази?

Термін «статечні висловлювання» практично не зустрічається шкільних підручникахматематики, але досить часто фігурує у збірниках завдань, особливо призначених підготовки до ЄДІ та ОГЭ, наприклад, . Після аналізу завдань, у яких потрібно виконати будь-які дії зі статечними виразами, стає зрозуміло, що під статечними виразами розуміють вирази, що містять у своїх записах ступеня. Тому для себе можна прийняти таке визначення:

Визначення.

Ступінні вирази- Це вирази, що містять ступеня.

Наведемо приклади статечних виразів. Причому будемо їх представляти відповідно до того, як відбувається розвиток поглядів на ступінь натуральним показникомдо ступеня із дійсним показником.

Як відомо, спочатку відбувається знайомство зі ступенем числа з натуральним показником, на цьому етапі з'являються перші найпростіші статечні вирази типу 3 2 , 7 5 +1 , (2+1) 5 , (−0,1) 4 , 3·a 2 −a+a 2 , x 3−1 , (a 2) 3 тощо.

Трохи пізніше вивчається ступінь числа з цілим показником, що призводить до появи статечних виразів із цілими негативними ступенями, на кшталт наступних: 3 −2 , , a −2 +2·b −3 +c 2 .

У старших класах знову повертаються до ступенів. Там вводиться ступінь з раціональним показником, що тягне за собою появу відповідних статечних виразів: , , і т.п. Нарешті, розглядаються ступеня з ірраціональними показниками і їх висловлювання: , .

Перерахованими статечними виразами справа не обмежується: далі в показник ступеня проникає змінна, і виникають, наприклад, такі вирази 2 x 2 +1 або . А після знайомства з , починають зустрічатися вирази зі ступенями і логарифмами, наприклад, x 2 lgx −5 x lgx .

Отже, ми розібралися з питанням, що є статечними виразами. Далі вчитимемося перетворювати їх.

Основні види перетворень статечних виразів

Зі статечними виразами можна виконувати будь-які з основних тотожних перетворень виразів. Наприклад, можна розкривати дужки, замінювати числові виразиїх значеннями, наводити подібні доданкиі т.д. Природно, при цьому варто дотримуватися прийнятого порядку виконання дій. Наведемо приклади.

приклад.

Обчисліть значення статечного виразу 23 · (42-12).

Рішення.

Відповідно до порядку виконання дій спочатку виконуємо дії у дужках. Там, по-перше, замінюємо ступінь 4 2 її значенням 16 (за потреби дивіться ), і по-друге, обчислюємо різницю 16-12=4 . Маємо 2 3 ·(4 2 −12)=2 3 ·(16−12)=2 3 ·4.

В отриманому вираженні замінюємо ступінь 2 3 її значенням 8 після чого обчислюємо твір 8 · 4 = 32 . Це і є потрібне значення.

Отже, 2 3 ·(4 2 −12)=2 3 ·(16−12)=2 3 ·4=8·4=32.

Відповідь:

2 3 · (4 2 -12) = 32 .

приклад.

Спростити вирази зі ступенями 3·a 4 ·b −7 −1+2·a 4 ·b −7.

Рішення.

Вочевидь, що це вираз містить подібні доданки 3·a 4 ·b −7 і 2·a 4 ·b −7 , і ми можемо навести їх: .

Відповідь:

3·a 4 ·b −7 −1+2·a 4 ·b −7 =5·a 4 ·b −7 −1.

приклад.

Подайте вираз зі ступенями у вигляді твору.

Рішення.

Впоратися з поставленим завданням дозволяє подання числа 9 у вигляді ступеня 3 2 і подальше використання формули скороченого множення різниця квадратів:

Відповідь:

Також існує ряд тотожних перетворень, властивих саме статечним виразам. Далі ми їх і розберемо.

Робота з основою та показником ступеня

Зустрічаються ступеня, в основі та/або показнику яких знаходяться не просто числа або змінні, а деякі вирази. Як приклад наведемо записи (2+0,3·7) 5−3,7 та (a·(a+1)−a 2) 2·(x+1) .

При роботі з подібними виразами можна як вираз у підставі ступеня, так і вираз у показнику замінити тотожно рівним виразомна ОДЗ його змінних. Іншими словами, ми можемо за відомими нам правилами окремо перетворювати основу ступеня, і окремо – показник. Зрозуміло, що в результаті цього перетворення вийде вираз, що тотожно дорівнює вихідному.

Такі перетворення дозволяють спрощувати вирази зі ступенями або досягати інших потрібних нам цілей. Наприклад, у згаданому вище статечному вираженні (2+0,3·7) 5-3,7 можна виконати дії з числами на підставі та показнику, що дозволить перейти до ступеня 4,1 1,3 . А після розкриття дужок і приведення подібних доданків на підставі ступеня (a·(a+1)−a 2) 2·(x+1) ми отримаємо статечний вираз. простого вигляду a 2 · (x + 1) .

Використання властивостей ступенів

Один із головних інструментів перетворення виразів зі ступенями – це рівності, що відображають . Нагадаємо основні із них. Для будь-яких позитивних чисел a і b і довільних дійсних чисел r і s справедливі такі властивості ступенів:

  • a r · a s = a r + s;
  • a r: as = a r−s;
  • (a b) r = a r b r ;
  • (a:b) r = r:b r ;
  • (a r) s = a r · s.

Зауважимо, що з натуральних, цілих, і навіть позитивних показниках ступеня обмеження числа a і b може бути менш строгими. Наприклад, для натуральних чисел m і n рівність a m ·a n =a m+n вірно як для позитивних a , але й негативних, й у a=0 .

У школі основну увагу при перетворенні статечних виразів зосереджено саме на вмінні вибрати відповідну властивість і правильно її застосувати. При цьому основи ступенів зазвичай позитивні, що дозволяє використовувати властивості ступенів без обмежень. Це ж стосується і перетворення виразів, що містять в основах ступенів змінні – область допустимих значеньзмінних зазвичай така, що у ній підстави приймають лише позитивні значеннящо дозволяє вільно використовувати властивості ступенів. Взагалі, потрібно постійно ставити питання, а чи можна в даному випадкузастосовувати будь-яку властивість ступенів, адже неакуратне використання властивостей може призводити до звуження ОДЗ та інших неприємностей. Детально і на прикладах ці моменти розібрані у статті перетворення виразів з використанням властивостей ступенів. Тут ми обмежимося розглядом кількох простих прикладів.

приклад.

Подайте вираз a 2,5 ·(a 2) −3:a −5,5 у вигляді ступеня з основою a .

Рішення.

Спочатку другий множник (a 2) −3 перетворимо за якістю зведення ступеня на ступінь: (a 2) −3 =a 2·(−3) =a −6. Вихідний статечний вираз при цьому набуде вигляду a 2,5 ·a −6:a −5,5 . Очевидно, залишається скористатися властивостями множення та поділу ступенів з однаковою основою, маємо
a 2,5 ·a −6:a −5,5 =
a 2,5−6:a −5,5 =a −3,5:a −5,5 =
a −3,5−(−5,5) =a 2 .

Відповідь:

a 2,5 ·(a 2) −3:a −5,5 =a 2.

Властивості ступенів при перетворенні статечних виразів використовуються як зліва направо, так і праворуч наліво.

приклад.

Знайти значення статечного виразу.

Рішення.

Рівність (a b) r = a r b r , застосоване праворуч наліво, дозволяє від вихідного виразу перейти до твору виду і далі . А при множенні ступенів з однаковими підставамипоказники складаються: .

Можна було виконувати перетворення вихідного виразу та інакше:

Відповідь:

.

приклад.

Дано статечний вираз a 1,5 −a 0,5 −6 , введіть нову змінну t=a 0,5 .

Рішення.

Ступінь a 1,5 можна як a 0,5·3 і далі з урахуванням якості ступеня ступеня (a r) s =a r·s , застосованого праворуч наліво, перетворити її до виду (a 0,5) 3 . Таким чином, a 1,5 −a 0,5 −6=(a 0,5) 3 −a 0,5 −6. Тепер легко ввести нову змінну t=a 0,5 одержуємо t 3 −t−6 .

Відповідь:

t 3 −t−6 .

Перетворення дробів, що містять ступеня

Ступінні вирази можуть містити дроби зі ступенями або являти собою такі дроби. До таких дробів повною мірою застосовні будь-які з основних перетворень дробів, які притаманні дробам будь-якого виду. Тобто, дроби, які містять ступеня, можна скорочувати, приводити до нового знаменника, працювати окремо з їх чисельником та окремо зі знаменником тощо. Для ілюстрації сказаних слів розглянемо розв'язання кількох прикладів.

приклад.

Спростити статечний вираз .

Рішення.

Дане статечне вираз являє собою дріб. Попрацюємо з її чисельником та знаменником. У чисельнику розкриємо дужки і спростимо отриманий після цього вираз, використовуючи властивості ступенів, а в знаменнику наведемо такі складові:

І ще змінимо знак знаменника, помістивши мінус перед дробом: .

Відповідь:

.

Приведення дробів, що містять ступеня, до нового знаменника проводиться аналогічно до приведення до нового знаменника. раціональних дробів. При цьому знаходиться додатковий множник і виконується множення на нього чисельника і знаменника дробу. Виконуючи цю дію, варто пам'ятати, що приведення до нового знаменника може спричинити звуження ОДЗ. Щоб цього не відбувалося, потрібно, щоб додатковий множник не звертався в нуль за жодних значень змінних з ОДЗ змінних для вихідного виразу.

приклад.

Наведіть дроби до нового знаменника: а) до знаменника a, б) до знаменника.

Рішення.

а) У цьому випадку досить просто збагнути, який додатковий множник допомагає досягти потрібного результату. Це множник a 0,3, тому що a 0,7 · 0,3 = a 0,7 +0,3 = a. Зауважимо, що на області допустимих значень змінної a (це є безліч усіх позитивних дійсних чисел) ступінь a 0,3 не звертається в нуль, тому ми маємо право виконати множення чисельника та знаменника заданого дробуна цей додатковий множник:

б) Придивившись уважніше до знаменника, можна виявити, що

і множення цього виразу дасть суму кубів і , тобто, . А це і є новим знаменником, до якого нам потрібно привести вихідний дріб.

Так ми знайшли додатковий множник. На ділянці допустимих значень змінних x і y вираз не звертається в нуль, тому ми можемо помножити на нього чисельник і знаменник дробу:

Відповідь:

а) , б) .

У скороченні дробів, що містять ступеня, також немає нічого нового: чисельник і знаменник представляються у вигляді деякої кількості множників, і скорочуються однакові множники чисельника та знаменника.

приклад.

Скоротіть дріб: а) б) .

Рішення.

а) По-перше, чисельник і знаменник можна скоротити на чисел 30 і 45, який дорівнює 15 . Також, очевидно, можна виконати скорочення на x 0,5+1 та на . Ось що ми маємо:

б) У цьому випадку однакових множників у чисельнику та знаменнику відразу не видно. Щоб отримати їх, доведеться виконати попередні перетворення. У разі вони полягають у розкладанні знаменника на множники по формулі різниці квадратів:

Відповідь:

а)

б) .

Приведення дробів до нового знаменника та скорочення дробів в основному використовується для виконання дій із дробами. Дії виконуються за відомими правилами. При складанні (відніманні) дробів, вони наводяться до спільному знаменнику, після чого складаються (віднімаються) чисельники, а знаменник залишається тим самим. У результаті виходить дріб, чисельник якого є твір чисельників, а знаменник – твір знаменників. Розподіл на дріб є множення на дріб, зворотний їй.

приклад.

Виконайте дії .

Рішення.

Спочатку виконуємо віднімання дробів, що знаходяться в дужках. Для цього наводимо їх до спільного знаменника, який є , після чого віднімаємо чисельники:

Тепер множимо дроби:

Очевидно, можливе скорочення на ступінь x 1/2 після якого маємо .

Ще можна спростити статечний вираз у знаменнику, скориставшись формулою різниця квадратів: .

Відповідь:

приклад.

Спростіть статечний вираз .

Рішення.

Очевидно, цей дрібможна скоротити на (x 2,7 +1) 2 , це дає дріб . Зрозуміло, що ще треба щось зробити зі ступенями ікса. Для цього перетворимо отриманий дріб у твір. Це дає можливість скористатися властивістю поділу ступенів з однаковими підставами: . І на закінчення процесу переходимо від останнього творудо дробу.

Відповідь:

.

І ще додамо, що можна і в багатьох випадках бажано множники з негативними показникамиступеня переносити з чисельника у знаменник або зі знаменника до чисельника, змінюючи знак показника. Такі перетворення часто спрощують подальші дії. Наприклад, статечний вираз можна замінити на .

Перетворення виразів з корінням та ступенями

Часто у виразах, в яких потрібно провести деякі перетворення, разом зі ступенями з дробовими показникамиє і коріння. Щоб перетворити подібний вираздо потрібного вигляду, в більшості випадків достатньо перейти тільки до коренів або тільки до ступенів. Але оскільки працювати зі ступенями зручніше, зазвичай переходять від коріння до ступенів. Однак, здійснювати такий перехід доцільно тоді, коли ОДЗ змінних для вихідного виразу дозволяє замінити коріння ступенями без необхідності звертатися до модуля або розбивати ОДЗ на кілька проміжків (це ми докладно розібрали у статті перехід від коренів до ступенів і назад). вводиться ступінь з ірраціональним показникомщо дозволяє говорити і про ступінь з довільним дійсним показником. На цьому етапі у школі починає вивчатися показова функція , Яка аналітично задається ступенем, на основі якої знаходиться число, а в показнику - змінна. Так ми стикаємося зі статечними виразами, що містять числа на підставі ступеня, а в показнику - вирази зі змінними, і природно виникає необхідність виконання перетворень таких виразів.

Слід сказати, що перетворення виразів зазначеного видузазвичай доводиться виконувати при вирішенні показових рівняньі показових нерівностей , і це перетворення досить прості. У переважній кількості випадків вони базуються на властивостях ступеня і націлені переважно на те, щоб надалі ввести нову змінну. Продемонструвати їх нам дозволить рівняння 5 2·x+1 −3·5 x ·7 x −14·7 2·x−1 =0.

По-перше, ступеня, у показниках яких перебуває сума деякої змінної (або вирази зі змінними) та числа, замінюються творами. Це відноситься до першого і останнього доданків вирази з лівої частини:
5 2·x ·5 1 −3·5 x ·7 x −14·7 2·x ·7 −1 =0,
5·5 2·x −3·5 x ·7 x −2·7 2·x =0.

Далі виконується розподіл обох частин рівності на вираз 7 2 · x, яке на ОДЗ змінної x для вихідного рівняння набуває тільки позитивних значень (це стандартний прийомвирішення рівнянь такого виду, зараз не про нього, так що зосередьте увагу на наступних перетвореннях виразів зі ступенями):

Тепер скорочуються дроби зі ступенями, що дає .

Нарешті, ставлення ступенів з однаковими показникамизамінюється ступенями відносин, що призводить до рівняння , яке рівносильне . Зроблені перетворення дозволяють ввести нову змінну, що зводить рішення вихідного показового рівняннядо розв'язання квадратного рівняння

  • І. В. Бойков, Л. Д. РомановаЗбірник завдань для підготовки до ЄДІ. Ч. 1. Пенза 2003 року.
  • § 1 Поняття спрощення буквеного виразу

    У цьому занятті познайомимося з поняттям «подібні доданки» і на прикладах навчимося виконувати приведення подібних доданків, спрощуючи таким чином буквені вирази.

    З'ясуємо сенс поняття «спрощення». Слово «спрощення» утворене від слова «спростити». Спростити означає зробити простим, простіше. Отже, спростити буквене вираз - це зробити його коротшим, з мінімальною кількістюдій.

    Розглянемо вираз 9х + 4х. Це буквене вираз, що є сумою. Доданки тут представлені у вигляді творів числа та літери. Числовий множник таких доданків називається коефіцієнтом. У цьому виразі коефіцієнтами будуть числа 9 і 4. Зверніть увагу, множник, представлений буквою - однаковий в обох складових цієї суми.

    Згадаймо розподільчий закон множення:

    Щоб помножити суму на число, можна помножити на це число кожне доданок та одержані твори скласти.

    У загальному виглядізаписується так: (а + b) ∙ с = ​​ac + bc.

    Цей закон виконується в обидві сторони ac + bc = (а + b) ∙ с

    Застосуємо його до нашого буквеного виразу: сума творів 9х і 4х дорівнює добутку, перший множник якого дорівнює сумі 9 і 4, другий множник - х.

    9 + 4 = 13, виходить 13х.

    9х + 4х = (9 + 4) х = 13х.

    Замість трьох дій у виразі залишилася одна дія – множення. Отже, ми зробили наше літерне вираз простіше, тобто. спростили його.

    § 2 Приведення подібних доданків

    Доданки 9х і 4х відрізняються лише своїми коефіцієнтами - такі доданки називають подібними. Літерна частина у подібних доданків однакова. До подібних доданків відносяться також числа та рівні доданки.

    Наприклад, у виразі 9а + 12 - 15 подібними доданками будуть числа 12 і -15, а в сумі твори 12 і 6а, числа 14 і твори 12 і 6а (12 ∙ 6а + 14 + 12 ∙ 6а) подібними будуть рівні доданки, подані творами 12 та 6а.

    Важливо відзначити, що доданки, у яких рівні коефіцієнти, а буквені множники різні, подібними не є, хоча до них корисно іноді застосувати розподільчий закон множення, наприклад, сума творів 5х і 5у дорівнює добутку 5 і суми х і у

    5х + 5y = 5 (x + y).

    Спростимо вираз -9а + 15а - 4 + 10.

    Подібними доданками у разі є доданки -9а і 15а, оскільки вони відрізняються лише своїми коефіцієнтами. Літерний множнику них однаковий, також подібними є доданки -4 і 10, оскільки є числами. Складаємо подібні доданки:

    9а + 15а - 4 + 10

    9а + 15а = 6а;

    Отримуємо: 6а+6.

    Спрощуючи вираз, ми знаходили суми подібних доданків, в математиці це називають приведенням подібних доданків.

    Якщо приведення подібних доданків викликає складне становище, можна придумати до них слова і складати предмети.

    Наприклад, розглянемо вираз:

    На кожну букву беремо свій предмет: b-яблуко, с-груша, тоді вийде: 2 яблука мінус 5 груш плюс 8 груш.

    Чи можемо з яблук відняти груші? Звичайно, ні. А ось до мінус 5 груш додати 8 груш можемо.

    Наведемо подібні доданки -5 груш + 8 груш. У подібних доданків буквена частина однакова, тому при приведенні подібних доданків достатньо виконати додавання коефіцієнтів і до результату дописати буквену частину:

    (-5 + 8) груш – вийде 3 груші.

    Повертаючись до нашого буквеного виразу, маємо -5 с + 8 с = 3 с. Таким чином, після приведення подібних доданків отримаємо вираз 2b + 3с.

    Отже, на цьому занятті Ви познайомилися з поняттям «подібні доданки» та навчилися спрощувати буквені вирази шляхом приведення подібних доданків.

    Список використаної литературы:

    1. Математика. 6 клас: поурочні планидо підручника І.І. Зубарєвої, А.Г. Мордковича// автор-упорядник Л.А. Топілін. Мнемозин 2009.
    2. Математика. 6 клас: підручник для учнів загальноосвітніх установ. І.І.Зубарєва, А.Г. - М.: Мнемозіна, 2013.
    3. Математика. 6 клас: підручник для загальноосвітніх установ/Г.В. Дорофєєв, І.Ф. Шаригін, С.Б. Суворова та ін/за редакцією Г.В. Дорофєєва, І.Ф. Шаригіна; Рос.акад.наук, Рос.акад.освіти. М.: "Освіта", 2010.
    4. Математика. 6 клас: навч.для загальноосвітніх установ/Н.Я. Віленкін, В.І. Жохов, А.С. Чесноков, С.І. Шварцбурд. - М.: Мнемозіна, 2013.
    5. Математика. 6 кл.: Підручник / Г.К. Муравін, О.В. Муравіні. - М.: Дрофа, 2014.

    Використані зображення:



    Останні матеріали розділу:

    З ким воював тарас бульба
    З ким воював тарас бульба

    Повість Гоголя «Тарас Бульба» – розповідь про запорозьких козаків – дуже цікавий шкільний твір. Якщо ви не читали, чи хочете згадати...

    Новий повний довідник для підготовки до ОДЕ
    Новий повний довідник для підготовки до ОДЕ

    Опубліковано в Вивчення матеріалу без допомоги репетиторів та досвідчених вчителів має не тільки низку переваг, а й пов'язане з певними...

    Що таке наука які її особливості
    Що таке наука які її особливості

    Навчальні запитання. ЛЕКЦІЯ 1. ВСТУП НА НАВЧАЛЬНУ ДИСЦИПЛІНУ «ОСНОВИ НАУКОВИХ ДОСЛІДЖЕНЬ» 1. Поняття науки, її цілі та завдання. 2. Класифікація...