Фізичний зміст логарифму. Натуральний логарифм, функція ln x

Логарифм числа b (b > 0) на підставі a (a > 0, a ≠ 1)- Показник ступеня, в який потрібно звести число a, щоб отримати b.

Логарифм числа b на підставі 10 можна записати як lg(b), а логарифм на основі e (натуральний логарифм) – ln(b).

Часто використовується при вирішенні задач з логарифмами:

Властивості логарифмів

Існує чотири основні властивості логарифмів.

Нехай a > 0, a ≠ 1, x > 0 та y > 0.

Властивість 1. Логарифм твору

Логарифм твору дорівнює сумілогарифмів:

log a (x ⋅ y) = log a x + log a y

Властивість 2. Логарифм приватного

Логарифм приватного дорівнює різницілогарифмів:

log a (x / y) = log a x - log a y

Властивість 3. Логарифм ступеня

Логарифм ступеня дорівнює творуступеня на логарифм:

Якщо ступеня знаходиться основа логарифму, то діє інша формула:

Властивість 4. Логарифм кореня

Даною властивість можна отримати з властивості логарифм ступеня, так як корінь n-ого ступеня дорівнює ступеню 1/n:

Формула переходу від логарифму в одній підставі до логарифму при іншій основі

Ця формула також часто застосовується при вирішенні різних завданьна логарифми:

Окремий випадок:

Порівняння логарифмів (нерівності)

Нехай у нас є 2 функції f(x) та g(x) під логарифмами з однаковими основами і між ними стоїть знак нерівності:

Щоб їх порівняти, потрібно спочатку подивитися на основу логарифмів a:

  • Якщо a > 0, то f(x) > g(x) > 0
  • Якщо 0< a < 1, то 0 < f(x) < g(x)

Як вирішувати задачі з логарифмами: приклади

Завдання з логарифмамивключені до складу ЄДІ з математики для 11 класу у завданні 5 та завданні 7, ви можете знайти завдання з рішеннями на нашому сайті у відповідних розділах. Також завдання з логарифмами зустрічаються у банку завдань з математики. Всі приклади можна знайти через пошук по сайту.

Що таке логарифм

Логарифми завжди вважалися складною темоюв шкільному курсіматематики. існує багато різних визначеньлогарифма, але більшість підручників чомусь використовують найскладніші та найневдаліші з них.

Ми ж визначимо логарифм просто та наочно. Для цього складемо таблицю:

Отже, маємо ступеня двійки.

Логарифми – властивості, формули, як вирішувати

Якщо взяти число з нижнього рядка, можна легко знайти ступінь, у якому доведеться звести двійку, щоб вийшло це число. Наприклад, щоб отримати 16, треба два звести до четвертого ступеня. А щоб отримати 64, треба два звести на шостий ступінь. Це видно з таблиці.

А тепер – власне, визначення логарифму:

на підставі a від аргументу x - це ступінь, у якому треба звести число a, щоб отримати число x.

Позначення: log a x = b, де a - основа, x - аргумент, b - власне, чому дорівнює логарифм.

Наприклад, 2 3 = 8 ⇒log 2 8 = 3 (логарифм на підставі 2 від числа 8 дорівнює трьом, оскільки 2 3 = 8). З тим самим успіхом log 2 64 = 6, оскільки 2 6 = 64.

Операцію знаходження логарифму числа за заданою основою називають. Отже, доповнимо нашу таблицю новим рядком:

2 1 2 2 2 3 2 4 2 5 2 6
2 4 8 16 32 64
log 2 2 = 1 log 2 4 = 2 log 2 8 = 3 log 2 16 = 4 log 2 32 = 5 log 2 64 = 6

На жаль, не всі логарифми вважаються так легко. Наприклад, спробуйте знайти log 2 5. Числа 5 немає в таблиці, але логіка підказує, що логарифм лежатиме десь на відрізку . Тому що 2 2< 5 < 2 3 , а чем більше ступіньдвійки, тим більше вийде число.

Такі числа називаються ірраціональними: цифри після коми можна писати нескінченно, і вони ніколи не повторюються. Якщо логарифм виходить ірраціональним, його краще і залишити: log 2 5, log 3 8, log 5 100.

Важливо розуміти, що логарифм - це вираз із двома змінними (підстава та аргумент). Багато хто спочатку плутає, де знаходиться підстава, а де - аргумент. Щоб уникнути прикрих непорозумінь, просто погляньте на картинку:

Перед нами - не що інше як визначення логарифму. Згадайте: логарифм – це ступінь, В яку треба звести підставу, щоб отримати аргумент. Саме основа зводиться у ступінь - на картинці воно виділено червоним. Виходить, що основа завжди знаходиться внизу! Це чудове правилоя розповідаю своїм учням на першому ж занятті – і жодної плутанини не виникає.

Як рахувати логарифми

З визначенням розібралися - залишилося навчитися рахувати логарифми, тобто. позбавлятися знаку «log». Для початку зазначимо, що з визначення випливає два важливі факти:

  1. Аргумент і основа завжди повинні бути більше нуля. Це випливає з визначення ступеня раціональним показником, До якого зводиться визначення логарифму.
  2. Підстава повинна бути відмінною від одиниці, оскільки одиниця в будь-якій мірі все одно залишається одиницею. Через це питання «у яку міру треба звести одиницю, щоб отримати двійку» позбавлене сенсу. Немає такої міри!

Такі обмеження називаються областю допустимих значень (ОДЗ). Виходить, що ОДЗ логарифму має такий вигляд: log a x = b ⇒x > 0, a > 0, a ≠ 1.

Зауважте, що жодних обмежень на число b (значення логарифму) не накладається. Наприклад, логарифм може бути негативним: log 2 0,5 = −1, т.к. 0,5 = 2 −1.

Втім, зараз ми розглядаємо лише числові вирази, де знати ОДЗ логарифму не потрібно. Усі обмеження вже враховані упорядниками завдань. Але коли підуть логарифмічні рівняння та нерівності, вимоги ОДЗ стануть обов'язковими. Адже в основі та аргументі можуть стояти вельми неслабкі конструкції, які зовсім необов'язково відповідають наведеним вище обмеженням.

Тепер розглянемо загальну схемуобчислення логарифмів. Вона складається із трьох кроків:

  1. Подати основу a та аргумент x у вигляді ступеня з мінімально можливою підставою, великі одиниці. Принагідно краще позбутися десяткових дробів;
  2. Вирішити щодо змінної рівняння: x = a b ;
  3. Отримане число b буде відповіддю.

От і все! Якщо логарифм виявиться ірраціональним, це буде видно вже на першому етапі. Вимога, щоб основа була більше одиниці, дуже актуально: це знижує ймовірність помилки та значно спрощує викладки. Аналогічно з десятковими дробами: якщо відразу перевести їх у звичайні, помилок буде в рази менше

Подивимося, як працює ця схема на конкретних прикладах:

Завдання. Обчисліть логарифм: log 5 25

  1. Представимо основу та аргумент як ступінь п'ятірки: 5 = 5 1 ; 25 = 5 2;
  2. Складемо і розв'яжемо рівняння:
    log 5 25 = b ⇒(5 1) b = 5 2 ⇒5 b = 5 2 ⇒ b = 2;

  3. Отримали відповідь: 2.

Завдання. Обчисліть логарифм:

Завдання. Обчисліть логарифм: log 4 64

  1. Представимо основу та аргумент як ступінь двійки: 4 = 2 2 ; 64 = 2 6;
  2. Складемо і розв'яжемо рівняння:
    log 4 64 = b ⇒(2 2) b = 2 6 ⇒2 2b = 2 6 ⇒2b = 6 ⇒ b = 3;
  3. Отримали відповідь: 3.

Завдання. Обчисліть логарифм: log 16 1

  1. Представимо основу та аргумент як ступінь двійки: 16 = 2 4 ; 1 = 2 0;
  2. Складемо і розв'яжемо рівняння:
    log 16 1 = b ⇒(2 4) b = 2 0 ⇒2 4b = 2 0 ⇒4b = 0 ⇒ b = 0;
  3. Отримали відповідь: 0.

Завдання. Обчисліть логарифм: log 7 14

  1. Представимо основу та аргумент як ступінь сімки: 7 = 7 1 ; 14 у вигляді ступеня сімки не представляється, оскільки 7 1< 14 < 7 2 ;
  2. З попереднього пункту випливає, що логарифм не рахується;
  3. Відповідь – без змін: log 7 14.

Невелике зауваження до останньому прикладу. Як переконатися, що число не є точним ступенем іншого числа? Дуже просто - достатньо розкласти його на прості множники. Якщо в розкладанні є хоча б два різні множники, число не є точним ступенем.

Завдання. З'ясуйте, чи є точними ступенями числа: 8; 48; 81; 35; 14.

8 = 2 · 2 · 2 = 2 3 - точний ступінь, т.к. множник лише один;
48 = 6 · 8 = 3 · 2 · 2 · 2 · 2 = 3 · 2 4 - не є точним ступенем, оскільки є два множники: 3 і 2;
81 = 9 · 9 = 3 · 3 · 3 · 3 = 3 4 - точний ступінь;
35 = 7 · 5 - знову не є точним ступенем;
14 = 7 · 2 - знову не точний ступінь;

Зауважимо також, що найпростіші числа завжди є точними ступенями самих себе.

Десятковий логарифм

Деякі логарифми зустрічаються настільки часто, що мають спеціальну назву та позначення.

від аргументу x - це логарифм на підставі 10, тобто. ступінь, у який треба звести число 10, щоб одержати число x. Позначення lg x.

Наприклад, lg 10 = 1; lg 100 = 2; lg 1000 = 3 - і т.д.

Відтепер, коли у підручнику зустрічається фраза типу «Знайдіть lg 0,01», знайте: це не друкарська помилка. Це десятковий логарифм. Втім, якщо вам незвично таке позначення, його можна переписати:
lg x = log 10 x

Все, що правильне для простих логарифмів, вірно і для десяткових.

Натуральний логарифм

Існує ще один логарифм, який має власну позначку. У певному сенсі він навіть більш важливий, ніж десятковий. Мова йдепро натуральний логарифм.

від аргументу x - це логарифм на основі e, тобто. ступінь, у якому треба звести число e, щоб одержати число x. Позначення: ln x.

Багато хто спитає: що ще за число e? Це ірраціональне число, його точне значеннязнайти та записати неможливо. Наведу лише перші його цифри:
e = 2,718281828459 ...

Не заглиблюватимемося, що це за число і навіщо потрібно. Просто пам'ятайте, що e - основа натурального логарифму:
ln x = log e x

Отже, ln e = 1; ln e 2 = 2; ln e 16 = 16 - і т.д. З іншого боку, ln 2 – ірраціональне число. Взагалі, натуральний логарифм будь-якого раціонального числаірраціональний. Крім, зрозуміло, одиниці: ln1 = 0.

Для натуральних логарифмів справедливі всі правила, які правильні для звичайних логарифмів.

Дивіться також:

Логарифм. Властивості логарифму (ступінь логарифму).

Як уявити число у вигляді логарифму?

Використовуємо визначення логарифму.

Логарифм - це показник ступеня, в який треба звести основу, щоб отримати число, що стоїть під знаком логарифму.

Таким чином, щоб представити деяке число c у вигляді логарифму на підставі a, треба під знак логарифму поставити ступінь з тією самою основою, що й основа логарифму, а в показник ступеня записати це число c:

У вигляді логарифму можна представити абсолютно будь-яке число - позитивне, негативне, ціле, дробове, раціональне, ірраціональне:

Щоб у стресових умовах контрольної або іспиту не переплутати a та c, можна скористатися таким правилом для запам'ятовування:

те, що внизу йде вниз, те, що вгорі, йде вгору.

Наприклад, потрібно подати число 2 у вигляді логарифму на підставі 3.

У нас є два числа – 2 і 3. Ці числа – основа та показник ступеня, який ми запишемо під знак логарифму. Залишається визначити, яке з цих чисел потрібно записати вниз, в основу ступеня, а яке вгору, в показник.

Основа 3 в записі логарифму стоїть внизу, значить, коли ми представлятимемо двійку у вигляді логарифму на підставі 3, 3 також запишемо вниз, в основу.

2 стоїть вище за трійку. І в записі ступеня двійку запишемо вище за трійку, тобто, в показник ступеня:

Логарифми. Початковий рівень.

Логарифми

Логарифмом позитивного числа bна підставі a, де a > 0, a ≠ 1, називається показник ступеня, в який треба звести число a, Щоб отримати b.

Визначення логарифмуможна коротко записати так:

Ця рівність справедлива за b > 0, a > 0, a ≠ 1.Його зазвичай називають логарифмічним тотожністю.
Дія знаходження логарифму числа називають логарифмування.

Властивості логарифмів:

Логарифм твору:

Логарифм приватного від поділу:

Заміна основи логарифму:

Логарифм ступеня:

Логарифм кореня:

Логарифм зі статечним підґрунтям:





Десяткові та натуральні логарифми.

Десятичним логарифмомчисла називають логарифм цього числа на підставі 10 і пишуть   lg b
Натуральним логарифмомчисла називають логарифм цього числа на підставі e, де e- Ірраціональне число, приблизно дорівнює 2,7. При цьому пишуть ln b.

Інші нотатки з алгебри та геометрії

Основні властивості логарифмів

Основні властивості логарифмів

Логарифми, як і будь-які числа, можна складати, віднімати та всіляко перетворювати. Але оскільки логарифми це не зовсім звичайні числа, тут є свої правила, які називаються основними властивостями.

Ці правила обов'язково треба знати - без них не вирішується жодне серйозне логарифмічне завдання. До того ж їх зовсім небагато — все можна вивчити за один день. Отже, почнемо.

Додавання та віднімання логарифмів

Розглянемо два логарифми з однаковими основами: log a x та log a y. Тоді їх можна складати і віднімати, причому:

  1. log a x + log a y = log a (x · y);
  2. log a x − log a y = log a (x: y).

Отже, сума логарифмів дорівнює логарифму твору, а різниця - приватного логарифму. Зверніть увагу: ключовий моменттут - однакові підстави. Якщо підстави різні, ці правила не працюють!

Ці формули допоможуть обчислити логарифмічний вираз навіть тоді, коли окремі його частини не рахуються (див. урок «Що таке логарифм»). Погляньте на приклади і переконайтеся:

Log 6 4 + Log 6 9.

Оскільки підстави у логарифмів однакові, використовуємо формулу суми:
log 6 4 + log 6 9 = log 6 (4 · 9) = log 6 36 = 2.

Завдання. Знайдіть значення виразу: log 2 48 − log 2 3.

Підстави однакові, використовуємо формулу різниці:
log 2 48 − log 2 3 = log 2 (48: 3) = log 2 16 = 4.

Завдання. Знайдіть значення виразу: log 3 135 − log 3 5.

Знову підстави однакові, тому маємо:
log 3 135 − log 3 5 = log 3 (135: 5) = log 3 27 = 3.

Як бачите, вихідні вирази складені з поганих логарифмів, які окремо не вважаються. Але після перетворень виходять цілком нормальні числа. На цьому факті побудовано багато контрольні роботи. Та що контрольні подібні висловлюванняна повному серйозі (іноді практично без змін) пропонуються на ЄДІ.

Винесення показника ступеня з логарифму

Тепер трохи ускладнимо завдання. Що, якщо у підставі чи аргументі логарифма стоїть ступінь? Тоді показник цього ступеня можна винести за знак логарифму за такими правилами:

Неважко помітити, що останнє правилослід їх перших двох. Але краще його все ж таки пам'ятати — у деяких випадках це значно скоротить обсяг обчислень.

Зрозуміло, всі ці правила мають сенс при дотриманні ОДЗлогарифма: a > 0, a ≠ 1, x > 0. І ще: вчіться застосовувати всі формули як зліва направо, а й навпаки, тобто. можна вносити числа, що стоять перед знаком логарифму, до самого логарифму.

Як вирішувати логарифми

Саме це найчастіше й потрібне.

Завдання. Знайдіть значення виразу: log 7 49 6 .

Позбавимося ступеня в аргументі за першою формулою:
log 7 49 6 = 6 · log 7 49 = 6 · 2 = 12

Завдання. Знайдіть значення виразу:

Зауважимо, що у знаменнику стоїть логарифм, основа та аргумент якого є точними ступенями: 16 = 2 4 ; 49 = 7 2 . Маємо:

Думаю, до останнього прикладу потрібні пояснення. Куди зникли логарифми? До останнього моменту ми працюємо лише зі знаменником. Представили підставу і аргумент логарифму, що там стоїть, у вигляді ступенів і винесли показники — отримали «триповерховий» дріб.

Тепер подивимося на основний дріб. У чисельнику та знаменнику стоїть те саме число: log 2 7. Оскільки log 2 7 ≠ 0, можемо скоротити дріб — у знаменнику залишиться 2/4. За правилами арифметики, четвірку можна перенести в чисельник, що було зроблено. В результаті вийшла відповідь: 2.

Перехід до нової основи

Говорячи про правила складання та віднімання логарифмів, я спеціально підкреслював, що вони працюють лише за однакових підстав. А що, коли підстави різні? Що, якщо вони не є точними ступенями того самого числа?

На допомогу приходять формули переходу до нової основи. Сформулюємо їх як теореми:

Нехай даний логарифм log a x. Тоді для будь-якого числа c такого, що c > 0 і c ≠ 1, правильна рівність:

Зокрема, якщо покласти c = x отримаємо:

З другої формули випливає, що можна міняти місцями основу та аргумент логарифму, але при цьому весь вислів «перевертається», тобто. логарифм опиняється у знаменнику.

Ці формули рідко зустрічаються у звичайних числових виразів. Оцінити, наскільки вони зручні, можна лише за рішенням логарифмічних рівняньта нерівностей.

Втім, існують завдання, які взагалі не вирішуються інакше як переходом до нової основи. Розглянемо пару таких:

Завдання. Знайдіть значення виразу: log 5 16 · log 2 25.

Зауважимо, що в аргументах обох логарифмів стоять точні ступені. Винесемо показники: log 5 16 = log 5 2 4 = 4log 5 2; log 2 25 = log 2 5 2 = 2log 2 5;

А тепер «перевернемо» другий логарифм:

Оскільки від перестановки множників твір не змінюється, ми спокійно перемножили четвірку та двійку, а потім розібралися з логарифмами.

Завдання. Знайдіть значення виразу: log 9 100 · lg 3.

Підстава та аргумент першого логарифму — точні ступені. Запишемо це і позбудемося показників:

Тепер позбудемося десяткового логарифму, перейшовши до нової основи:

Основне логарифмічне тотожність

Часто в процесі рішення потрібно представити число як логарифм на задану основу.

У цьому випадку нам допоможуть формули:

У першому випадку число n стає показником ступеня, що стоїть у аргументі. Число n може бути абсолютно будь-яким, адже це просто значення логарифму.

Друга формула – це фактично перефразоване визначення. Вона і називається: .

Справді, що буде, якщо число b звести на такий ступінь, що число b у цій мірі дає число a? Правильно: вийде це саме число a. Уважно прочитайте цей абзац ще раз — багато хто на ньому «зависає».

Подібно до формул переходу до нової основи, основна логарифмічна тотожність іноді буває єдино можливим рішенням.

Завдання. Знайдіть значення виразу:

Зауважимо, що log 25 64 = log 5 8 — просто винесли квадрат із підстави та аргументу логарифму. Враховуючи правила множення ступенів з однаковою основою, отримуємо:

Якщо хтось не в курсі, це було справжнє завдання з ЄДІ 🙂

Логарифмічна одиниця та логарифмічний нуль

Насамкінець наведу дві тотожності, які складно назвати властивостями — швидше, це наслідки з визначення логарифму. Вони постійно зустрічаються у завданнях і, що дивно, створюють проблеми навіть для «просунутих» учнів.

  1. log a a = 1 - це. Запам'ятайте раз і назавжди: логарифм з будь-якої основи a від самої цієї основи дорівнює одиниці.
  2. log a 1 = 0 - це. Підстава a може бути будь-якою, але якщо в аргументі стоїть одиниця — логарифм дорівнює нулю! Тому що a 0 = 1 це прямий слідствоіз визначення.

Ось і всі властивості. Обов'язково потренуйтеся застосовувати їх на практиці! Завантажте шпаргалку на початку уроку, роздрукуйте її і вирішуйте завдання.

Як відомо, при перемноженні виразів зі ступенями їх показники завжди складаються (a b * a c = a b + c). Цей математичний законбув виведений Архімедом, а згодом, у VIII столітті, математик Вірасен створив таблицю цілих показників. Саме вони послужили для подальшого відкриттялогарифмів. Приклади використання цієї функції можна зустріти скрізь, де потрібно спростити громіздке множення на просте додавання. Якщо ви витратите 10 хвилин на прочитання цієї статті, ми вам пояснимо, що таке логарифми і як з ними працювати. Простим та доступним мовою.

Визначення в математиці

Логарифмом називається вираз наступного виду: log a b=c, тобто логарифмом будь-якого невід'ємного числа (тобто будь-якого позитивного) "b" за його основою "a" вважається ступінь "c", в яку необхідно звести основу "a", щоб у результаті отримати значення "b". Розберемо логарифм на прикладах, скажімо, є вираз log 2 8. Як знайти відповідь? Дуже просто, потрібно знайти такий ступінь, щоб з 2 до ступеня отримати 8. Зробивши в умі деякі розрахунки, отримуємо число 3! І вірно, адже 2 у ступені 3 відповідає у відповідь число 8.

Різновиди логарифмів

Для багатьох учнів і студентів ця тема видається складною і незрозумілою, проте насправді логарифми не такі страшні, головне - зрозуміти загальний їхній зміст і запам'ятати їхню власність і деякі правила. Існує три окремих видівлогарифмічних виразів:

  1. Натуральний логарифм ln a де основою є число Ейлера (e = 2,7).
  2. Десятковий a де підставою служить число 10.
  3. Логарифм будь-якого числа b на підставі a>1.

Кожен із них вирішується стандартним способом, Що включає спрощення, скорочення і подальше приведення до одного логарифму за допомогою логарифмічних теорем. Для отримання вірних значень логарифмів слід запам'ятати їх властивості та черговість дій за їх рішення.

Правила та деякі обмеження

У математиці існує кілька правил-обмежень, які приймаються як аксіома, тобто не підлягають обговоренню та є істиною. Наприклад, не можна числа ділити на нуль, а ще неможливо витягти корінь парного ступеняіз негативних чисел. Логарифми також мають свої правила, дотримуючись яких можна легко навчитися працювати навіть з довгими і ємними логарифмічними виразами:

  • основа "a" завжди має бути більшою за нуль, і при цьому не бути рівним 1, інакше вираз втратить свій зміст, адже "1" і "0" у будь-якій мірі завжди рівні своїм значенням;
  • якщо а > 0, то і а b > 0, виходить, що і "з" має бути більшим за нуль.

Як вирішувати логарифми?

Наприклад, дано завдання знайти відповідь рівняння 10 х = 100. Це дуже легко, потрібно підібрати такий ступінь, звівши до якого число десять ми отримаємо 100. Це, звичайно ж, 10 2 =100.

А тепер давайте уявимо цей вираз у вигляді логарифмічного. Отримаємо log 10 100 = 2. При вирішенні логарифмів всі дії практично сходяться до того, щоб знайти той ступінь, в який необхідно ввести основу логарифму, щоб отримати задане число.

Для безпомилкового визначення значення невідомого ступенянеобхідно навчитися працювати з таблицею ступенів. Виглядає вона так:

Як бачите, деякі показники ступеня можна вгадати інтуїтивно, якщо є технічний склад розуму та знання таблиці множення. Однак для великих значеньзнадобиться таблиця ступенів. Нею можуть користуватися навіть ті, хто зовсім нічого не тямить у складних математичні теми. У лівому стовпці вказані числа (основа a), верхній ряд чисел - це значення ступеня c, яку зводиться число a. На перетині в осередках визначено значення чисел, що є відповіддю (a c = b). Візьмемо, наприклад, саму першу комірку з числом 10 і зведемо її в квадрат, отримаємо значення 100, яке вказано на перетині двох наших осередків. Все так просто і легко, що зрозуміє навіть справжнісінький гуманітарій!

Рівняння та нерівності

Виходить, що за певних умовпоказник ступеня - і є логарифм. Отже, будь-які математичні чисельні вирази можна записати як логарифмічного рівності. Наприклад, 3 4 =81 можна записати у вигляді логарифму числа 81 на підставі 3, що дорівнює чотирьом (log 3 81 = 4). Для негативних ступенівправила такі самі: 2 -5 = 1/32 запишемо у вигляді логарифму, отримаємо log 2 (1/32) = -5. Однією з найцікавіших розділів математики є тема "логарифми". Приклади та розв'язання рівнянь ми розглянемо трохи нижче, відразу після вивчення їх властивостей. А зараз давайте розберемо, як виглядають нерівності та як їх відрізнити від рівнянь.

Дано вираз такого вигляду: log 2 (x-1) > 3 - воно є логарифмічною нерівністютому що невідоме значення "х" знаходиться під знаком логарифму. А також у виразі порівнюються дві величини: логарифм шуканого числа на підставі два більше, ніж число три.

Найголовніша відмінність між логарифмічними рівняннями та нерівностями полягає в тому, що рівняння з логарифмами (приклад - логарифм 2 x = √9) мають на увазі у відповіді одне або кілька певних числових значень, тоді як за розв'язання нерівності визначаються як область допустимих значень, і точки розриву цієї функції. Як наслідок, у відповіді виходить не проста безліч окремих чиселяк у відповіді рівняння, а безперервний ряд чи набір чисел.

Основні теореми про логарифми

При вирішенні примітивних завдань знаходження значень логарифма, його властивості можна і не знати. Однак коли мова заходить про логарифмічні рівняння або нерівності, в першу чергу необхідно чітко розуміти і застосовувати на практиці все основні властивостілогарифмів. З прикладами рівнянь ми познайомимося пізніше, давайте спочатку розберемо кожну властивість докладніше.

  1. Основне тотожність має такий вигляд: а logaB =B. Воно застосовується лише за умови, коли а більше 0, не дорівнює одиниці і B більше за нуль.
  2. Логарифм твору можна представити у такій формулі: log d (s 1 * s 2) = log d s 1 + log d s 2. При цьому обов'язковою умовоює: d, s 1 та s 2 > 0; а≠1. Можна навести доказ цієї формули логарифмів, з прикладами і рішенням. Нехай log a s 1 = f 1 і log a s 2 = f 2 тоді а f1 = s 1 , a f2 = s 2. Отримуємо, що s 1 *s 2 = a f1 *a f2 = a f1+f2 (властивості ступенів ), а далі за визначенням: log a (s 1 * s 2) = f 1 + f 2 = log a s1 + log a s 2, що і потрібно довести.
  3. Логарифм приватного має такий вигляд: log a (s 1/ s 2) = log a s 1 - log a s 2.
  4. Теорема у вигляді формули набуває наступний вигляд: log a q b n = n/q log a b.

Називається ця формула "властивістю ступеня логарифму". Вона нагадує властивості звичайних ступенів, і не дивно, адже вся математика тримається на закономірних постулатах. Погляньмо на доказ.

Нехай log a b = t, виходить a t = b. Якщо звести обидві частини до ступеня m: a tn = b n ;

але оскільки a tn = (a q) nt / q = b n, отже log a q b n = (n * t) / t, тоді log a q b n = n / q log a b. Теорему доведено.

Приклади завдань та нерівностей

Найпоширеніші типи завдань на тему логарифмів – приклади рівнянь та нерівностей. Вони зустрічаються практично у всіх задачниках, а також входять до обов'язкову частинуіспитів з математики. Для вступу до університету чи здачі вступних випробуваньз математики необхідно знати, як правильно вирішувати такі завдання.

На жаль, єдиного плану чи схеми щодо рішення та визначення невідомого значеннялогарифма не існує, однак до кожної математичної нерівності або логарифмічного рівняння можна застосувати певні правила. Насамперед слід з'ясувати, чи можна спростити вираз чи призвести до загального вигляду. Спрощувати довгі логарифмічні виразиможна, якщо правильно використати їх властивості. Давайте скоріше з ними познайомимося.

При вирішенні ж логарифмічних рівнянь слід визначити, який перед нами вид логарифму: приклад виразу може містити натуральний логарифм або десятковий.

Ось приклади ln100, ln1026. Їх рішення зводиться до того, що потрібно визначити той ступінь, в якому основа 10 дорівнюватиме 100 і 1026 відповідно. Для рішень натуральних логарифмів потрібно застосувати логарифмічні тотожності або їх властивості. Давайте на прикладах розглянемо розв'язання логарифмічних завдань різного типу.

Як використовувати формули логарифмів: з прикладами та рішеннями

Отже, розглянемо приклади використання основних теорем про логарифми.

  1. Властивість логарифму твору можна застосовувати у завданнях, де необхідно розкласти велике значеннячисла b на більш прості співмножники. Наприклад, log 2 4 + log 2 128 = log 2 (4 * 128) = log 2 512. Відповідь дорівнює 9.
  2. log 4 8 = log 2 2 2 3 = 3/2 log 2 2 = 1,5 - як бачите, застосовуючи четверту властивість ступеня логарифму, вдалося вирішити на перший погляд складне і нерозв'язне вираз. Необхідно лише розкласти основу на множники і потім винести значення ступеня зі знака логарифму.

Завдання з ЄДІ

Логарифми часто зустрічаються на вступних іспитів, особливо багато логарифмічних завдань у ЄДІ ( державний іспитвсім випускників шкіл). Зазвичай ці завдання присутні у частині А (найлегша тестова частина іспиту), а й у частини З (найскладніші і об'ємні завдання). Іспит передбачає точне та ідеальне знання теми "Натуральні логарифми".

Приклади та розв'язання завдань взяті з офіційних варіантів ЄДІ. Давайте подивимося, як вирішуються такі завдання.

Дано log 2 (2x-1) = 4. Рішення:
перепишемо вираз, трохи спростивши його log 2 (2x-1) = 2 2 , за визначенням логарифму отримаємо, що 2x-1 = 2 4 , отже 2x = 17; x = 8,5.

  • Всі логарифми найкраще приводити до однієї підстави, щоб рішення не було громіздким та заплутаним.
  • Всі вирази, що стоять під знаком логарифму, вказуються як позитивні, тому при винесенні множником показника ступеня виразу, який стоїть під знаком логарифму і як його підстава, вираз, що залишається під логарифмом, має бути позитивним.

З розвитком суспільства, ускладнення виробництва розвивалася і математика. Рух від простого до складного. Від звичайного обліку шляхом складання і віднімання, за їх багаторазовому повторенні, прийшли до поняття множення та поділу. Скорочення операції, що багаторазово повторюється, множення стало поняттям зведення в ступінь. Перші таблиці залежності чисел від основи та числа зведення у ступінь були складені ще у VIII столітті індійським математиком Варасена. З них можна відраховувати час виникнення логарифмів.

Історичний нарис

Відродження Європи у XVI столітті стимулювало та розвиток механіки. Т потрібний великий обсяг обчислення, пов'язаних з множенням та поділом багатозначних чисел. Стародавні таблиці надали велику послугу. Вони дозволяли замінювати складні операції більш прості – додавання і віднімання. Великим кроком уперед стала робота математика Міхаеля Штіфеля, опублікована в 1544, в якій він реалізував ідею багатьох математиків. Що дозволило використовувати таблиці не тільки для ступенів у вигляді простих чисел, але й довільних раціональних.

В 1614 шотландець Джон Непер, розвиваючи ці ідеї, вперше ввів новий термін «логарифм числа». Були складені нові складні таблиці для розрахунку логарифмів синусів та косінусів, а також тангенсів. Це дуже скоротило працю астрономів.

Стали з'являтися нові таблиці, які успішно використовувалися вченими упродовж трьох століть. Пройшло чимало часу, перш ніж нова операціяв алгебрі набула свого закінченого вигляду. Було дано визначення логарифму, та його властивості були вивчені.

Лише у XX столітті з появою калькулятора та комп'ютера людство відмовилося від стародавніх таблиць, які успішно працювали протягом XIII століть.

Сьогодні ми називаємо логарифмом b на основі a число x, яке є ступенем числа а, щоб вийшло число b. Як формули це записується: x = log a(b).

Наприклад, log 3(9) дорівнюватиме 2. Це очевидно, якщо дотримуватися визначення. Якщо 3 звести до ступеня 2, то отримаємо 9.

Так, сформульоване визначення ставить лише одне обмеження, числа a та b повинні бути речовими.

Різновиди логарифмів

Класичне визначення називається речовий логарифм і є рішенням рівняння a x = b. Варіант a = 1 є прикордонним і не становить інтересу. Увага: 1 у будь-якому ступені дорівнює 1.

Речове значення логарифмувизначено тільки при підставі та аргументі більше 0, при цьому основа не повинна дорівнювати 1.

Особливе місце у галузі математикиграють логарифми, які будуть називатися залежно від величини їхньої основи:

Правила та обмеження

Основною властивістю логарифмів є правило: логарифм добутку дорівнює логарифмічній сумі. log abp = log a (b) + log a (p).

Як варіант цього твердження буде: log c(b/p) = log с(b) - log c(p), функція приватного дорівнює різниці функцій.

З попередніх двох правил легко видно, що: log a (b p) = p * log a (b).

Серед інших властивостей можна виділити:

Зауваження. Не треба робити поширену помилку - логарифм суми не дорівнює сумі логарифмів.

Багато століть операція пошуку логарифму була досить трудомістким завданням. Математики користувалися відомою формулоюлогарифмічної теорії розкладання на багаточлен:

ln (1 + x) = x — (x^2)/2 + (x^3)/3 — (x^4)/4 + … + ((-1)^(n + 1))*(( x^n)/n), де n - натуральне числобільше 1, що визначає точність обчислення.

Логарифми з іншими підставами обчислювалися, використовуючи теорему про перехід від однієї підстави до іншої та властивості логарифму твору.

Так як цей спосіб дуже трудомісткий і при вирішенні практичних завдань важкоздійсненним, то використовували заздалегідь складені таблиці логарифмів, що значно прискорювало всю роботу.

У деяких випадках використовували спеціально складені графіки логарифмів, що давало меншу точність, але значно прискорювало пошук потрібного значення. Крива функції y = log a (x), побудована за кількома точками, дозволяє за допомогою звичайної лінійки знаходити значення функції у будь-якій іншій точці. Інженери тривалий часдля цих цілей використовували так званий міліметровий папір.

У XVII столітті з'явилися перші допоміжні аналогові обчислювальні умови, XIX віцінабули закінченого вигляду. Найбільш вдалий пристрій отримав назву логарифмічна лінійка. За всієї простоти пристрою, її поява значно прискорила процес усіх інженерних розрахунків, і це важко переоцінити. Нині вже мало хто знайомий із цим пристроєм.

Поява калькуляторів та комп'ютерів зробила безглуздим використання будь-яких інших пристроїв.

Рівняння та нерівності

Для вирішення різних рівняньта нерівностей з використанням логарифмів застосовуються такі формули:

  • Перехід від однієї основи до іншої: log a (b) = log c (b) / log c (a);
  • Як наслідок попереднього варіанта: log a (b) = 1 / log b (a).

Для вирішення нерівностей корисно знати:

  • Значення логарифму буде позитивним тільки в тому випадку, коли основа та аргумент одночасно більша або менша за одиницю; якщо хоча б одна умова порушена, значення логарифму буде негативним.
  • Якщо функція логарифму застосовується до правої та лівої частини нерівності, і основа логарифму більше одиниці, то знак нерівності зберігається; інакше він змінюється.

Приклади завдань

Розглянемо кілька варіантів застосування логарифмів та їх властивості. Приклади з розв'язуванням рівнянь:

Розглянемо варіант розміщення логарифму у ступені:

  • Завдання 3. Обчислити 25 log 5 (3). Рішення: в умовах задачі запис аналогічний наступній (5^2)^log5(3) або 5^(2 * log 5(3)). Запишемо по-іншому: 5^log 5(3*2), або квадрат числа як аргумент функції можна записати як квадрат самої функції (5^log 5(3))^2. Використовуючи властивості логарифмів, цей вираз дорівнює 32. Відповідь: внаслідок обчислення отримуємо 9.

Практичне застосування

Будучи виключно математичним інструментом, здається далеким від реального життя, що логарифм несподівано набув великого значення для опису об'єктів реального світу. Важко знайти науку, де її не застосовують. Це повною мірою стосується не тільки природних, а й гуманітарних областей знань.

Логарифмічні залежності

Наведемо кілька прикладів числових залежностей:

Механіка та фізика

Історично механіка та фізика завжди розвивалися з використанням математичних методівдослідження та одночасно служили стимулом для розвитку математики, у тому числі логарифмів. Теорія більшості законів фізики написана мовою математики. Наведемо лише два приклади опису фізичних законівз використанням логарифму.

Вирішувати задачу розрахунку такої складної величинияк швидкість ракети можна, застосовуючи формулу Ціолковського, яка започаткувала теорію освоєння космосу:

V = I * ln (M1/M2), де

  • V - кінцева швидкістьлітального апарату.
  • I – питомий імпульс двигуна.
  • M 1 - Початкова маса ракети.
  • M2 – кінцева маса.

Інший важливий приклад - це використання у формулі іншого великого вченого Макса Планка, яка служить для оцінки рівноважного стану термодинаміки.

S = k * ln (Ω), де

  • S – термодинамічна властивість.
  • k - Постійна Больцмана.
  • Ω – статистична вага різних станів.

Хімія

Менш очевидним буде використання формул у хімії, що містять відношення логарифмів. Наведемо також лише два приклади:

  • Рівняння Нернста, умова окислювально-відновного потенціалу середовища щодо активності речовин та константи рівноваги.
  • Розрахунок таких констант, як показник автопролізу та кислотність розчину теж не обходяться без нашої функції.

Психологія та біологія

І вже зовсім незрозуміло, до чого тут психологія. Виявляється, сила відчуття добре описується цією функцією як зворотне ставленнязначення інтенсивності подразника до нижнього значення інтенсивності.

Після вищенаведених прикладів не дивує, що у біології широко використовується тема логарифмів. Для біологічних форм, відповідні логарифмічним спіралям, можна писати цілі томи.

Інші області

Здається, неможливе існування світу без зв'язку з цією функцією, і вона править усіма законами. Особливо коли закони природи пов'язані з геометричною прогресією. Варто звернутися до сайту МатПрофі, і таких прикладів знайдеться безліч у таких сферах діяльності:

Список може бути нескінченним. Освоївши основні закономірності цієї функції, можна поринути у світ нескінченної мудрості.


У центрі уваги цієї статті – логарифм. Тут ми дамо визначення логарифму, покажемо прийняте позначення, наведемо приклади логарифмів, і скажемо про натуральні та десяткові логарифми. Після цього розглянемо основну логарифмічну тотожність.

Навігація на сторінці.

Визначення логарифму

Поняття логарифму виникає при вирішенні задачі відомому сенсізворотного , коли потрібно знайти показник ступеня по відомого значенняступеня та відомої основи.

Але вистачить передмов, настав час відповісти на запитання «що таке логарифм»? Дамо відповідне визначення.

Визначення.

Логарифм числа b на підставі a, де a>0 , a≠1 і b>0 – це показник ступеня, який потрібно звести число a , щоб у результаті отримати b .

На цьому етапі зауважимо, що сказане слово«логарифм» має відразу викликати два питання: «якого числа» і «з якої підстави». Інакше кажучи, просто логарифма немає, а є лише логарифм числа з деякому підставі.

Відразу введемо позначення логарифму: логарифм числа b на основі a прийнято позначати як log a b . Логарифм числа b на підставі e і логарифм на підставі 10 мають свої спеціальні позначення lnb і lgb відповідно, тобто, пишуть не log e b , а lnb і не log 10 b , а lgb .

Тепер можна навести: .
А записи немає сенсу, оскільки у першій їх під знаком логарифма перебуває від'ємне число, у другій – від'ємне число у підставі, а третьої – і негативне число під знаком логарифму і одиниця на підставі.

Тепер скажемо про правила читання логарифмів. Запис log a b читається як «логарифм b на основі a ». Наприклад, log 2 3 - це логарифм трьох з основи 2 , а - це логарифм двох цілих двох третіх з основи квадратний коріньіз п'яти. Логарифм на основі e називають натуральним логарифмома запис lnb читається як «натуральний логарифм b». Наприклад, ln7 – це натуральний логарифм семи, а ми прочитаємо як натуральний логарифм пі. Логарифм на підставі 10 також має спеціальну назву – десятковий логарифм, а запис lgb читається як «десятковий логарифм b». Наприклад, lg1 – це десятковий логарифм одиниці, а lg2,75 – десятковий логарифм двох цілих сімдесяти п'яти сотих.

Варто окремо зупинитися на умовах a>0, a≠1 і b>0, за яких дається визначення логарифму. Пояснимо, звідки беруться ці обмеження. Зробити це допоможе рівності виду , зване , яке безпосередньо випливає з цього вище визначення логарифму.

Почнемо з a≠1. Так як одиниця в будь-якому ступені дорівнює одиниці, то рівність може бути справедлива лише при b = 1, але при цьому log 1 може бути будь-яким дійсним числом. Щоб уникнути цієї багатозначності і приймається a≠1.

Обгрунтуємо доцільність умови a>0. При a = 0 за визначенням логарифму ми мали рівність , яке можливе лише за b = 0 . Але тоді log 0 0 може бути будь-яким відмінним від нуля дійсним числом, так як нуль у будь-якому відмінному від нуля ступені є нуль. Уникнути цієї багатозначності дозволяє умова a≠0. А при a<0 нам бы пришлось отказаться от рассмотрения рациональных и иррациональных значений логарифма, так как степень с рациональным и иррациональным показателем определена лишь для неотрицательных оснований. Поэтому и принимается условие a>0 .

Нарешті, умова b>0 випливає з нерівності a>0 , оскільки , а значення ступеня з позитивною основою завжди позитивно.

На закінчення цього пункту скажемо, що озвучене визначення логарифму дозволяє відразу вказати значення логарифму, коли під знаком логарифму є певний ступінь підстави. Дійсно, визначення логарифму дозволяє стверджувати, що якщо b=a p , то логарифм числа b на підставі a дорівнює p . Тобто справедливо рівність log a a p = p . Наприклад, знаємо, що 2 3 =8 , тоді log 2 8=3 . Докладніше про це ми поговоримо у статті

(від грецької λόγος - «слово», «ставлення» та ἀριθμός - «число») числа bна підставі a(log α b) називається таке число c, і b= a cтобто записи log α b=cі b=acеквівалентні. Логарифм має сенс, якщо a>0, а ≠1, b>0.

Говорячи іншими словами логарифмчисла bна підставі аформулюється як показник ступеня, в який треба звести число a, щоб отримати число b(Логарифм існує тільки у позитивних чисел).

З цього формулювання випливає, що обчислення x= log α b, рівнозначно рішенню рівняння a x = b.

Наприклад:

log 2 8 = 3 тому, що 8 = 2 3 .

Виділимо, що зазначене формулювання логарифму дає можливість відразу визначити значення логарифмуколи число під знаком логарифму виступає деяким ступенем основи. І справді, формулювання логарифму дає можливість довести, що якщо b=a з, то логарифм числа bна підставі aдорівнює з. Також ясно, що тема логарифмування тісно пов'язана з темою ступеня числа.

Обчислення логарифму називають логарифмуванням. Логарифмування - це математична операціявзяття логарифму. При логарифмуванні, твори співмножників трансформується у суми членів.

Потенціювання- це математична операція зворотна до логарифмування. При потенціювання задана основа зводиться у ступінь виразу, над яким виконується потенціювання. При цьому суми членів трансформуються у твір співмножників.

Досить часто використовуються речові логарифми з основами 2 (двійковий), е число Ейлера e ≈ 2,718 (натуральний логарифм) та 10 (десятковий).

На цьому етапі доцільно розглянути зразки логарифмів log 7 2 , ln 5, lg0.0001.

А записи lg(-3), log -3 3.2, log -1 -4.3 немає сенсу, оскільки у першій їх під знаком логарифму вміщено негативне число , у другій - негативне число основу, а третьої - і негативне число під знаком логарифму та одиниця в основі.

Умови визначення логарифму.

Варто окремо розглянути умови a > 0, a ≠ 1, b > 0. визначення логарифму.Розглянемо, чому взято ці обмеження. У цьому нам допоможе рівність виду x = log α b, зване основним логарифмічним тотожністю , яке безпосередньо випливає з цього визначення логарифму.

Візьмемо умову a≠1. Оскільки одиниця будь-якою мірою дорівнює одиниці, то рівність x=log α bможе існувати лише за b=1але при цьому log 1 1 буде будь-яким дійсним числом. Для виключення цієї неоднозначності і береться a≠1.

Доведемо необхідність умови a>0. При a=0за формулюванням логарифму може існувати тільки при b=0. І відповідно тоді log 0 0може бути будь-яким відмінним від нуля дійсним числом, тому що нуль у будь-якій відмінній від нуля мірі є нуль. Виключити цю неоднозначність дає умову a≠0. А при a<0 нам би довелося відкинути розбір раціональних та ірраціональних значень логарифму, оскільки ступінь з раціональним та ірраціональним показником визначено лише для невід'ємних підстав. Саме з цієї причини і обумовлено умову a>0.

І остання умова b>0випливає з нерівності a>0оскільки x=log α b, а значення ступеня з позитивною основою aзавжди позитивно.

Особливості логарифмів.

Логарифмихарактеризуються відмінними особливостями, які зумовили їхнє повсюдне вживання для значного полегшення копітких розрахунків. При переході «в світ логарифмів» множення трансформується на значно легше додавання, розподіл — на віднімання, а зведення в ступінь і витяг кореня трансформуються відповідно до множення і розподіл на показник ступеня.

Формулювання логарифмів та таблицю їх значень (для тригонометричних функцій) вперше видав у 1614 році шотландський математик Джон Непер. Логарифмічні таблиці, збільшені та деталізовані іншими вченими, широко використовувалися при виконанні наукових та інженерних обчислень, і залишалися актуальними доки не стали застосовуватись електронні калькулятори та комп'ютери.



Останні матеріали розділу:

Список відомих масонів Закордонні знамениті масони
Список відомих масонів Закордонні знамениті масони

Присвячується пам'яті митрополита Санкт-Петербурзького та Ладозького Іоанна (Сничева), який благословив мою працю з вивчення підривної антиросійської...

Що таке технікум - визначення, особливості вступу, види та відгуки Чим відрізняється інститут від університету
Що таке технікум - визначення, особливості вступу, види та відгуки Чим відрізняється інститут від університету

25 Московських коледжів увійшли до рейтингу "Топ-100" найкращих освітніх організацій Росії. Дослідження проводилося міжнародною організацією...

Чому чоловіки не стримують своїх обіцянок Невміння говорити «ні»
Чому чоловіки не стримують своїх обіцянок Невміння говорити «ні»

Вже довгий час серед чоловіків ходить закон: якщо назвати його таким можна, цього не може знати ніхто, чому ж вони не стримують свої обіцянки. По...