Коли похідна негативна. Дослідження функцій

Що таке похідна?
Визначення та сенс похідної функції

Багато хто здивується несподіваному розташуванню цієї статті в моєму авторському курсі про похідну функцію однієї змінної та її додатків. Адже як було ще зі школи: стандартний підручник насамперед дає визначення похідної, її геометричний, механічний зміст. Далі учні знаходять похідні функцій за визначенням, і, власне, лише потім відточується техніка диференціювання за допомогою таблиці похідних.

Але на мій погляд, більш прагматичний наступний підхід: перш за все, доцільно ДОБРО ЗРОЗУМІТИ межа функції, і, особливо, нескінченно малі величини. Справа в тому що визначення похідної виходить з понятті межі, яке слабо розглянуто в шкільному курсі. Саме тому значна частинамолодих споживачів граніту знань погано вникають у суть похідної. Таким чином, якщо ви слабо орієнтуєтеся у диференційному обчисленніабо мудрий мозокза довгі рокиуспішно позбавився від цього багажу, будь ласка, почніть з меж функцій. Заодно освоїте/згадайте їхнє рішення.

Той самий практичний сенс підказує, що спочатку вигідно навчитися знаходити похідні, в тому числі похідні складних функцій. Теорія теорією, а диференціювати, як кажуть, хочеться завжди. У зв'язку з цим краще опрацювати перелічені базові уроки, а може й стати майстром диференціюваннянавіть не усвідомлюючи сутності своїх дій.

До матеріалів цієї сторінки рекомендую приступати після ознайомлення із статтею Найпростіші завдання з похідною, де, зокрема, розглянуто завдання про дотичну до графіку функції. Але можна і почекати. Справа в тому, що багато додатків похідної не вимагають її розуміння, і не дивно, що теоретичний урокз'явився досить пізно – коли мені потрібно було пояснювати знаходження інтервалів зростання/зменшення та екстремумівфункції. Більше того, він досить довго перебував у темі « Функції та графіки», Поки я все-таки не вирішив поставити його раніше.

Тому, шановні чайники, не поспішайте поглинати суть похідної як голодні звірі, бо насичення буде несмачним і неповним.

Поняття зростання, зменшення, максимуму, мінімуму функції

Багато навчальні посібникипідводять до поняття похідної за допомогою будь-яких практичних завдань, і я теж вигадав цікавий приклад. Уявіть, що ми маємо подорож до міста, до якого можна дістатися різними шляхами. Відразу відкинемо криві петляючі доріжки, і розглядатимемо лише прямі магістралі. Однак прямолінійні напрямки теж бувають різними: до міста можна дістатися рівним автобаном. Або по горбистій шосе - вгору-вниз, вгору-вниз. Інша дорога йде тільки в гору, а ще одна - весь час під ухил. Екстремали виберуть маршрут через ущелину з крутим урвищем та стрімким підйомом.

Але якими б не були ваші уподобання, бажано знати місцевість або щонайменше розташовувати її топографічною картою. А якщо такої інформації немає? Адже можна вибрати, наприклад, рівний шлях, та в результаті натрапити на гірськолижний спуск із веселими фінами. Не факт, що навігатор та навіть супутниковий знімок дадуть достовірні дані. Тому непогано було б формалізувати рельєф шляху засобами математики.

Розглянемо деяку дорогу (вид збоку):

Про всяк випадок нагадую елементарний факт: подорож відбувається зліва направо. Для простоти вважаємо, що функція безперервнана ділянці, що розглядається.

Які особливості у даного графіка?

На інтервалах функція зростає, тобто кожне наступне її значення більшепопереднього. Грубо кажучи, графік іде знизу вгору(забираємось на гірку). А на інтервалі функція зменшується– кожне наступне значення меншепопереднього, і наш графік йде зверху вниз(Спускаємося по схилу).

Також звернемо увагу на особливі точки. У точці ми досягаємо максимуму, тобто існуєтака ділянка шляху, на якому значення буде найбільшим (високим). У точці ж досягається мінімум, і існуєтака її околиця, у якій значення найменше (низьке).

Суворішу термінологію та визначення розглянемо на уроці про екстремуми функції, а поки що вивчимо ще одну важливу особливість: на проміжках функція зростає, але зростає вона з різною швидкістю. І перше, що впадає у вічі – на інтервалі графік злітає вгору набагато крутішеніж на інтервалі. Чи не можна виміряти крутість дороги за допомогою математичного інструментарію?

Швидкість зміни функції

Ідея полягає в наступному: візьмемо деяке значення (читається "дельта ікс"), яке назвемо збільшенням аргументу, і почнемо його «приміряти» до різним точкамнашого шляху:

1) Подивимося на саму ліву точку: минаючи відстань, ми піднімаємося схилом на висоту (зелена лінія). Величина називається збільшенням функції, і в даному випадкуце збільшення позитивно (різниця значень по осі – більше нуля). Складемо відношення, яке і буде мірилом крутості нашої дороги. Очевидно, що - це цілком конкретне число, і, оскільки обидва збільшення позитивні, то .

Увага! Позначення є ЄДИНИМсимволом, тобто не можна відривати дельту від ікса і розглядати ці літери окремо. Зрозуміло, коментар стосується символу збільшення функції.

Досліджуємо природу отриманого дробу змістовніше. Нехай спочатку ми знаходимося на висоті 20 метрів (у лівій чорній точці). Подолавши відстань метрів (ліва червона лінія), ми опинимося на висоті 60 метрів. Тоді збільшення функції складе метрів (зелена лінія) та: . Таким чином, на кожному метріцієї ділянки дороги висота збільшується в середньомуна 4 метри…не забули альпіністське спорядження? =) Інакше кажучи, побудоване ставлення характеризує СЕРЕДНЮ ШВИДКІСТЬ ЗМІНИ (у разі – зростання) функції.

Примітка : числові значенняРозглянутого прикладу відповідають пропорціям креслення лише приблизно.

2) Тепер пройдемо ту ж саму відстань від правої чорної точки. Тут підйом більш пологий, тому прирощення (малинова лінія) відносно невелике, і ставлення порівняно з попереднім випадком буде дуже скромним. Умовно кажучи, метрів та швидкість зростання функціїскладає. Тобто тут на кожен метр шляху доводиться в середньомупівметра підйому.

3) Невелика пригода на схилі гори. Подивимося верхню чорну точку, розташовану на осі ординат. Припустимо, що це позначка 50 метрів. Знову долаємо відстань, внаслідок чого опиняємося нижче – на рівні 30 метрів. Оскільки здійснено рух зверху вниз(в «протихід» напрямку осі), то підсумкове збільшення функції (висоти) буде негативним: метрів (коричневий відрізок на кресленні). І в даному випадку мова вже йде про швидкості спаданняфункції: , тобто за кожен метр шляху цієї ділянки висота зменшується в середньомуна 2 метри. Бережіть одяг на п'ятій точці.

Тепер запитаємо себе: яке значення «вимірювального еталона» найкраще використовувати? Цілком зрозуміло, 10 метрів – це дуже грубо. На них запросто вміститься добра дюжина купин. Та що там купини, внизу може бути глибока ущелина, а за кілька метрів – інша його сторона з подальшим стрімким підйомом. Таким чином, при десятиметровому ми не отримаємо зрозумілої характеристики подібних ділянок за допомогою відношення.

З проведеного міркування слідує висновок - чим менше значення тим точніше ми опишемо рельєф дороги. Більше того, справедливі такі факти:

Для будь-якоїточки підйомів можна підібрати значення (нехай і дуже мале), що вміщається у межах тієї чи іншої підйому. А це означає, що відповідне збільшення висоти буде гарантовано позитивним, і нерівність коректно вкаже зростання функції в кожній точці цих інтервалів.

– Аналогічно, для будь-якоїточки схилу існує значення, яке повністю вміститься на цьому схилі. Отже, відповідне збільшення висоти однозначно негативно, і нерівність коректно покаже зменшення функції в кожній точці даного інтервалу.

– Особливо цікавий випадок, коли швидкість зміни функції дорівнює нулю: . По-перше, нульове збільшення висоти () – ознака рівного шляху. А по-друге, є інші цікаві ситуації, приклади яких ви бачите на малюнку. Уявіть, що доля завела нас на саму вершину пагорба з орлами, що ширяють, або дно яру з жабами, що квакають. Якщо зробити невеликий крок у будь-який бік, то зміна висоти буде дуже мало, і можна сказати, що швидкість зміни функції фактично нульова. У точках спостерігається саме така картина.

Таким чином, ми підійшли до дивовижної можливості ідеально точно охарактеризувати швидкість зміни функції. Адже математичний аналіздозволяє спрямувати збільшення аргументу до нуля: , тобто зробити його нескінченно малим.

За підсумком виникає ще одне закономірне питання: чи можна для дороги та її графіка знайти іншу функцію, яка повідомляла б нампро всі рівні ділянки, підйоми, спуски, вершини, низини, а також про швидкість зростання/зменшення в кожній точці шляху?

Що таке похідна? Визначення похідної.
Геометричний зміст похідної та диференціала

Будь ласка, прочитайте вдумливо та не надто швидко – матеріал простий та доступний кожному! Нічого страшного, якщо подекуди щось здасться не дуже зрозумілим, до статті завжди можна повернутися пізніше. Скажу більше, теорію корисно проштудувати кілька разів, щоб якісно усвідомити всі моменти (рада особливо актуальна для студентів-«технарів», у яких вища математикавідіграє значну роль у навчальному процесі).

Звичайно, і в самому визначенні похідної в точці замінимо на :

До чого ми дійшли? А дійшли ми до того, що для функції згідно із законом ставиться у відповідність інша функція, яка називається похідною функцією(або просто похідною).

Похідна характеризує швидкість змінифункції. Яким чином? Думка йде червоною ниткою від початку статті. Розглянемо деяку точку області визначенняфункції. Нехай функція диференційована у цій точці. Тоді:

1) Якщо , то функція зростає у точці . І, очевидно, існує інтервал(нехай навіть дуже малий), що містить точку , у якому функція зростає, та її графік йде «знизу нагору».

2) Якщо , то функція зменшується у точці . І є інтервал, що містить точку , у якому функція зменшується (графік йде «згори донизу»).

3) Якщо , то нескінченно близькоПри точці функція зберігає свою швидкість постійної. Так буває, як зазначалося, у функції-константи та у критичних точках функції, зокрема у точках мінімуму та максимуму.

Трохи семантики. Що в широкому значенніозначає дієслово «диференціювати»? Диференціювати – це означає виділити будь-яку ознаку. Диференціюючи функцію , ми «виділяємо» швидкість її у вигляді похідної функції . А що, до речі, розуміється під словом похідна? Функція відбуласявід функції.

Терміни дуже вдало тлумачить механічний зміст похідної. :
Розглянемо закон зміни координати тіла, що залежить від часу, та функцію швидкості руху даного тіла. Функція характеризує швидкість зміни координати тіла, тому першої похідної функції за часом: . Якби в природі не існувало поняття «рух тіла», то не існувало б і похідногопоняття "швидкість тіла".

Прискорення тіла – це швидкість зміни швидкості, тому: . Якби в природі не існувало вихідних понять"рух тіла" і "швидкість руху тіла", то не існувало б і похідногопоняття «прискорення тіла».

Обчислення похідної- одна з самих важливих операційу диференціальному обчисленні. Нижче наводиться таблиця знаходження похідних простих функцій. Більше складні правиладиференціювання дивіться в інших уроках:
  • Таблиця похідних експоненційних та логарифмічних функцій
Наведені формули використовуйте як довідкові значення. Вони допоможуть у вирішенні диференціальних рівняньта завдань. На малюнку, в таблиці похідних простих функцій, наведена "шпаргалка" основних випадків знаходження похідної у зрозумілому для застосування вигляді, поряд з ним дано пояснення для кожного випадку.

Похідні простих функцій

1. Похідна від числа дорівнює нулю
с = 0
Приклад:
5 '= 0

Пояснення:
Похідна показує швидкість зміни значення функції за зміни аргументу. Оскільки число ніяк не змінюється за жодних умов - швидкість його зміни завжди дорівнює нулю.

2. Похідна змінноїдорівнює одиниці
x' = 1

Пояснення:
При кожному збільшенні аргументу (х) на одиницю значення функції (результату обчислень) збільшується на цю саму величину. Таким чином, швидкість зміни значення функції y = x точно дорівнює швидкості зміни значення аргументу.

3. Похідна змінної та множника дорівнює цьому множнику
сx = с
Приклад:
(3x)' = 3
(2x)' = 2
Пояснення:
В даному випадку, при кожній зміні аргументу функції ( х) її значення (y) зростає в зразів. Таким чином, швидкість зміни значення функції по відношенню до швидкості зміни аргументу точно дорівнює величині з.

Звідки випливає, що
(cx + b)" = c
тобто диференціал лінійної функції y=kx+b дорівнює кутовому коефіцієнтунахилу прямий (k).


4. Похідна змінною за модулемдорівнює частці цієї змінної до її модуля
|x|"= x / | x | за умови, що х ≠ 0
Пояснення:
Оскільки похідна змінної (див. формулу 2) дорівнює одиниці, похідна модуля відрізняється лише тим, що значення швидкості зміни функції змінюється на протилежне при перетині точки початку координат (спробуйте намалювати графік функції y = | x | і переконайтеся в цьому самі. Саме таке значення і повертає вираз x / |x|.< 0 оно равно (-1), а когда x >0 – одиниці. Тобто при негативних значенняхзмінної х при кожному збільшенні зміні аргументу значення функції зменшується на таке саме значення, а при позитивних - навпаки, зростає, але точно на таке ж значення.

5. Похідна змінної у ступенідорівнює добутку числа цього ступеня та змінної до ступеня, зменшеної на одиницю
(x c)" = cx c-1, за умови, що x c і сx c-1 визначені а з ≠ 0
Приклад:
(x 2)" = 2x
(x 3)" = 3x 2
Для запам'ятовування формули:
Знесіть ступінь змінної "вниз" як множник, а потім зменшіть самий ступінь на одиницю. Наприклад, для x 2 - двійка виявилася попереду ікса, та був зменшена ступінь (2-1=1) просто дала нам 2х. Те саме сталося для x 3 - трійку "спускаємо вниз", зменшуємо її на одиницю і замість куба маємо квадрат, тобто 3x2. Дещо "не науково", але дуже просто запам'ятати.

6.Похідна дроби 1/х
(1/х)" = - 1 / x 2
Приклад:
Оскільки дріб можна уявити як зведення в негативний ступінь
(1/x)" = (x -1)" , Тоді можна застосувати формулу з правила 5 похідних таблиці
(x -1)" = -1x -2 = - 1 / х 2

7. Похідна дроби зі змінним довільним ступенему знаменнику
(1 / x c)" = - c/x c+1
Приклад:
(1/x2)" = - 2/x3

8. Похідне коріння(Похідна змінної під квадратним коренем)
(√x)" = 1 / (2√x)або 1/2 х -1/2
Приклад:
(√x)" = (х 1/2)" означає можна застосувати формулу з правила 5
(х 1/2)" = 1/2 х -1/2 = 1 / (2√х)

9. Похідна змінної під коренем довільного ступеня
(n√x)" = 1 / (nn√xn-1)

Зміст статті

ВИРОБНИЧА-Похідної функції y = f(x), заданої на деякому інтервалі ( a, b) у точці xцього інтервалу називається межа, до якої прагне відношення збільшення функції fу цій точці до відповідного збільшення аргументу, коли збільшення аргументу прагне до нуля.

Похідну прийнято позначати так:

Широко використовуються й інші позначення:

Миттєва швидкість.

Нехай крапка Mрухається прямою. Відстань sточки, що рухається, що відраховується від деякого початкового її положення M 0 , залежить від часу t, тобто. sє функція часу t: s= f(t). Нехай у певний момент часу tточка, що рухається Mзнаходилась на відстані sвід початкового становища M 0, а в деякий наступний момент t+ D tопинилася в положенні M 1 - на відстані s+ D sвід початкового положення ( див. рис.).

Таким чином, за проміжок часу D tвідстань sзмінилося на величину D s. І тут кажуть, що з проміжок часу D tвеличина sотримала приріст D s.

Середня швидкість не може у всіх випадках точно охарактеризувати швидкість переміщення точки. Mу момент часу t. Якщо, наприклад, тіло на початку проміжку D tпереміщалося дуже швидко, а в кінці дуже повільно, то Середня швидкістьне зможе відобразити зазначених особливостей руху точки і дати уявлення про справжню швидкість її руху в момент t. Щоб точніше виразити справжню швидкість за допомогою середньої швидкості, треба взяти менший проміжок часу D t. Найбільш повно характеризує швидкість руху точки у момент tта межа, до якої прагне середня швидкість при D t® 0. Цю межу називають швидкістю руху в даний момент:

Таким чином, швидкістю руху в даний момент називається межа відношення збільшення шляху D sдо збільшення часу D t, коли приріст часу прагне до нуля. Так як

Геометричне значення похідної. Дотична до графіка функції.

Побудова дотичних – одне з завдань, які призвели до народження диференціального обчислення. Перша опублікована праця, що відноситься до диференціального обчислення та що належить перуЛейбниця, мав назву Новий методмаксимумів і мінімумів, а також дотичних, для якого не є перешкодою ні дробові, ні ірраціональні величини, і особливий для цього рід обчислення.

Нехай крива є графік функції y =f(x) в прямокутної системикоординат ( см. Рис.).

За деякого значення xфункція має значення y =f(x). Цим значенням xі yна кривій відповідає точка M 0(x, y). Якщо аргументу xдати приріст D x, то нове значення аргументу x+ D xвідповідає нове значення функції y+ D y = f(x + D x). Відповідною йому точкою кривою буде точка M 1(x+ D x,y+ D y). Якщо провести січну M 0M 1 і позначити через j кут, утворений січною з позитивним напрямком осі Ox, З малюнка безпосередньо видно, що .

Якщо тепер D xпрагне до нуля, то точка M 1 переміщається вздовж кривої, наближаючись до точки M 0, і кут j змінюється зі зміною D x. При Dx® 0 кут j прагне до деякої межі a і пряма, що проходить через точку M 0 і складова з позитивним напрямом осі абсцис кут a буде шуканою дотичною. Її кутовий коефіцієнт:

Отже, f´( x) = tga

тобто. значення похідної f´( x) при даному значенніаргументу xдорівнює тангенсу кута, утвореного дотичною до графіка функції f(x) в відповідної точки M 0(x,y) з позитивним напрямом осі Ox.

Диференційність функцій.

Визначення. Якщо функція y = f(x) має похідну в точці x = x 0, то функція диференційована у цій точці.

Безперервність функції, що має похідну. Теорема.

Якщо функція y = f(x) диференційована в деякій точці x = x 0, то вона у цій точці безперервна.

Таким чином, у точках розриву функція не може мати похідну. Зворотний висновок не так, тобто. з того, що в якійсь точці x = x 0 функція y = f(x) безперервна годі було, що у цій точці диференційована. Наприклад, функція y = |x| безперервна для всіх x(–Ґ х x = 0 не має похідної. У цій точці не існує дотичної до графіка. Є права дотична та ліва, але вони не збігаються.

Деякі теореми про функції, що диференціюються. Теорема про коріння похідної (теорема Роля).Якщо функція f(x) безперервна на відрізку [a,b], що диференціюється у всіх внутрішніх точкахцього відрізка та на кінцях x = aі x = bзвертається в нуль ( f(a) = f(b) = 0), то всередині відрізка [ a,b] існує, принаймні одна, точка x= з, a c b, у якій похідна fў( x) перетворюється на нуль, тобто. fў( c) = 0.

Теорема про кінцеві прирости (теорема Лагранжа).Якщо функція f(x) безперервна на відрізку [ a, b] і диференційована у всіх внутрішніх точках цього відрізка, то всередині відрізка [ a, b] знайдеться принаймні одна точка з, a c b, що

f(b) – f(a) = fў( c)(ba).

Теорема про відношення збільшення двох функцій (теорема Коші).Якщо f(x) та g(x) – дві функції, безперервні на відрізку [a, b] та диференційовані у всіх внутрішніх точках цього відрізка, причому gў( x) ніде всередині цього відрізка не перетворюється на нуль, то всередині відрізка [ a, b] знайдеться така точка x = з, a c b, що

Похідні різних систем.

Нехай функція y =f(x) диференційована на деякому відрізку [ a, b]. Значення похідної f ў( x), взагалі кажучи, залежать від x, тобто. похідна f ў( x) являє собою також функцію від x. При диференціації цієї функції виходить так звана друга похідна функції f(x), яка позначається f ўў ( x).

Похідний n-го порядку від функції f(x) називається похідна (першого порядку) від похідної n- 1- го і позначається символом y(n) = (y(n- 1)) в.

Диференціали різних систем.

Диференціал функції y = f(x), де x- незалежна змінна, є dy = f ў( x)dx, деяка функція від x, але від xможе залежати лише перший співмножник f ў( x), другий же співмножник ( dx) є збільшенням незалежної змінної xі значення цієї змінної залежить. Так як dyє функція від x, можна визначити диференціал цієї функції. Диференціал від диференціалу функції називається другим диференціалом або диференціалом другого порядку цієї функції та позначається d 2y:

d(dx) = d 2y = f ўў( x)(dx) 2 .

Диференціалом n-го порядку називається перший диференціал від диференціала n- 1- го порядку:

d n y = d(d n–1y) = f(n)(x)dx(n).

Приватна похідна.

Якщо функція залежить не від одного, а від кількох аргументів x i(iзмінюється від 1 до n,i= 1, 2,… n),f(x 1,x 2,… x n), то в диференціальному обчисленні вводиться поняття приватної похідної, яка характеризує швидкість зміни функції кількох змінних, коли змінюється лише один аргумент, наприклад, x i. Приватна похідна 1-го порядку по x iвизначається як звичайна похідна, у своїй передбачається, що це аргументи, крім x i, зберігають постійні значення. Для приватних похідних вводяться позначення

Певні таким чином приватні похідні одного порядку (як функції тих самих аргументів) можуть, своєю чергою, також мати приватні похідні, це приватні похідні другого порядку і т.д. Взяті з різних аргументів такі похідні називаються змішаними. Безперервні змішані похідні одного порядку не залежить від порядку диференціювання і рівні між собою.

Ганна Чугайнова

У проміжку ( а,b), а х- є випадково обраною точкою цього проміжку. Дамо аргументу х прирістΔх (позитивне чи негативне).

Функція у =f(x) отримає збільшення Δу рівне:

Δy = f(x + Δx)-f(x).

При нескінченно малому Δх прирістΔу теж нескінченно мало.

Наприклад:

Розглянемо рішення похідної функції з прикладу вільного падіннятіла.

Оскільки t 2 = t l + Δt, то

.

Обчисливши межу, знайдемо:

Позначення t 1 вводиться для підкреслення сталості t при обчисленні межі функції. Оскільки t 1 є довільним значенням часу, індекс 1 можна відкинути; тоді отримуємо:

Видно, що швидкість v,як і шлях s, є функціячасу. Вид функції vЦілком залежить від виду функції s, так що функція sяк би «виробляє» функцію v. Звідси назва « похідна функція».

Розглянь ще один приклад.

Знайти значення похідної функції:

у = х 2при х = 7.

Рішення. При х = 7маємо у = 7 2 = 49. Дамо аргументу хприріст Δ х. Аргумент стане рівним 7 + Δ х, а функція отримає значення (7 + Δ х) 2.

Початковий рівень

Похідна функції. Вичерпне керівництво (2019)

Уявімо пряму дорогу, що проходить по горбистій місцевості. Тобто вона йде то вгору, то вниз, але праворуч чи ліворуч не повертає. Якщо вісь направити вздовж дороги горизонтально, а вертикально, то лінія дороги буде дуже схожа на графік якоїсь безперервної функції:

Вісь - це певний рівень нульової висоти, в житті ми використовуємо як рівень моря.

Рухаючись вперед такою дорогою, ми також рухаємося вгору або вниз. Також можемо сказати: при зміні аргументу (просування вздовж осі абсцис) змінюється значення функції (рух вздовж осі ординат). А тепер давай подумаємо, як визначити «крутість» нашої дороги? Що може бути за величина? Дуже просто: на скільки зміниться висота під час просування вперед на певну відстань. Адже на різних ділянках дороги, просуваючись вперед (вздовж осі абсцис) на один кілометр, ми піднімемося або опустимося на різна кількістьметрів щодо рівня моря (вздовж осі ординат).

Просування вперед позначимо (читається "дельта ікс").

Грецьку букву (дельта) в математиці зазвичай використовують як приставку, що означає зміну. Тобто – це зміна величини, – зміна; тоді що таке? Правильно, зміна величини.

Важливо: вираз – це єдине ціле, одна змінна. Ніколи не можна відривати «дельту» від «ікса» чи будь-якої іншої літери! Тобто, наприклад, .

Отже, ми просунулися вперед, по горизонталі, на. Якщо лінію дороги ми порівнюємо з графіком функції, як ми позначимо підйом? Звичайно, . Тобто, при просуванні вперед на ми піднімаємось вище.

Величину порахувати легко: якщо спочатку ми знаходилися на висоті, а після переміщення опинилися на висоті, то. Якщо кінцева точкавиявилася нижчою за початкову, буде негативною - це означає, що ми не піднімаємося, а спускаємося.

Повернемося до «крутості»: це величина, яка показує, наскільки сильно (круто) збільшується висота при переміщенні вперед на одиницю відстані:

Припустимо, що на якійсь ділянці шляху під час просування на км дорога піднімається нагору на км. Тоді крутість у цьому місці дорівнює. А якщо дорога при просуванні на м опустилася на кілометр? Тоді крутість дорівнює.

А тепер розглянемо вершину якогось пагорба. Якщо взяти початок ділянки за півкілометра до вершини, а кінець через півкілометра після нього, видно, що висота практично однакова.

Тобто за нашою логікою виходить, що крутість тут майже дорівнює нулю, що явно не відповідає дійсності. Просто на відстані в кілометрах може багато чого змінитися. Потрібно розглядати більш маленькі ділянки для більш адекватної та точної оцінки крутості. Наприклад, якщо вимірювати зміну висоти при переміщенні на один метр, результат буде набагато точнішим. Але й цієї точності нам може бути недостатньо - адже якщо посеред дороги стоїть стовп, ми можемо просто проскочити. Яку відстань тоді виберемо? Сантиметр? Міліметр? Чим менше тим краще!

У реального життявимірювати відстань з точністю до міліметра - більш ніж достатньо. Але математики завжди прагнуть досконалості. Тому було вигадано поняття нескінченно малого, тобто величина по модулю менше за будь-яке число, яке тільки можемо назвати. Наприклад, ти скажеш: одна трильйонна! Куди менше? А ти поділи це число на - і буде ще менше. І так далі. Якщо хочемо написати, що величина нескінченно мала, пишемо так: (читаємо «ікс прагне нуля»). Дуже важливо розуміти, що це число не дорівнює нулю!Але дуже близько до нього. Це означає, що на нього можна ділити.

Поняття, протилежне нескінченно малому – нескінченно велике (). Ти вже напевно стикався з ним, коли займався нерівностями: це число за модулем більше за будь-яке число, яке тільки можеш придумати. Якщо ти придумав найбільше з можливих чисел, просто помнож його на два, і вийде ще більше. А нескінченність ще більш тогощо вийде. Фактично нескінченно велике і нескінченно мале обернені один одному, тобто при, і навпаки: при.

Тепер повернемось до нашої дороги. Ідеально порахована крутість - це куртизна, обчислена для нескінченно малого відрізка шляху, тобто:

Зауважу, що при нескінченно малому переміщенні зміна висоти теж буде нескінченно малою. Але нагадаю, нескінченно мале - не означає рівне нулю. Якщо поділити один на одного нескінченно малі числа, може вийти цілком звичайне числонаприклад, . Тобто одна мала величина може бути рівно в рази більша за іншу.

Навіщо все це? Дорога, крутість… Адже ми не в автопробіг вирушаємо, а математику вчимо. А в математиці все так само, тільки називається по-іншому.

Поняття похідної

Похідна функції це відношення збільшення функції до збільшення аргументу при нескінченно малому збільшення аргументу.

Збільшенняму математиці називають зміну. Те, наскільки змінився аргумент () при просуванні вздовж осі, називається збільшенням аргументуі позначається Те, наскільки змінилася функція (висота) при просуванні вперед уздовж осі на відстань, називається збільшенням функціїта позначається.

Отже, похідна функції – це відношення до при. Позначаємо похідну тією ж літерою, що й функцію, тільки зі штрихом зверху праворуч: або просто. Отже, запишемо формулу похідної, використовуючи ці позначення:

Як і в аналогії з дорогою тут при зростанні функції похідна позитивна, а при зменшенні негативна.

А чи похідна буває дорівнює нулю? Звичайно. Наприклад, якщо ми їдемо рівною горизонтальною дорогою, крутість дорівнює нулю. І справді, висота ж не зовсім змінюється. Так і з похідною: похідна постійної функції(Константи) дорівнює нулю:

оскільки збільшення такої функції дорівнює нулю за будь-якого.

Давай згадаємо приклад із вершиною пагорба. Там виходило, що можна так розташувати кінці відрізка по різні сторонивід вершини, що висота на кінцях виявляється однаковою, тобто відрізок розташовується паралельно осі:

Але великі відрізки – ознака неточного виміру. Підніматимемо наш відрізок вгору паралельно самому собі, тоді його довжина буде зменшуватися.

Зрештою, коли ми будемо нескінченно близькі до вершини, довжина відрізка стане нескінченно малою. Але при цьому він залишився паралельний осі, тобто різниця висот на його кінцях дорівнює нулю (не прагне, а саме дорівнює). Значить, похідна

Зрозуміти це можна так: коли ми стоїмо на самій вершині, дрібне зміщення вліво чи вправо змінює нашу висоту мізерно мало.

Є й суто алгебраїчне пояснення: лівіше вершини функція зростає, а правіше - зменшується. Як ми вже з'ясували раніше, у разі зростання функції похідна позитивна, а при зменшенні - негативна. Але змінюється вона плавно, без стрибків (бо дорога ніде не змінює нахил різко). Тому між негативними та позитивними значеннямиобов'язково має бути. Він і буде там, де функція не збільшується, не зменшується - у точці вершини.

Те саме справедливо і для западини (область, де функція зліва зменшується, а праворуч - зростає):

Трохи докладніше про збільшення.

Отже, ми змінюємо аргумент на величину. Змінюємо від якого значення? Яким він (аргумент) тепер став? Можемо вибрати будь-яку точку, і зараз від неї танцюватимемо.

Розглянемо точку з координатою. Значення функції у ній одно. Потім робимо те саме збільшення: збільшуємо координату на. Чому тепер рівний аргумент? Дуже легко: . А чому тепер дорівнює значення функції? Куди аргумент, туди та функція: . А що із збільшенням функції? Нічого нового: це, як і раніше, величина, на яку змінилася функція:

Потренуйся знаходити збільшення:

  1. Знайди збільшення функції в точці при збільшенні аргументу, що дорівнює.
  2. Те саме для функції в точці.

Рішення:

У різних точкахпри тому самому збільшенні аргументу збільшення функції буде різним. Значить, і похідна у кожній точці своя (це ми обговорювали на самому початку - крутість дороги у різних точках різна). Тому коли пишемо похідну, треба зазначати, в якій точці:

Ступінна функція.

Ступіньною називають функцію, де аргумент певною мірою (логічно, так?).

Причому - будь-якою мірою: .

Найпростіший випадок- це коли показник ступеня:

Знайдемо її похідну у точці. Згадуємо визначення похідної:

Отже, аргумент змінюється з до. Яке збільшення функції?

Приріст – це. Але функція у будь-якій точці дорівнює своєму аргументу. Тому:

Похідна дорівнює:

Похідна від рівна:

b) Тепер розглянемо квадратичну функцію (): .

А тепер згадаємо, що. Це означає, що значення приросту можна знехтувати, оскільки воно нескінченно мало, і тому незначно на тлі іншого доданку:

Отже, у нас народилося чергове правило:

c) Продовжуємо логічний ряд: .

Цей вираз можна спростити по-різному: розкрити першу дужку за формулою скороченого множення куб суми, або розкласти весь вираз на множники за формулою різниці кубів. Спробуй зробити це сам будь-яким із запропонованих способів.

Отже, у мене вийшло таке:

І знову пригадаємо, що. Це означає, що можна знехтувати всіма складовими, що містять:

Отримуємо: .

d) Аналогічні правила можна отримати і для більших ступенів:

e) Виявляється, це правило можна узагальнити для статечної функції з довільним показником, навіть не цілим:

(2)

Можна сформулювати правило словами: "ступінь виноситься вперед як коефіцієнт, а потім зменшується на".

Доведемо це правило пізніше (майже наприкінці). А зараз розглянемо кілька прикладів. Знайди похідну функцій:

  1. (двома способами: за формулою та використовуючи визначення похідної - порахувавши збільшення функції);
  1. . Не повіриш, але це статечна функція. Якщо у тебе виникли питання на кшталт «Як це? А де ж ступінь?», Згадуй тему «»!
    Так-так, корінь - це теж ступінь, лише дрібна: .
    Отже, наш квадратний корінь- це лише ступінь із показником:
    .
    Похідну шукаємо за нещодавно вивченою формулою:

    Якщо тут знову стало незрозуміло, повторюй тему « »!!! (про ступінь з негативним показником)

  2. . Тепер показник ступеня:

    А тепер через визначення (не забув ще?):
    ;
    .
    Тепер, як завжди, нехтуємо доданком, що містить:
    .

  3. . Комбінація попередніх випадків: .

Тригонометричні функції.

Тут будемо використовувати один факт із вищої математики:

При виразі.

Доказ ти дізнаєшся на першому курсі інституту (а щоб там опинитися, треба добре здати ЄДІ). Зараз лише покажу це графічно:

Бачимо, що при функції не існує - точка на графіку виколота. Але що ближче до значення, то ближче функція до. Це і є те саме «прагне».

Додатково можна перевірити це правило за допомогою калькулятора. Так-так, не соромся, бери калькулятор, адже ми не на ЄДІ ще.

Отже, пробуємо: ;

Не забудь перевести калькулятор у режим Радіани!

і т.д. Бачимо, що менше, тим ближче значення ставлення до.

a) Розглянемо функцію. Як завжди, знайдемо її збільшення:

Перетворимо різницю синусів на твір. І тому використовуємо формулу (згадуємо тему « »): .

Тепер похідна:

Зробимо заміну: . Тоді при нескінченно малому і нескінченно мало: . Вираз для набуває вигляду:

А тепер згадуємо, що при виразі. А також, що якщо нескінченно малою величиною можна знехтувати суму (тобто при).

Отже, отримуємо наступне правило:похідна синуса дорівнює косінусу:

Це базові («табличні») похідні. Ось вони одним списком:

Пізніше ми до них додамо ще кілька, але ці найважливіші, оскільки використовуються найчастіше.

Потренуйся:

  1. Знайди похідну функції у точці;
  2. Знайди похідну функцію.

Рішення:

  1. Спершу знайдемо похідну в загальному вигляді, а потім підставимо замість його значення:
    ;
    .
  2. Тут у нас щось схоже на статечну функцію. Спробуємо привести її до
    нормальному вигляду:
    .
    Відмінно тепер можна використовувати формулу:
    .
    .
  3. . Ееєєєє….. Що це????

Гаразд, ти маєш рацію, такі похідні знаходити ми ще не вміємо. Тут ми маємо комбінацію кількох типів функцій. Щоб працювати з ними, потрібно вивчити ще кілька правил:

Експонента та натуральний логарифм.

Є в математиці така функція, похідна якої за будь-якого дорівнює значенню самої функції при цьому. Називається вона «експонента» і є показовою функцією

Підстава цієї функції – константа – це нескінченна десятковий дрібтобто число ірраціональне (таке як). Його називають число Ейлера, тому і позначають буквою.

Отже, правило:

Запам'ятати дуже просто.

Ну і не будемо далеко ходити, одразу ж розглянемо зворотну функцію. Яка функція є зворотною для показової функції? Логарифм:

У нашому випадку основою є число:

Такий логарифм (тобто логарифм із основою) називається «натуральним», і для нього використовуємо особливе позначення: замість пишемо.

Чому дорівнює? Звичайно ж, .

Похідна від натурального логарифму теж дуже проста:

Приклади:

  1. Знайди похідну функцію.
  2. Чому дорівнює похідна функції?

Відповіді: Експонента та натуральний логарифм- Функції унікально прості з точки зору похідної. Показові та логарифмічні функції з будь-якою іншою основою будуть мати іншу похідну, яку ми з тобою розберемо пізніше, після того як пройдемо правиладиференціювання.

Правила диференціювання

Правила чого? Знову новий термін, знову?!

Диференціювання- Це процес знаходження похідної.

Тільки і всього. А як ще назвати цей процес одним словом? Не производнование ж... Диференціалом математики називають те саме збільшення функції при. Походить цей термін від латинського differentia - різниця. Ось.

При виведенні всіх цих правил використовуватимемо дві функції, наприклад, в. Нам знадобляться також формули їх прирощень:

Усього є 5 правил.

Константа виноситься за знак похідної.

Якщо – якесь постійне число(Константа), тоді.

Очевидно, це правило працює і для різниці: .

Доведемо. Нехай, чи простіше.

приклади.

Знайдіть похідні функції:

  1. у точці;
  2. у точці;
  3. у точці;
  4. у точці.

Рішення:

  1. (Похідна однакова у всіх точках, так як це лінійна функція, Пам'ятаєш?);

Похідна робота

Тут все аналогічно: введемо нову функціюі знайдемо її приріст:

Похідна:

Приклади:

  1. Знайдіть похідні функцій та;
  2. Знайдіть похідну функцію в точці.

Рішення:

Похідна показової функції

Тепер твоїх знань достатньо, щоб навчитися знаходити похідну будь-якої показової функції, а не лише експоненти (не забув ще, що це таке?).

Отже, де – це якесь число.

Ми вже знаємо похідну функцію, тому давай спробуємо привести нашу функцію до нової основи:

Для цього скористаємося простим правилом: . Тоді:

Ну ось, вийшло. Тепер спробуй знайти похідну, і не забудь, що ця функція – складна.

Вийшло?

Ось, перевір себе:

Формула вийшла дуже схожа на похідну експоненти: як було, так і залишилося, з'явився лише множник, який є просто числом, але не змінною.

Приклади:
Знайди похідні функції:

Відповіді:

Це просто число, яке неможливо порахувати без калькулятора, тобто ніяк не записати до більш простому вигляді. Тому у відповіді його у такому вигляді і залишаємо.

Похідна логарифмічна функція

Тут аналогічно: ти вже знаєш похідну від натурального логарифму:

Тому, щоб знайти довільну від логарифму з іншою основою, наприклад:

Потрібно привести цей логарифм до основи. А як змінити основу логарифму? Сподіваюся, ти пам'ятаєш цю формулу:

Тільки тепер замість писатимемо:

У знаменнику вийшла просто константа (постійне число без змінної). Похідна виходить дуже просто:

Похідні показової та логарифмічні функціїмайже не зустрічаються в ЄДІ, але не зайве знати їх.

Похідна складна функція.

Що таке " складна функція»? Ні, це не логарифм і не арктангенс. Дані функції може бути складними для розуміння (хоча, якщо логарифм тобі здається складним, прочитай тему «Логарифми» і все пройде), але з точки зору математики слово «складна» не означає «важка».

Уяви собі маленький конвеєр: сидять дві людини і роблять якісь дії з якимись предметами. Наприклад, перший загортає шоколадку в обгортку, а другий обв'язує її стрічкою. Виходить такий складовий об'єкт: шоколадка, обгорнена та обв'язана стрічкою. Щоб з'їсти шоколадку, тобі потрібно зробити зворотні діїв зворотному порядку.

Давай створимо подібний математичний конвеєр: спочатку знаходитимемо косинус числа, а потім отримане число зводитимемо в квадрат. Отже, нам дають число (шоколадка), я знаходжу його косинус (обгортка), а ти потім зводиш те, що в мене вийшло, у квадрат (обв'язуєш стрічкою). Що вийшло? функція. Це і є приклад складної функції: коли для знаходження її значення ми робимо першу дію безпосередньо зі змінною, а потім ще другу дію з тим, що вийшло в результаті першого.

Ми цілком можемо робити ті ж дії і в зворотному порядку: спочатку ти зводиш у квадрат, а потім шукаю косинус отриманого числа: . Нескладно здогадатися, що результат майже завжди буде різним. Важлива особливістьскладних функцій: зміна порядку дій функція змінюється.

Іншими словами, складна функція – це функція, аргументом якої є інша функція: .

Для першого прикладу .

Другий приклад: (те саме). .

Дію, яку робимо останнім, називатимемо "зовнішньої" функцією, а дія, що чиниться першим - відповідно «внутрішньою» функцією(це неформальні назви, я їх вживаю лише для того, щоб пояснити матеріал простою мовою).

Спробуй визначити сам, яка функція є зовнішньою, а яка внутрішньою:

Відповіді:Поділ внутрішньої та зовнішньої функцій дуже схожий заміну змінних: наприклад, у функції

  1. Першим виконуватимемо яку дію? Спершу порахуємо синус, а потім зведемо в куб. Отже, внутрішня функція, а зовнішня.
    А вихідна функція є їх композицією: .
  2. Внутрішня: ; зовнішня: .
    Перевірка: .
  3. Внутрішня: ; зовнішня: .
    Перевірка: .
  4. Внутрішня: ; зовнішня: .
    Перевірка: .
  5. Внутрішня: ; зовнішня: .
    Перевірка: .

виконуємо заміну змінних та отримуємо функцію.

Ну що ж, тепер витягуватимемо нашу шоколадку - шукати похідну. Порядок дій завжди зворотний: спочатку шукаємо похідну зовнішньої функції, потім множимо результат на похідну внутрішньої функції. Стосовно вихідного прикладу це так:

Інший приклад:

Отже, сформулюємо, нарешті, офіційне правило:

Алгоритм знаходження похідної складної функції:

Начебто все просто, так?

Перевіримо на прикладах:

Рішення:

1) Внутрішня: ;

Зовнішня: ;

2) Внутрішня: ;

(Тільки не здумай тепер скоротити на! З-під косинуса нічого не виноситься, пам'ятаєш?)

3) Внутрішня: ;

Зовнішня: ;

Відразу видно, що тут трирівнева складна функція: адже - це вже сама по собі складна функція, а з неї витягаємо корінь, тобто виконуємо третю дію (шоколадку в обгортці і з стрічкою кладемо в портфель). Але лякатися немає причин: все одно «розпаковувати» цю функцію будемо в тому ж порядку, що і зазвичай: з кінця.

Тобто спершу продиференціюємо корінь, потім косинус, і лише потім вираз у дужках. А потім все це перемножимо.

У разі зручно пронумерувати дії. Тобто уявімо, що нам відомий. У якому порядку робитимемо дії, щоб обчислити значення цього виразу? Розберемо з прикладу:

Чим пізніше відбувається дія, тим більше «зовнішньої» буде відповідна функція. Послідовність дій - як і раніше:

Тут вкладеність взагалі 4-рівнева. Давайте визначимо порядок дій.

1. Підкорене вираз. .

2. Корінь. .

3. Синус. .

4. Квадрат. .

5. Збираємо все до купи:

ВИРОБНИЧА. КОРОТКО ПРО ГОЛОВНЕ

Похідна функції- Відношення збільшення функції до збільшення аргументу при нескінченно малому збільшення аргументу:

Базові похідні:

Правила диференціювання:

Константа виноситься за знак похідної:

Похідна сума:

Похідна робота:

Похідна приватна:

Похідна складної функції:

Алгоритм знаходження похідної від складної функції:

  1. Визначаємо "внутрішню" функцію, знаходимо її похідну.
  2. Визначаємо "зовнішню" функцію, знаходимо її похідну.
  3. Помножуємо результати першого та другого пунктів.


Останні матеріали розділу:

Найкращі тексти в прозі для заучування напам'ять (середній шкільний вік) Поганий звичай
Найкращі тексти в прозі для заучування напам'ять (середній шкільний вік) Поганий звичай

Чингіз Айтматов. "Материнське поле". Сцена швидкоплинної зустрічі матері з сином біля поїзда. Погода була, як і вчора, вітряна, холодна. Недарма...

Чому я така дура Я не така як усі або як жити в гармонії
Чому я така дура Я не така як усі або як жити в гармонії

Про те, що жіноча психологія - штука загадкова і малозрозуміла, здогадувалися чоловіки всіх часів та народів. Кожна представниця прекрасного...

Як змиритися з самотністю
Як змиритися з самотністю

Лякає. Вони уявляють, як у старості сидітимуть на кріслі-гойдалці, погладжуватимуть кота і споглядатимуть захід сонця. Але як змиритися з самотністю? Стоїть...