Як знайти похідну складної функції зі ступенем. Похідна e у ступені x та показової функції

Складні похідні. Логарифмічна похідна.
Похідна статечно- показової функції

Продовжуємо підвищувати свою техніку диференціювання. На цьому уроці ми закріпимо пройдений матеріал, розглянемо складніші похідні, а також познайомимося з новими прийомами та хитрощами знаходження похідної, зокрема з логарифмічною похідною.

Тим читачам, у кого низький рівеньпідготовки, слід звернутися до статті Як знайти похідну? Приклади рішеньяка дозволить підняти свої навички практично з нуля. Далі необхідно уважно вивчити сторінку Похідна складної функції, зрозуміти та вирішувати всінаведені приклади. Цей уроклогічно третій за рахунком, і після його освоєння Ви впевнено диференціюватимете досить складні функції. Небажано дотримуватись позиції «Куди ще? Та й так вистачить!», оскільки всі приклади та прийоми рішення взято з реальних контрольних робітта часто зустрічаються на практиці.

Почнемо із повторення. На уроці Похідна складної функціїми розглянули низку прикладів із докладними коментарями. Під час вивчення диференціального обчислення та інших розділів математичного аналізу- диференціювати доведеться дуже часто, і не завжди буває зручно (та й не завжди потрібно) розписувати приклади дуже докладно. Тому ми потренуємося в усному знаходженні похідних. Найкращими «кандидатами» для цього є похідні найпростіших із складних функцій, наприклад:

За правилом диференціювання складної функції :

При вивченні інших тем матану в майбутньому такий докладний запис найчастіше не потрібний, передбачається, що студент вміє знаходити подібні похідні на автопілоті автоматі. Припустимо, що о 3 годині ночі пролунав телефонний дзвінок, і приємний голосспитав: «Чому дорівнює похідна тангенсу двох ікс?». На це має бути майже миттєва і ввічлива відповідь: .

Перший приклад буде відразу призначений для самостійного рішення.

Приклад 1

Знайти такі похідні усно, на одну дію, наприклад: . Для виконання завдання потрібно використовувати лише таблицю похідних елементарних функцій(Якщо вона ще не запам'яталася). Якщо виникнуть труднощі, рекомендую перечитати урок Похідна складної функції.

, , ,
, , ,
, , ,

, , ,

, , ,

, , ,

, ,

Відповіді наприкінці уроку

Складні похідні

Після попередньої артпідготовки будуть менш страшні приклади з 3-4-5 вкладеннями функцій. Можливо, наступні два приклади здадуться деяким складними, але якщо їх зрозуміти (хтось і мучиться), то майже все інше диференційному обчисленніздаватиметься дитячим жартом.

Приклад 2

Знайти похідну функції

Як зазначалося, при знаходженні похідної складної функції, передусім, необхідно правильноРОЗІБРАТИСЯ у вкладеннях. У тих випадках, коли є сумніви, нагадую корисний прийом: беремо піддослідне значення «ікс», наприклад, і пробуємо (подумки або на чернетці) підставити дане значенняу «страшне вираження».

1) Спочатку нам потрібно обчислити вираз, отже, сума - найглибше вкладення.

2) Потім необхідно обчислити логарифм:

4) Потім косинус звести до куба:

5) На п'ятому кроці різниця:

6) І, нарешті, зовнішня функція – це квадратний корінь:

Формула диференціювання складної функції застосовується в зворотному порядку, від самої зовнішньої функції, До самої внутрішньої. Вирішуємо:

Начебто без помилок.

(1) Беремо похідну від квадратного кореня.

(2) Беремо похідну від різниці, використовуючи правило

(3) Похідна трійки дорівнює нулю. У другому доданку беремо похідну від ступеня (куба).

(4) Беремо похідну від косинуса.

(5) Беремо похідну від логарифму.

(6) І, нарешті, беремо похідну від найглибшого вкладення.

Може здатися дуже важко, але це ще не найбільш звірячий приклад. Візьміть, наприклад, збірку Кузнєцова і ви оціните всю красу і простоту розібраної похідної. Я помітив, що схожу штуку люблять давати на іспиті, щоб перевірити, чи розуміє студент, як знаходити похідну складної функції, чи не розуміє.

Наступний прикладдля самостійного вирішення.

Приклад 3

Знайти похідну функції

Підказка: Спочатку застосовуємо правила лінійності та правило диференціювання твору

Повне рішеннята відповідь наприкінці уроку.

Настав час перейти до чогось більш компактного та симпатичного.
Не рідкісна ситуація, як у прикладі дано твір не двох, а трьох функцій. Як знайти похідну від твори трьохмножників?

Приклад 4

Знайти похідну функції

Спочатку дивимося, а чи не можна твір трьох функцій перетворити на твір двох функцій? Наприклад, якби у нас у творі було два багаточлени, то можна було б розкрити дужки. Але в прикладі всі функції різні: ступінь, експонента і логарифм.

У таких випадках необхідно послідовнозастосувати правило диференціювання твору два рази

Фокус у тому, що з «у» ми позначимо твір двох функцій: , а й за «ве» – логарифм: . Чому можна так зробити? А хіба - Це не твір двох множників і правило не працює? Нічого складного немає:

Тепер залишилося вдруге застосувати правило до дужки:

Можна ще зневіритися і винести щось за дужки, але в даному випадкувідповідь краще залишити саме у такому вигляді – легше перевірятиме.

Розглянутий приклад можна вирішити другим способом:

Обидва способи вирішення абсолютно рівноцінні.

Приклад 5

Знайти похідну функції

Це приклад самостійного рішення, у зразку він вирішений першим способом.

Розглянемо аналогічні приклади із дробами.

Приклад 6

Знайти похідну функції

Тут можна йти кількома шляхами:

Або так:

Але рішення запишеться компактніше, якщо в першу чергу використовувати правило диференціювання приватного , Прийнявши за весь чисельник:

У принципі приклад вирішено, і якщо його залишити в такому вигляді, то це не буде помилкою. Але за наявності часу завжди бажано перевірити на чернетці, а чи не можна спростити відповідь? Наведемо вираз чисельника до спільному знаменникуі позбавимося триповерховості дробу:

Мінус додаткових спрощеньполягає в тому, що є ризик припуститися помилки вже не при знаходженні похідної, а при банальних шкільних перетвореннях. З іншого боку, викладачі нерідко бракують завдання та просять «довести до пуття» похідну.

Простіший приклад для самостійного вирішення:

Приклад 7

Знайти похідну функції

Продовжуємо освоювати прийоми знаходження похідної, і зараз ми розглянемо типовий випадок, коли для диференціювання запропоновано «страшний» логарифм

Приклад 8

Знайти похідну функції

Тут можна піти довгим шляхом, використовуючи правило диференціювання складної функції:

Але перший крок одразу кидає у зневіру - належить взяти неприємну похідну від дробового ступеняа потім ще й від дробу.

Тому перед тимяк брати похідну від «накрученого» логарифму, його попередньо спрощують, використовуючи відомі шкільні властивості:



! Якщо під рукою є зошит із практикою, перепишіть ці формули прямо туди. Якщо зошита немає, перемалюйте їх на листочок, оскільки приклади уроку, що залишилися, буду обертатися навколо цих формул.

Саме рішення можна оформити приблизно так:

Перетворимо функцію:

Знаходимо похідну:

Попереднє перетворення самої функції значно спростило рішення. Таким чином, коли для диференціювання запропоновано подібний логарифм, його завжди доцільно «розвалити».

А зараз кілька нескладних прикладів для самостійного вирішення:

Приклад 9

Знайти похідну функції

Приклад 10

Знайти похідну функції

Всі перетворення та відповіді в кінці уроку.

Логарифмічна похідна

Якщо похідна від логарифмів – це така солодка музика, виникає питання, а чи не можна в деяких випадках організувати логарифм штучно? Можна, можливо! І навіть треба.

Приклад 11

Знайти похідну функції

Подібні приклади ми нещодавно розглянули. Що робити? Можна послідовно застосувати правило диференціювання приватного, та був правило диференціювання твори. Недолік способу полягає в тому, що вийде величезний триповерховий дріб, з яким зовсім не хочеться мати справи.

Але в теорії та практиці є така чудова річ, як логарифмічна похідна. Логарифми можна організувати штучно, «навісивши» їх на обидві частини:

Тепер потрібно максимально розвалити логарифм правої частини (формули перед очима?). Я розпишу цей процес докладно:

Власне приступаємо до диференціювання.
Укладаємо під штрих обидві частини:

Похідна правої частини досить проста, її я не коментуватиму, оскільки якщо ви читаєте цей текст, то повинні впевнено з нею впоратися.

Як бути з лівою частиною?

У лівій частині у нас складна функція. Передбачаю питання: «Чому, там же одна буква «ігрок» під логарифмом?».

Справа в тому, що ця «одна літерка ігорок» – САМА ЗА СЕБЕ Є ФУНКЦІЄЮ(якщо не зрозуміло, зверніться до статті Похідна від функції, заданої неявно). Тому логарифм – це зовнішня функція, а «гравець» – внутрішня функція. І ми використовуємо правило диференціювання складної функції :

У лівій частині як за помахом чарівної паличкиу нас «намалювалася» похідна. Далі за правилом пропорції перекидаємо «ігрок» із знаменника лівої частини нагору правої частини:

А тепер згадуємо, про який такий «гравець»-функцію ми міркували під час диференціювання? Дивимося на умову:

Остаточна відповідь:

Приклад 12

Знайти похідну функції

Це приклад самостійного рішення. Зразок оформлення прикладу даного типунаприкінці уроку.

За допомогою логарифмічної похідної можна було вирішити будь-який із прикладів №№4-7, інша річ, що там функції простіші, і, можливо, використання логарифмічної похідної не надто й виправдане.

Похідна статечно-показової функції

Цю функціюми ще розглядали. Ступінно-показова функція – це функція, у якої і ступінь та основа залежать від «ікс». Класичний приклад, який вам приведуть у будь-якому підручнику або на будь-якій лекції:

Як знайти похідну від статечно-показової функції?

Необхідно використовувати щойно розглянутий прийом – логарифмічну похідну. Навішуємо логарифми на обидві частини:

Як правило, у правій частині з-під логарифму виноситься ступінь:

У результаті в правій частині у нас вийшов добуток двох функцій, який диференціюватиметься по стандартною формулою .

Знаходимо похідну, для цього укладаємо обидві частини під штрихи:

Подальші діїнескладні:

Остаточно:

Якщо якесь перетворення не зовсім зрозуміле, будь ласка, уважно перечитайте пояснення Прикладу №11.

У практичних завданняхстатечно-показова функція завжди буде складнішою, ніж розглянутий лекційний приклад.

Приклад 13

Знайти похідну функції

Використовуємо логарифмічну похідну.

У правій частині у нас константа та твір двох множників – «ікса» та «логарифма логарифма ікс» (під логарифм вкладено ще один логарифм). При диференціюванні константу, як ми пам'ятаємо, краще одразу винести за знак похідної, щоб вона не заважала під ногами; і, звичайно, застосовуємо знайоме правило :


Як бачите, алгоритм застосування логарифмічної похідної не містить у собі якихось особливих хитрощів або хитрощів, і знаходження похідної статечно-показової функції зазвичай не пов'язане з «муками».

Початковий рівень

Похідна функції. Вичерпне керівництво (2019)

Уявімо пряму дорогу, що проходить по горбистій місцевості. Тобто вона йде то вгору, то вниз, але праворуч чи ліворуч не повертає. Якщо вісь направити вздовж дороги горизонтально, а вертикально, то лінія дороги буде дуже схожа на графік якоїсь безперервної функції:

Вісь - це певний рівень нульової висоти, в житті ми використовуємо як рівень моря.

Рухаючись вперед такою дорогою, ми також рухаємося вгору або вниз. Також можемо сказати: при зміні аргументу (просування вздовж осі абсцис) змінюється значення функції (рух вздовж осі ординат). А тепер давай подумаємо, як визначити «крутість» нашої дороги? Що може бути за величина? Дуже просто: на скільки зміниться висота під час просування вперед на певну відстань. Адже на різних ділянках дороги, просуваючись вперед (вздовж осі абсцис) на один кілометр, ми піднімемося або опустимося на різна кількістьметрів щодо рівня моря (вздовж осі ординат).

Просування вперед позначимо (читається "дельта ікс").

Грецьку букву (дельта) в математиці зазвичай використовують як приставку, що означає зміну. Тобто – це зміна величини, – зміна; тоді що таке? Правильно, зміна величини.

Важливо: вираз – це єдине ціле, одна змінна. Ніколи не можна відривати «дельту» від «ікса» чи будь-якої іншої літери! Тобто, наприклад, .

Отже, ми просунулися вперед, по горизонталі, на. Якщо лінію дороги ми порівнюємо з графіком функції, як ми позначимо підйом? Звісно, ​​. Тобто, при просуванні вперед на ми піднімаємось вище.

Величину порахувати легко: якщо спочатку ми знаходилися на висоті, а після переміщення опинилися на висоті, то. Якщо кінцева точкавиявилася нижчою за початкову, буде негативною - це означає, що ми не піднімаємося, а спускаємося.

Повернемося до «крутості»: це величина, яка показує, наскільки сильно (круто) збільшується висота при переміщенні вперед на одиницю відстані:

Припустимо, що на якійсь ділянці шляху під час просування на км дорога піднімається нагору на км. Тоді крутість у цьому місці дорівнює. А якщо дорога при просуванні на м опустилася на кілометр? Тоді крутість дорівнює.

А тепер розглянемо вершину якогось пагорба. Якщо взяти початок ділянки за півкілометра до вершини, а кінець через півкілометра після нього, видно, що висота практично однакова.

Тобто за нашою логікою виходить, що крутість тут майже дорівнює нулю, що явно не відповідає дійсності. Просто на відстані в кілометрах може багато чого змінитися. Потрібно розглядати більш маленькі ділянки для більш адекватної та точної оцінки крутості. Наприклад, якщо вимірювати зміну висоти при переміщенні на один метр, результат буде набагато точнішим. Але й цієї точності нам може бути недостатньо - адже якщо посеред дороги стоїть стовп, ми можемо просто проскочити. Яку відстань тоді виберемо? Сантиметр? Міліметр? Чим менше тим краще!

У реального життявимірювати відстань з точністю до міліметра - більш ніж достатньо. Але математики завжди прагнуть досконалості. Тому було вигадано поняття нескінченно малого, тобто величина по модулю менше за будь-яке число, яке тільки можемо назвати. Наприклад, ти скажеш: одна трильйонна! Куди менше? А ти поділи це число на - і буде ще менше. І так далі. Якщо хочемо написати, що величина нескінченно мала, пишемо так: (читаємо «ікс прагне нуля»). Дуже важливо розуміти, що це число не дорівнює нулю!Але дуже близько до нього. Це означає, що на нього можна ділити.

Поняття, протилежне нескінченно малому – нескінченно велике (). Ти вже напевно стикався з ним, коли займався нерівностями: це число за модулем більше за будь-яке число, яке тільки можеш придумати. Якщо ти придумав найбільше з можливих чисел, просто помнож його на два, і вийде ще більше. А нескінченність ще більш тогощо вийде. Фактично нескінченно велике і нескінченно мале обернені один одному, тобто при, і навпаки: при.

Тепер повернемось до нашої дороги. Ідеально порахована крутість - це куртизна, обчислена для нескінченно малого відрізка шляху, тобто:

Зауважу, що при нескінченно малому переміщенні зміна висоти теж буде нескінченно малою. Але нагадаю, нескінченно мале - не означає рівне нулю. Якщо поділити один на одного нескінченно малі числа, може вийти цілком звичайне числонаприклад, . Тобто одна мала величина може бути рівно в рази більша за іншу.

Навіщо все це? Дорога, крутість... Адже ми не в автопробіг вирушаємо, а математику вчимо. А в математиці все так само, тільки називається по-іншому.

Поняття похідної

Похідна функції це відношення збільшення функції до збільшення аргументу при нескінченно малому збільшення аргументу.

Збільшенняму математиці називають зміну. Те, наскільки змінився аргумент () при просуванні вздовж осі, називається збільшенням аргументуі позначається Те, наскільки змінилася функція (висота) при просуванні вперед уздовж осі на відстань, називається збільшенням функціїта позначається.

Отже, похідна функції – це відношення до при. Позначаємо похідну тією ж літерою, що й функцію, тільки зі штрихом зверху праворуч: або просто. Отже, запишемо формулу похідної, використовуючи ці позначення:

Як і в аналогії з дорогою тут при зростанні функції похідна позитивна, а при зменшенні негативна.

А чи похідна буває дорівнює нулю? Звісно. Наприклад, якщо ми їдемо рівною горизонтальною дорогою, крутість дорівнює нулю. І справді, висота ж не зовсім змінюється. Так і з похідною: похідна постійної функції(Константи) дорівнює нулю:

оскільки збільшення такої функції дорівнює нулю за будь-якого.

Давай згадаємо приклад із вершиною пагорба. Там виходило, що можна так розташувати кінці відрізка по різні сторонивід вершини, що висота на кінцях виявляється однаковою, тобто відрізок розташовується паралельно осі:

Але великі відрізки – ознака неточного виміру. Підніматимемо наш відрізок вгору паралельно самому собі, тоді його довжина буде зменшуватися.

Зрештою, коли ми будемо нескінченно близькі до вершини, довжина відрізка стане нескінченно малою. Але при цьому він залишився паралельний осі, тобто різниця висот на його кінцях дорівнює нулю (не прагне, а саме дорівнює). Значить, похідна

Зрозуміти це можна так: коли ми стоїмо на самій вершині, дрібне зміщення вліво чи вправо змінює нашу висоту мізерно мало.

Є й суто алгебраїчне пояснення: лівіше вершини функція зростає, а правіше - зменшується. Як ми вже з'ясували раніше, у разі зростання функції похідна позитивна, а при зменшенні - негативна. Але змінюється вона плавно, без стрибків (бо дорога ніде не змінює нахил різко). Тому між негативними та позитивними значеннямиобов'язково має бути. Він і буде там, де функція не збільшується, не зменшується - у точці вершини.

Те саме справедливо і для западини (область, де функція зліва зменшується, а праворуч - зростає):

Трохи докладніше про збільшення.

Отже, ми змінюємо аргумент на величину. Змінюємо від якого значення? Яким він (аргумент) тепер став? Можемо вибрати будь-яку точку, і зараз від неї танцюватимемо.

Розглянемо точку з координатою. Значення функції у ній одно. Потім робимо те саме збільшення: збільшуємо координату на. Чому тепер рівний аргумент? Дуже легко: . А чому тепер дорівнює значення функції? Куди аргумент, туди та функція: . А що із збільшенням функції? Нічого нового: це, як і раніше, величина, на яку змінилася функція:

Потренуйся знаходити збільшення:

  1. Знайди збільшення функції в точці при збільшенні аргументу, що дорівнює.
  2. Те саме для функції в точці.

Рішення:

У різних точкахпри тому самому збільшенні аргументу збільшення функції буде різним. Значить, і похідна у кожній точці своя (це ми обговорювали на самому початку - крутість дороги у різних точках різна). Тому коли пишемо похідну, треба зазначати, в якій точці:

Ступінна функція.

Ступіньною називають функцію, де аргумент певною мірою (логічно, так?).

Причому - будь-якою мірою: .

Найпростіший випадок- це коли показник ступеня:

Знайдемо її похідну у точці. Згадуємо визначення похідної:

Отже, аргумент змінюється з до. Яке збільшення функції?

Приріст – це. Але функція у будь-якій точці дорівнює своєму аргументу. Тому:

Похідна дорівнює:

Похідна від рівна:

b) Тепер розглянемо квадратичну функцію (): .

А тепер згадаємо, що. Це означає, що значення приросту можна знехтувати, оскільки воно нескінченно мало, і тому незначно на тлі іншого доданку:

Отже, у нас народилося чергове правило:

c) Продовжуємо логічний ряд: .

Цей вираз можна спростити по-різному: розкрити першу дужку за формулою скороченого множення куб суми, або розкласти весь вираз на множники за формулою різниці кубів. Спробуй зробити це сам будь-яким із запропонованих способів.

Отже, у мене вийшло таке:

І знову пригадаємо, що. Це означає, що можна знехтувати всіма складовими, що містять:

Отримуємо: .

d) Аналогічні правила можна отримати і для більших ступенів:

e) Виявляється, це правило можна узагальнити для статечної функціїз довільним показником, навіть не цілим:

(2)

Можна сформулювати правило словами: "ступінь виноситься вперед як коефіцієнт, а потім зменшується на".

Доведемо це правило пізніше (майже наприкінці). А зараз розглянемо кілька прикладів. Знайди похідну функцій:

  1. (двома способами: за формулою та використовуючи визначення похідної - порахувавши збільшення функції);
  1. . Не повіриш, але це статечна функція. Якщо у тебе виникли питання на кшталт «Як це? А де ж ступінь?», Згадуй тему «»!
    Так-так, корінь - це теж ступінь, лише дрібна: .
    Отже, наш квадратний корінь - це лише ступінь із показником:
    .
    Похідну шукаємо за нещодавно вивченою формулою:

    Якщо тут знову стало незрозуміло, повторюй тему « »!!! (про ступінь з негативним показником)

  2. . Тепер показник ступеня:

    А тепер через визначення (не забув ще?):
    ;
    .
    Тепер, як завжди, нехтуємо доданком, що містить:
    .

  3. . Комбінація попередніх випадків: .

Тригонометричні функції.

Тут будемо використовувати один факт із вищої математики:

При виразі.

Доказ ти дізнаєшся на першому курсі інституту (а щоб там опинитися, треба добре здати ЄДІ). Зараз лише покажу це графічно:

Бачимо, що при функції не існує - точка на графіку виколота. Але що ближче до значення, то ближче функція до. Це і є те саме «прагне».

Додатково можна перевірити це правило за допомогою калькулятора. Так-так, не соромся, бери калькулятор, адже ми не на ЄДІ ще.

Отже, пробуємо: ;

Не забудь перевести калькулятор у режим Радіани!

і т.д. Бачимо, що менше, тим ближче значення ставлення до.

a) Розглянемо функцію. Як завжди, знайдемо її збільшення:

Перетворимо різницю синусів на твір. І тому використовуємо формулу (згадуємо тему « »): .

Тепер похідна:

Зробимо заміну: . Тоді при нескінченно малому і нескінченно мало: . Вираз для набуває вигляду:

А тепер згадуємо, що при виразі. А також, що якщо нескінченно малою величиною можна знехтувати суму (тобто при).

Отже, отримуємо наступне правило:похідна синуса дорівнює косінусу:

Це базові («табличні») похідні. Ось вони одним списком:

Пізніше ми до них додамо ще кілька, але ці найважливіші, оскільки використовуються найчастіше.

Потренуйся:

  1. Знайди похідну функції у точці;
  2. Знайди похідну функцію.

Рішення:

  1. Спершу знайдемо похідну в загальному вигляді, а потім підставимо замість його значення:
    ;
    .
  2. Тут у нас щось схоже на статечну функцію. Спробуємо привести її до
    нормальному вигляду:
    .
    Відмінно тепер можна використовувати формулу:
    .
    .
  3. . Ееєєєє….. Що це????

Гаразд, ти маєш рацію, такі похідні знаходити ми ще не вміємо. Тут ми маємо комбінацію кількох типів функцій. Щоб працювати з ними, потрібно вивчити ще кілька правил:

Експонента та натуральний логарифм.

Є в математиці така функція, похідна якої за будь-якого дорівнює значенню самої функції при цьому. Називається вона «експонента» і є показовою функцією

Підстава цієї функції – константа – це нескінченна десятковий дрібтобто число ірраціональне (таке як). Його називають число Ейлера, тому і позначають буквою.

Отже, правило:

Запам'ятати дуже просто.

Ну і не будемо далеко ходити, одразу ж розглянемо зворотну функцію. Яка функція є зворотною для показової функції? Логарифм:

У нашому випадку основою є число:

Такий логарифм (тобто логарифм із основою) називається «натуральним», і для нього використовуємо особливе позначення: замість пишемо.

Чому дорівнює? Звичайно ж, .

Похідна від натурального логарифму теж дуже проста:

Приклади:

  1. Знайди похідну функцію.
  2. Чому дорівнює похідна функції?

Відповіді: Експонента та натуральний логарифм- Функції унікально прості з точки зору похідної. Показові та логарифмічні функції з будь-якою іншою основою будуть мати іншу похідну, яку ми з тобою розберемо пізніше, після того як пройдемо правиладиференціювання.

Правила диференціювання

Правила чого? Знову новий термін, знову?!

Диференціювання- Це процес знаходження похідної.

Тільки і всього. А як ще назвати цей процес одним словом? Не производнование ж... Диференціалом математики називають те саме збільшення функції при. Походить цей термін від латинського differentia - різниця. Ось.

При виведенні всіх цих правил використовуватимемо дві функції, наприклад, в. Нам знадобляться також формули їх прирощень:

Усього є 5 правил.

Константа виноситься за знак похідної.

Якщо – якесь постійне число(Константа), тоді.

Очевидно, це правило працює і для різниці: .

Доведемо. Нехай, чи простіше.

приклади.

Знайдіть похідні функції:

  1. у точці;
  2. у точці;
  3. у точці;
  4. у точці.

Рішення:

  1. (Похідна однакова у всіх точках, так як це лінійна функція, Пам'ятаєш?);

Похідна робота

Тут все аналогічно: введемо нову функціюі знайдемо її приріст:

Похідна:

Приклади:

  1. Знайдіть похідні функцій та;
  2. Знайдіть похідну функцію в точці.

Рішення:

Похідна показової функції

Тепер твоїх знань достатньо, щоб навчитися знаходити похідну будь-якої показової функції, а не лише експоненти (не забув ще, що це таке?).

Отже, де – це якесь число.

Ми вже знаємо похідну функцію, тому давай спробуємо привести нашу функцію до нової основи:

І тому скористаємося простим правилом: . Тоді:

Ну ось, вийшло. Тепер спробуй знайти похідну, і не забудь, що ця функція – складна.

Вийшло?

Ось, перевір себе:

Формула вийшла дуже схожа на похідну експоненти: як було, так і залишилося, з'явився лише множник, який є просто числом, але не змінною.

Приклади:
Знайди похідні функції:

Відповіді:

Це просто число, яке неможливо порахувати без калькулятора, тобто ніяк не записати до більш простому вигляді. Тому у відповіді його у такому вигляді і залишаємо.

Похідна логарифмічна функція

Тут аналогічно: ти вже знаєш похідну від натурального логарифму:

Тому, щоб знайти довільну від логарифму з іншою основою, наприклад:

Потрібно привести цей логарифм до основи. А як змінити основу логарифму? Сподіваюся, ти пам'ятаєш цю формулу:

Тільки тепер замість писатимемо:

У знаменнику вийшла просто константа (постійне число без змінної). Похідна виходить дуже просто:

Похідні показової та логарифмічні функціїмайже не зустрічаються в ЄДІ, але не зайве знати їх.

Похідна складна функція.

Що таке "складна функція"? Ні, це не логарифм і не арктангенс. Дані функції може бути складними для розуміння (хоча, якщо логарифм тобі здається складним, прочитай тему «Логарифми» і все пройде), але з точки зору математики слово «складна» не означає «важка».

Уяви собі маленький конвеєр: сидять дві людини і роблять якісь дії з якимись предметами. Наприклад, перший загортає шоколадку в обгортку, а другий обв'язує її стрічкою. Виходить такий складовий об'єкт: шоколадка, обгорнена та обв'язана стрічкою. Щоб з'їсти шоколадку, тобі потрібно зробити зворотні діїв зворотньому напрямку.

Давай створимо подібний математичний конвеєр: спочатку знаходитимемо косинус числа, а потім отримане число зводитимемо в квадрат. Отже, нам дають число (шоколадка), я знаходжу його косинус (обгортка), а ти потім зводиш те, що в мене вийшло, у квадрат (обв'язуєш стрічкою). Що вийшло? функція. Це і є приклад складної функції: коли для знаходження її значення ми робимо першу дію безпосередньо зі змінною, а потім ще другу дію з тим, що вийшло в результаті першого.

Ми цілком можемо робити ті ж дії і в зворотному порядку: спочатку ти зводиш у квадрат, а потім шукаю косинус отриманого числа: . Нескладно здогадатися, що результат майже завжди буде різним. Важлива особливістьскладних функцій: зміна порядку дій функція змінюється.

Іншими словами, складна функція – це функція, аргументом якої є інша функція: .

Для першого прикладу .

Другий приклад: (те саме). .

Дію, яку робимо останнім, називатимемо "зовнішньої" функцією, а дія, що чиниться першим - відповідно «внутрішньою» функцією(це неформальні назви, я їх вживаю лише для того, щоб пояснити матеріал простою мовою).

Спробуй визначити сам, яка функція є зовнішньою, а яка внутрішньою:

Відповіді:Поділ внутрішньої та зовнішньої функцій дуже схожий заміну змінних: наприклад, у функції

  1. Першим виконуватимемо яку дію? Спершу порахуємо синус, а потім зведемо в куб. Отже, внутрішня функція, а зовнішня.
    А вихідна функція є їх композицією: .
  2. Внутрішня: ; зовнішня: .
    Перевірка: .
  3. Внутрішня: ; зовнішня: .
    Перевірка: .
  4. Внутрішня: ; зовнішня: .
    Перевірка: .
  5. Внутрішня: ; зовнішня: .
    Перевірка: .

виконуємо заміну змінних та отримуємо функцію.

Ну що ж, тепер витягуватимемо нашу шоколадку - шукати похідну. Порядок дій завжди зворотний: спочатку шукаємо похідну зовнішньої функції, потім множимо результат на похідну внутрішньої функції. Стосовно вихідного прикладу це так:

Інший приклад:

Отже, сформулюємо, нарешті, офіційне правило:

Алгоритм знаходження похідної складної функції:

Начебто все просто, так?

Перевіримо на прикладах:

Рішення:

1) Внутрішня: ;

Зовнішня: ;

2) Внутрішня: ;

(Тільки не здумай тепер скоротити на! З-під косинуса нічого не виноситься, пам'ятаєш?)

3) Внутрішня: ;

Зовнішня: ;

Відразу видно, що тут трирівнева складна функція: адже - це вже сама по собі складна функція, а з неї витягаємо корінь, тобто виконуємо третю дію (шоколадку в обгортці і з стрічкою кладемо в портфель). Але лякатися немає причин: все одно «розпаковувати» цю функцію будемо в тому ж порядку, що і зазвичай: з кінця.

Тобто спершу продиференціюємо корінь, потім косинус, і лише потім вираз у дужках. А потім все це перемножимо.

У разі зручно пронумерувати дії. Тобто уявімо, що нам відомий. У якому порядку робитимемо дії, щоб обчислити значення цього виразу? Розберемо з прикладу:

Чим пізніше відбувається дія, тим більше «зовнішньої» буде відповідна функція. Послідовність дій - як і раніше:

Тут вкладеність взагалі 4-рівнева. Давайте визначимо порядок дій.

1. Підкорене вираз. .

2. Корінь. .

3. Синус. .

4. Квадрат. .

5. Збираємо все до купи:

ВИРОБНИЧА. КОРОТКО ПРО ГОЛОВНЕ

Похідна функції- Відношення збільшення функції до збільшення аргументу при нескінченно малому збільшення аргументу:

Базові похідні:

Правила диференціювання:

Константа виноситься за знак похідної:

Похідна сума:

Похідна робота:

Похідна приватна:

Похідна складної функції:

Алгоритм знаходження похідної від складної функції:

  1. Визначаємо "внутрішню" функцію, знаходимо її похідну.
  2. Визначаємо "зовнішню" функцію, знаходимо її похідну.
  3. Помножуємо результати першого та другого пунктів.

Цим відео я починаю довгу серію уроків, присвячену похідним. Цей урок складається з кількох частин.

Насамперед, я розповім вам, що взагалі таке похідні і як їх вважати, але не хитромудрим академічною мовоюа так, як я сам це розумію і як пояснюю своїм учням. По-друге, ми розглянемо найпростіше правило для вирішення завдань, в яких шукатимемо похідні суми, похідні різниці та похідні статечної функції.

Ми розглянемо складніші комбіновані приклади, з яких ви, зокрема, дізнаєтесь, що подібні завдання, що містять коріння і навіть дроби, можуть бути вирішені при використанні формули похідної статечної функції. Крім того, звичайно, буде безліч завдань та прикладів рішень самого різного рівняскладності.

Взагалі, спочатку я збирався записати коротенький 5-хвилинний ролик, але бачите, що з цього вийшло. Тому вистачить лірики – приступаємо до справи.

Що таке похідна?

Отже, почнемо здалеку. Багато років тому, коли дерева були зеленішими, а життя було веселішим, математики замислилися ось над чим: розглянемо просту функцію, задану своїм графіком, назвемо її $y=f\left(x \right)$. Зрозуміло, графік існує не сам собою, тому потрібно провести осі $x$, а також вісь $y$. А тепер давайте виберемо будь-яку точку на цьому графіку, абсолютно будь-яку. Абсцис назвемо $((x)_(1))$, ордината, як не важко здогадатися, буде $f\left(((x)_(1)) \right)$.

Розглянемо на тому ж графіку ще одну точку. Не важливо, яку, головне, щоб вона відрізнялася від первісної. У неї, знову ж таки, є абсциса, назвемо її $((x)_(2))$, а також ордината - $f\left(((x)_(2)) \right)$.

Отже, ми отримали дві точки: у них різні абсциси і, отже, різні значенняфункції, хоча останнє необов'язково. А ось що справді важливо, то це що, що з курсу планіметрії нам відомо: через дві точки можна провести пряму і, до того ж, лише одну. Ось давайте її і проведемо.

А тепер проведемо через найпершу з них пряму, паралельну осіабсцис. Отримаємо прямокутний трикутник. Давайте позначимо його $ABC$, прямий кут $C$. У цього трикутника виникає одне дуже цікава властивість: річ у тому, що кут$\alpha $, насправді, дорівнює кутупід яким перетинається пряма $AB$ з продовженням осі абсцис. Судіть самі:

  1. пряма $AC$паралельна осі $Ox$ за побудовою,
  2. пряма $AB$ перетинає $AC$ під $\alpha $,
  3. отже, $AB$ перетинає $Ox$під тим самим $\alpha $.

Що ми можемо сказати про $\text( )\!\!\alpha\!\!\text( )$? Нічого конкретного, хіба що в трикутнику $ABC$ставлення катета $BC$ до катета $AC$ дорівнює тангенсу цього самого кута. Так і запишемо:

Зрозуміло, $AC$ у цьому випадку легко вважається:

Так само і $BC$:

Іншими словами, ми можемо записати таке:

\[\operatorname(tg)\text( )\!\!\alpha\!\!\text( )=\frac(f\left(((x)_(2)) \right)-f\left( ((x)_(1)) \right))(((x)_(2))-((x)_(1)))\]

Тепер, коли ми все це з'ясували, повернімося до нашого графіку і розглянемо нову точку$B$. Зітріть старі значення і візьмемо і візьмемо $B$ десь ближче до $((x)_(1))$. Знову позначимо її абсцису за $((x)_(2))$, а ординату - $f\left(((x)_(2)) \right)$.

Знову розглянемо наш маленький трикутник$ABC$і $\text( )\!\!\alpha\!\!\text( )$ всередині нього. Цілком очевидно, що це буде вже зовсім інший кут, тангенс буде також іншим тому, що довжини відрізків $AC$ і $BC$ суттєво змінилися, а формула для тангенсу кута анітрохи не змінилася — це, як і раніше, співвідношення між зміною функції та зміною аргументу .

Нарешті, продовжуємо рухати $B$ все ближче до початкової точки $A$, в результаті трикутник ще зменшиться, а пряма, що містить відрізок $AB$, все більше буде схожою на графіку до функції.

У результаті, якщо продовжувати зближення точок, тобто зменшувати відстань до нуля, то пряма $AB$ дійсно перетвориться на дотичну до графіка в цій точці, а $\text( )\!\!\alpha\!\ !\text( )$перетвориться зі звичайного елемента трикутника в кут між дотичною до графіка і позитивним напрямом осі $Ox$.

І ось тут ми плавно переходимо до визначення $f$, а саме похідної функції в точці $((x)_(1))$ називається тангенс кута $\alpha $ між дотичною до графіка в точці $((x)_( 1))$ і позитивним напрямком осі $Ox$:

\[(f)"\left(((x)_(1)) \right)=\operatorname(tg)\text( )\!\!\alpha\!\!\text( )\]

Повертаючись до нашого графіку, слід зазначити, що $((x)_(1))$ можна вибрати будь-яку точку на графіку. Наприклад, з тим самим успіхом ми могли зняти штрих у точці, показаній на малюнку.

Кут між дотичним та позитивним напрямком осі назвемо $\beta$. Відповідно, $f$ $((x)_(2))$ дорівнюватиме тангенсу цього кута $\beta $.

\[(f)"\left(((x)_(2)) \right)=tg\text( )\!\!\beta\!\!\text( )\]

У кожній точці графіка буде своя дотична, отже, своє значення функції. У кожному з цих випадків крім точки, в якій ми шукаємо похідну різниці або суми, або похідну статечної функції, необхідно взяти іншу точку, що знаходиться на деякій відстані від неї, а потім спрямувати цю точку до вихідної і, зрозуміло, з'ясувати, як у процесі такого руху змінюватиметься тангенс кута нахилу.

Похідна статечної функції

На жаль, подібне визначення нас зовсім не влаштовує. Всі ці формули, картинки, кути не дають нам жодного найменшого уявленняпро те, як вважати реальну похідну в реальних задачах. Тому давайте трохи відвернемося від формального визначення та розглянемо більш дієві формули та прийоми, за допомогою яких вже можна вирішувати справжні завдання.

Почнемо з самих простих конструкцій, Зокрема, функцій виду $y=((x)^(n))$, тобто. статечних функцій. У цьому випадку ми можемо записати наступне: $(y)"=n\cdot ((x)^(n-1))$. Іншими словами, ступінь, що стояла в показнику, показується в множнику спереду, а сам показник зменшується на одиницю Наприклад:

\[\begin(align)& y=((x)^(2)) \\& (y)"=2\cdot ((x)^(2-1))=2x \\\end(align) \]

А ось інший варіант:

\[\begin(align)& y=((x)^(1)) \\& (y)"=((\left(x \right))^(\prime ))=1\cdot ((x )^(0))=1\cdot 1=1 \\& ((\left(x \right))^(\prime ))=1 \\end(align)\]

Користуючись цими простими правилами, спробуємо зняти штрих наступних прикладів:

Отже, ми отримуємо:

\[((\left(((x)^(6)) \right))^(\prime ))=6\cdot ((x)^(5))=6((x)^(5)) \]

Тепер вирішимо другий вираз:

\[\begin(align)& f\left(x \right)=((x)^(100)) \\& ((\left(((x)^(100)) \right))^(\ prime ))=100\cdot ((x)^(99))=100((x)^(99)) \\\end(align)\]

Зрозуміло, це були дуже прості завдання. Однак реальні завдання складніші і вони не обмежуються одними лише ступенями функції.

Отже, правило № 1 – якщо функція представлена ​​у вигляді двох інших, то похідна цієї суми дорівнює сумі похідних:

\[((\left(f+g \right))^(\prime ))=(f)"+(g)"\]

Аналогічно, похідна різниці двох функцій дорівнює різниці похідних:

\[((\left(f-g \right))^(\prime ))=(f)"-(g)"\]

\[((\left(((x)^(2))+x \right))^(\prime ))=((\left(((x)^(2)) \right))^(\ prime ))+((\left(x \right))^(\prime ))=2x+1\]

Крім того, є ще одне важливе правило: якщо перед деякою $f$ стоїть константа $c$, на яку ця функція множиться, то $f$ всієї цієї конструкції вважається так:

\[((\left(c\cdot f \right))^(\prime ))=c\cdot (f)"\]

\[((\left(3((x)^(3)) \right))^(\prime ))=3((\left(((x)^(3)) \right))^(\ prime ))=3\cdot 3((x)^(2))=9((x)^(2))\]

Нарешті, ще одне дуже важливе правило: у завданнях часто зустрічається окремий доданок, який взагалі не містить $x$. Наприклад, ми можемо спостерігати це у наших сьогоднішніх виразах. Похідна константи, тобто, числа, що не залежить від $x$, завжди дорівнює нулю, причому зовсім неважливо, чому дорівнює константа $c$:

\[((\left(c \right))^(\prime ))=0\]

Приклад рішення:

\[((\left(1001 \right))^(\prime ))=((\left(\frac(1)(1000) \right))^(\prime ))=0\]

Ще раз ключові моменти:

  1. Похідна суми двох функцій завжди дорівнює сумі похідних: $((\left(f+g \right))^(\prime ))=(f)"+(g)"$;
  2. По аналогічних причин похідна різниці двох функцій дорівнює різниці двох похідних: $((\left(f-g \right))^(\prime ))=(f)"-(g)"$;
  3. Якщо у функції є множник константа, то цю константу можна виносити за знак похідної: $((\left(c\cdot f \right))^(\prime ))=c\cdot (f)"$;
  4. Якщо вся функція є константою, то її похідна завжди нуль: $((\left(c \right))^(\prime ))=0$.

Давайте подивимося, як все це працює на реальні приклади. Отже:

Записуємо:

\[\begin(align)& ((\left(((x)^(5))-3((x)^(2))+7 \right))^(\prime ))=((\left (((x)^(5)) \right))^(\prime ))-((\left(3((x)^(2)) \right))^(\prime ))+(7) "= \\& =5((x)^(4))-3((\left(((x)^(2)) \right))^(\prime ))+0=5((x) ^(4))-6x \\\end(align)\]

У цьому вся прикладі бачимо і похідну суми, і похідну різниці. Отже, похідна дорівнює $5((x)^(4))-6x$.

Переходимо до другої функції:

Записуємо рішення:

\[\begin(align)& ((\left(3((x)^(2))-2x+2 \right))^(\prime ))=((\left(3((x)^( 2)) \right))^(\prime ))-((\left(2x \right))^(\prime ))+(2)"= \\& =3((\left(((x)) ^(2)) \right))^(\prime ))-2(x)"+0=3\cdot 2x-2\cdot 1=6x-2 \\end(align)\]

Ось ми й знайшли відповідь.

Переходимо до третьої функції - вона вже серйозніша:

\[\begin(align)& ((\left(2((x)^(3))-3((x)^(2))+\frac(1)(2)x-5 \right)) ^(\prime ))=((\left(2((x)^(3)) \right))^(\prime ))-((\left(3((x)^(2))) \right ))^(\prime ))+((\left(\frac(1)(2)x \right))^(\prime ))-(5)"= \\& =2((\left(( (x)^(3)) \right))^(\prime ))-3((\left(((x)^(2)) \right))^(\prime ))+\frac(1) (2)\cdot (x)"=2\cdot 3((x)^(2))-3\cdot 2x+\frac(1)(2)\cdot 1=6((x)^(2)) -6x+\frac(1)(2) \\\end(align)\]

Відповідь ми виявили.

Переходимо до останнього виразу — найскладнішого і найдовшого:

Отже, вважаємо:

\[\begin(align)& ((\left(6((x)^(7))-14((x)^(3))+4x+5 \right))^(\prime ))=( (\left(6((x)^(7)) \right))^(\prime ))-((\left(14((x)^(3)) \right))^(\prime )) +((\left(4x \right))^(\prime ))+(5)"= \\& =6\cdot 7\cdot ((x)^(6))-14\cdot 3((x )^(2))+4\cdot 1+0=42((x)^(6))-42((x)^(2))+4 \\end(align)\]

Але на цьому рішення не закінчується, тому що нас просять не просто зняти штрих, а порахувати її значення в конкретній точці, тому підставляємо у вираз −1 замість $x$:

\[(y)"\left(-1 \right)=42\cdot 1-42\cdot 1+4=4\]

Йдемо далі і переходимо до ще складніших і цікавим прикладам. Справа в тому, що формула рішення статечної похідної $((\left(((x)^(n)) \right))^(\prime ))=n\cdot ((x)^(n-1))$ має ще більш широку сферу застосування, ніж зазвичай прийнято вважати. З її допомогою можна вирішувати приклади з дробами, корінням тощо. д. Саме цим ми зараз і займемося.

Для початку ще раз запишемо формулу, яка допоможе нам знайти похідну статечної функції:

А тепер увага: досі ми розглядали як $n$ лише натуральні числаОднак нічого не заважаємо розглянути дроби і навіть негативні числа. Наприклад, ми можемо записати таке:

\[\begin(align)& \sqrt(x)=((x)^(\frac(1)(2))) \\& ((\left(\sqrt(x) \right))^(\ prime ))=((\left(((x)^(\frac(1)(2))) \right))^(\prime ))=\frac(1)(2)\cdot ((x) ^(-\frac(1)(2)))=\frac(1)(2)\cdot \frac(1)(\sqrt(x))=\frac(1)(2\sqrt(x)) \\end(align)\]

Нічого складного, тому подивимося, як ця формула допоможе нам при вирішенні більш складних завдань. Отже, приклад:

Записуємо рішення:

\[\begin(align)& \left(\sqrt(x)+\sqrt(x)+\sqrt(x) \right)=((\left(\sqrt(x) \right))^(\prime ))+((\left(\sqrt(x) \right))^(\prime ))+((\left(\sqrt(x) \right))^(\prime )) \\& ((\ left(\sqrt(x) \right))^(\prime ))=\frac(1)(2\sqrt(x)) \\& ((\left(\sqrt(x) \right))^( \prime ))=((\left(((x)^(\frac(1)(3))) \right))^(\prime ))=\frac(1)(3)\cdot ((x )^(-\frac(2)(3)))=\frac(1)(3)\cdot \frac(1)(\sqrt(((x)^(2)))) \\& (( \left(\sqrt(x) \right))^(\prime ))=((\left(((x)^(\frac(1)(4))) \right))^(\prime )) =\frac(1)(4)((x)^(-\frac(3)(4)))=\frac(1)(4)\cdot \frac(1)(\sqrt(((x)) ^(3)))) \\\end(align)\]

Повертаємось до нашого прикладу та записуємо:

\[(y)"=\frac(1)(2\sqrt(x))+\frac(1)(3\sqrt(((x)^(2))))+\frac(1)(4 \sqrt(((x)^(3))))\]

Ось таке складне рішення.

Переходимо до другого прикладу — тут лише два доданки, але кожне містить як класичну ступінь, і коріння.

Зараз ми дізнаємося, як знайти похідну статечної функції, яка, крім того, містить і корінь:

\[\begin(align)& ((\left(((x)^(3))\sqrt(((x)^(2)))+((x)^(7))\sqrt(x) \right))^(\prime ))=((\left(((x)^(3))\cdot \sqrt(((x)^(2))) \right))^(\prime )) =((\left(((x)^(3))\cdot ((x)^(\frac(2)(3))) \right))^(\prime ))= \\& =(( \left(((x)^(3+\frac(2)(3))) \right))^(\prime ))=((\left(((x)^(\frac(11))(3 ))) \right))^(\prime ))=\frac(11)(3)\cdot ((x)^(\frac(8)(3)))=\frac(11)(3)\ cdot ((x)^(2\frac(2)(3)))=\frac(11)(3)\cdot ((x)^(2))\cdot \sqrt(((x)^(2) ))) \\& ((\left(((x)^(7))\cdot \sqrt(x) \right))^(\prime ))=((\left(((x)^(7) ))\cdot ((x)^(\frac(1)(3))) \right))^(\prime ))=((\left(((x)^(7\frac(1)(3) ))) \right))^(\prime ))=7\frac(1)(3)\cdot ((x)^(6\frac(1)(3)))=\frac(22)(3 )\cdot ((x)^(6))\cdot \sqrt(x) \\\end(align)\]

Обидва доданки пораховані, залишилося записати остаточну відповідь:

\[(y)"=\frac(11)(3)\cdot ((x)^(2))\cdot \sqrt(((x)^(2)))+\frac(22)(3) \cdot ((x)^(6))\cdot \sqrt(x)\]

Ми знайшли відповідь.

Похідна дроби через статечну функцію

Але і на цьому можливості формули для вирішення похідної статечної функції не закінчуються. Справа в тому, що з її допомогою можна вважати не тільки приклади з корінням, але й з дробами. Це якраз та рідкісна можливість, яка значно спрощує вирішення таких прикладів, але при цьому найчастіше ігнорується не лише учнями, а й учителями.

Отже, зараз ми спробуємо поєднати одразу дві формули. З одного боку, класична похідна статечної функції

\[((\left(((x)^(n)) \right))^(\prime ))=n\cdot ((x)^(n-1))\]

З іншого боку ми знаємо, що вираз виду $\frac(1)(((x)^(n)))$ представимо у вигляді $((x)^(-n))$. Отже,

\[\left(\frac(1)(((x)^(n))) \right)"=((\left(((x)^(-n)) \right))^(\prime ) )=-n\cdot ((x)^(-n-1))=-\frac(n)(((x)^(n+1)))\]

\[((\left(\frac(1)(x) \right))^(\prime ))=\left(((x)^(-1)) \right)=-1\cdot ((x )^(-2))=-\frac(1)(((x)^(2)))\]

Таким чином, похідні простих дробів, де в чисельнику стоїть константа, а в знаменнику - ступінь, також вважаються за допомогою класичної формули. Подивимося, як це працює практично.

Отже, перша функція:

\[((\left(\frac(1)(((x)^(2))) \right))^(\prime ))=((\left(((x)^(-2))) right))^(\prime ))=-2\cdot ((x)^(-3))=-\frac(2)(((x)^(3)))\]

Перший приклад вирішено, переходимо до другого:

\[\begin(align)& ((\left(\frac(7)(4((x)^(4))))-\frac(2)(3((x)^(3)))+\ frac(5)(2)((x)^(2))+2((x)^(3))-3((x)^(4)) \right))^(\prime ))= \ \& =((\left(\frac(7)(4((x)^(4))) \right))^(\prime ))-((\left(\frac(2)(3(( x)^(3))) \right))^(\prime ))+((\left(2((x)^(3)) \right))^(\prime ))-((\left( 3((x)^(4)) \right))^(\prime )) \\& ((\left(\frac(7)(4((x)^(4))) \right))^ (\prime ))=\frac(7)(4)((\left(\frac(1)(((x)^(4))) \right))^(\prime ))=\frac(7 )(4)\cdot ((\left(((x)^(-4)) \right))^(\prime ))=\frac(7)(4)\cdot \left(-4 \right) \cdot ((x)^(-5))=\frac(-7)(((x)^(5))) \\& ((\left(\frac(2)(3((x)^) (3))) \right))^(\prime ))=\frac(2)(3)\cdot ((\left(\frac(1)(((x)^(3))) \right) )^(\prime ))=\frac(2)(3)\cdot ((\left(((x)^(-3)) \right))^(\prime ))=\frac(2)( 3)\cdot \left(-3 \right)\cdot ((x)^(-4))=\frac(-2)(((x)^(4))) \\& ((\left( \frac(5)(2)((x)^(2)) \right))^(\prime ))=\frac(5)(2)\cdot 2x=5x \\& ((\left(2) ((x)^(3)) \right))^(\prime ))=2\cdot 3((x)^(2))=6((x)^(2)) \\& ((\ left(3((x)^(4)) \right))^(\prime ))=3\cdot 4((x)^ (3))=12((x)^(3)) \\\end(align)\]...

Тепер збираємо всі ці доданки в єдину формулу:

\[(y)"=-\frac(7)(((x)^(5)))+\frac(2)(((x)^(4)))+5x+6((x)^ (2))-12((x)^(3))\]

Ми отримали відповідь.

Однак перш ніж рухатися далі, хотів би звернути вашу увагу на форму запису самих вихідних виразів: у першому виразі ми записали $f\left(x \right)=...$, у другому: $y=...$ Багато учнів губляться, коли бачать різні формизапис. Чим відрізняються $f\left(x \right)$ і $y$? Насправді нічим. Це просто різні записи з тим самим змістом. Просто коли ми говоримо $f\left(x \right)$, то мова йде, Насамперед, про функції, а коли йдеться про $y$, то найчастіше мається на увазі графік функції. В іншому ж це одне й те саме, тобто похідна в обох випадках вважається однаково.

Складні завдання з похідними

Насамкінець хотілося б розглянути пару складних комбінованих завдань, в яких використовується відразу все те, що ми сьогодні розглянули. У них на нас чекають і коріння, і дроби, і суми. Однак складними ці приклади будуть лише в рамках сьогоднішнього відеоуроку, тому що по-справжньому складні функції похідних чекатимуть на вас попереду.

Отже, заключна частинасьогоднішнього відеоуроку, що складається із двох комбінованих завдань. Почнемо з першої з них:

\[\begin(align)& ((\left(((x)^(3))-\frac(1)(((x)^(3)))+\sqrt(x) \right))^ (\prime ))=((\left(((x)^(3)) \right))^(\prime ))-((\left(\frac(1)(((x)^(3)) )) \right))^(\prime ))+\left(\sqrt(x) \right) \\& ((\left(((x)^(3)) \right))^(\prime ) )=3((x)^(2)) \\& ((\left(\frac(1)(((x)^(3))) \right))^(\prime ))=((\ left(((x)^(-3)) \right))^(\prime ))=-3\cdot ((x)^(-4))=-\frac(3)(((x)^ (4))) \\& ((\left(\sqrt(x) \right))^(\prime ))=((\left(((x)^(\frac(1)(3))) \right))^(\prime ))=\frac(1)(3)\cdot \frac(1)(((x)^(\frac(2)(3))))=\frac(1) (3\sqrt(((x)^(2)))) \\\end(align)\]

Похідна функції дорівнює:

\[(y)"=3((x)^(2))-\frac(3)(((x)^(4)))+\frac(1)(3\sqrt(((x)^ (2))))\]

Перший приклад вирішено. Розглянемо друге завдання:

У другому прикладі діємо аналогічно:

\[((\left(-\frac(2))(((x)^(4)))+\sqrt(x)+\frac(4)(x\sqrt(((x)^(3)) )) \right))^(\prime ))=((\left(-\frac(2)(((x)^(4))) \right))^(\prime ))+((\left (\sqrt(x) \right))^(\prime ))+((\left(\frac(4)(x\cdot \sqrt(((x)^(3))))) \right))^ (\prime ))\]

Порахуємо кожне доданок окремо:

\[\begin(align)& ((\left(-\frac(2)(((x)^(4))) \right))^(\prime ))=-2\cdot ((\left( ((x)^(-4)) \right))^(\prime ))=-2\cdot \left(-4 \right)\cdot ((x)^(-5))=\frac(8 )(((x)^(5))) \\& ((\left(\sqrt(x) \right))^(\prime ))=((\left(((x)^(\frac()) 1)(4))) \right))^(\prime ))=\frac(1)(4)\cdot ((x)^(-\frac(3)(4)))=\frac(1 )(4\cdot ((x)^(\frac(3)(4))))=\frac(1)(4\sqrt(((x)^(3)))) \\& ((\ left(\frac(4)(x\cdot \sqrt(((x)^(3)))) \right))^(\prime ))=((\left(\frac(4)(x\cdot) ((x)^(\frac(3)(4)))) \right))^(\prime ))=((\left(\frac(4))(((x)^(1\frac(3) )(4)))) \right))^(\prime ))=4\cdot ((\left(((x)^(-1\frac(3)(4))) \right))^( \prime ))= \\& =4\cdot \left(-1\frac(3)(4) \right)\cdot ((x)^(-2\frac(3)(4)))=4 \cdot \left(-\frac(7)(4) \right)\cdot \frac(1)(((x)^(2\frac(3)(4))))=\frac(-7) (((x)^(2))\cdot ((x)^(\frac(3)(4))))=-\frac(7)(((x)^(2))\cdot \sqrt (((x)^(3)))) \\\end(align)\]

Усі доданки пораховані. Тепер повертаємося до вихідної формули і складаємо разом усі три доданки. Отримуємо, що остаточна відповідь буде такою:

\[(y)"=\frac(8)(((x)^(5)))+\frac(1)(4\sqrt(((x)^(3))))-\frac(7 )(((x)^(2))\cdot \sqrt(((x)^(3))))\]

І на цьому все. То був перший наш урок. У наступних урокахми розглянемо більше складні конструкції, а також з'ясуємо, навіщо взагалі потрібні похідні.

На якому ми розібрали найпростіші похідні, а також познайомились із правилами диференціювання та деякими технічними прийомами знаходження похідних. Таким чином, якщо з похідними функцій у Вас не дуже або якісь моменти цієї статті будуть не зовсім зрозумілі, то спочатку ознайомтеся з вищезгаданим уроком. Будь ласка, налаштуйтеся на серйозний лад – матеріал не з простих, але я намагаюся викласти його просто і доступно.

На практиці з похідною складною функцією доводиться стикатися дуже часто, я навіть сказав би, майже завжди, коли Вам дано завдання на перебування похідних.

Дивимося в таблицю правило (№5) диференціювання складної функції:

Розбираємось. Насамперед звернемо увагу на запис . Тут у нас дві функції - і, причому функція, образно кажучи, вкладена в функцію. Функція такого виду (коли одна функція вкладена в іншу) і називається складною функцією.

Функцію я називатиму зовнішньою функцією, а функцію – внутрішньою (або вкладеною) функцією.

! Дані визначення не є теоретичними та не повинні фігурувати у чистовому оформленні завдань. Я застосовую неформальні вирази "зовнішня функція", "внутрішня" функція тільки для того, щоб Вам легше було зрозуміти матеріал.

Для того щоб прояснити ситуацію, розглянемо:

Приклад 1

Знайти похідну функції

Під синусом у нас знаходиться не просто буква «ікс», а ціле вираження, тому знайти похідну відразу по таблиці не вийде. Також ми помічаємо, що тут неможливо застосувати перші чотири правила, начебто є різниця, але річ у тому, що «розривати на частини» синус не можна:

У даному прикладівже з моїх пояснень інтуїтивно зрозуміло, що функція – це складна функція, причому багаточлен є внутрішньою функцією(Вкладенням), а – зовнішньою функцією.

Перший крок, який потрібно виконати при знаходженні похідної складної функції полягає в тому, щоб розібратися, яка функція є внутрішньою, а яка – зовнішньою.

В разі простих прикладівначебто зрозуміло, що під синус вкладений багаточлен. А як бути, якщо все не очевидно? Як точно визначити яка функція є зовнішньою, а яка внутрішньою? Для цього я пропоную використовувати наступний прийом, який можна проводити подумки або на чернетці.

Уявимо, що нам потрібно обчислити на калькуляторі значення виразу (замість одиниці може бути будь-яке число).

Що ми обчислимо насамперед? В першу чергунеобхідно виконати таку дію: , тому многочлен і буде внутрішньої функцією :

У другу чергупотрібно буде знайти, тому синус - буде зовнішньою функцією:

Після того, як ми РОЗІБРАЛИСЯз внутрішньою та зовнішньою функціями саме час застосувати правило диференціювання складної функції .

Починаємо вирішувати. З уроку Як знайти похідну?ми пам'ятаємо, що оформлення рішення будь-якої похідної завжди починається так - укладаємо вираз у дужки і ставимо праворуч угорі штрих:

Спочаткузнаходимо похідну зовнішньої функції (синусу), дивимося на таблицю похідних елементарних функційі помічаємо, що . Всі табличні формули застосовні і в тому випадку, якщо «ікс» замінити складним виразом, в даному випадку:

Зверніть увагу, що внутрішня функція не змінилася, її ми не чіпаємо.

Ну і цілком очевидно, що

Результат застосування формули у чистовому оформленні виглядає так:

Постійний множник зазвичай виносять на початок виразу:

Якщо залишилося якесь непорозуміння, перепишіть рішення на папір і прочитайте пояснення.

Приклад 2

Знайти похідну функції

Приклад 3

Знайти похідну функції

Як завжди записуємо:

Розбираємось, де у нас зовнішня функція, а де внутрішня. Для цього пробуємо (подумки або на чернетці) обчислити значення виразу при . Що потрібно виконати насамперед? В першу чергу потрібно порахувати чому рівна основа: , отже, багаточлен - і є внутрішня функція:

І тільки потім виконується зведення в ступінь , отже, статечна функція - це зовнішня функція:

Згідно з формулою , спочатку потрібно знайти похідну від зовнішньої функції, у разі, від ступеня. Розшукуємо у таблиці необхідну формулу: . Повторюємо ще раз: будь-яка таблична формула справедлива не тільки для «ікс», але і для складного вираження. Таким чином, результат застосування правила диференціювання складної функції наступний:

Знову наголошую, що коли ми беремо похідну від зовнішньої функції, внутрішня функція у нас не змінюється:

Тепер залишилося знайти зовсім просту похідну від внутрішньої функції і трохи «зачесати» результат:

Приклад 4

Знайти похідну функції

Це приклад самостійного рішення (відповідь наприкінці уроку).

Для закріплення розуміння похідної складної функції наведу приклад без коментарів, спробуйте самостійно розібратися, поміркувати, де зовнішня і внутрішня функція, чому завдання вирішені саме так?

Приклад 5

а) Знайти похідну функції

б) Знайти похідну функції

Приклад 6

Знайти похідну функції

Тут у нас корінь, а для того, щоб продиференціювати корінь, його потрібно подати у вигляді ступеня. Таким чином, спочатку наводимо функцію в належний для диференціювання вигляд:

Аналізуючи функцію, приходимо до висновку, що сума трьох доданків – це внутрішня функція, а зведення у ступінь – зовнішня функція. Застосовуємо правило диференціювання складної функції :

Ступінь знову представляємо у вигляді радикала (кореня), а для похідної внутрішньої функції застосовуємо просте правило диференціювання суми:

Готово. Можна ще у дужках привести вираз до спільного знаменника та записати все одним дробом. Гарно, звичайно, але коли виходять громіздкі довгі похідні – краще цього не робити (легко заплутатися, припуститися непотрібної помилки, та й викладачеві буде незручно перевіряти).

Приклад 7

Знайти похідну функції

Це приклад самостійного рішення (відповідь наприкінці уроку).

Цікаво відзначити, що іноді замість правила диференціювання складної функції можна використовувати правило приватного диференціювання Але таке рішення виглядатиме як збочення незвичайно. Ось характерний приклад:

Приклад 8

Знайти похідну функції

Тут можна використовувати правило диференціювання приватного , але набагато вигідніше знайти похідну через правило диференціювання складної функції:

Підготовляємо функцію для диференціювання – виносимо мінус за знак похідної, а косинус піднімаємо до чисельника:

Косинус – внутрішня функція, зведення у ступінь – зовнішня функція.
Використовуємо наше правило :

Знаходимо похідну внутрішньої функції, косинус скидаємо назад донизу:

Готово. У розглянутому прикладі важливо не заплутатися у знаках. До речі, спробуйте вирішити його за допомогою правила , відповіді повинні збігтися.

Приклад 9

Знайти похідну функції

Це приклад самостійного рішення (відповідь наприкінці уроку).

Досі ми розглядали випадки, коли у нас у складній функції було лише одне вкладення. У практичних завданнях часто можна зустріти похідні, де, як матрьошки, одна в іншу, вкладені відразу 3, а то і 4-5 функцій.

Приклад 10

Знайти похідну функції

Розбираємось у вкладеннях цієї функції. Пробуємо обчислити вираз за допомогою піддослідного значення. Як би ми рахували на калькуляторі?

Спочатку потрібно знайти , отже, арксинус - найглибше вкладення:

Потім цей арксинус одиниці слід звести у квадрат:

І, нарешті, сімку зводимо в ступінь:

Тобто в цьому прикладі у нас три різні функціїі два вкладення, причому, самої внутрішньої функцією є арксинус, а зовнішньої функцією – показова функція.

Починаємо вирішувати

Відповідно до правила Спочатку потрібно взяти похідну від зовнішньої функції. Дивимося в таблицю похідних та знаходимо похідну показової функції: Єдина відмінність – замість «ікс» у нас складний виразщо не скасовує справедливість цієї формули. Отже, результат застосування правила диференціювання складної функції наступний.

Операція відшукання похідної називається диференціюванням.

В результаті вирішення завдань про відшукання похідних у найпростіших (і не дуже простих) функцій визначення похідної як межі відношення прирощення до прирощення аргументу з'явилися таблиця похідних і точно певні правиладиференціювання. Першими на ниві знаходження похідних попрацювали Ісаак Ньютон (1643-1727) та Готфрід Вільгельм Лейбніц (1646-1716).

Тому в наш час, щоб знайти похідну будь-якої функції, не треба обчислювати згадану вище межу відношення збільшення функції до збільшення аргументу, а потрібно лише скористатися таблицею похідних та правилами диференціювання. Для знаходження похідної підходить наступний алгоритм.

Щоб знайти похідну, треба вираз під знаком штриха розібрати на складові прості функціїта визначити, якими діями (твір, сума, приватна)пов'язані ці функції. Далі похідні елементарних функцій знаходимо у таблиці похідних, а формули похідних твору, суми та частки - у правилах диференціювання. Таблиця похідних та правила диференціювання дані після перших двох прикладів.

приклад 1.Знайти похідну функції

Рішення. З правил диференціювання з'ясовуємо, що похідна суми функцій є сума похідних функцій, тобто.

З таблиці похідних з'ясовуємо, що похідна "ікса" дорівнює одиниці, а похідна синуса - косінус. Підставляємо ці значення у суму похідних і знаходимо необхідну умовою завдання похідну:

приклад 2.Знайти похідну функції

Рішення. Диференціюємо як похідну суми, в якій другий доданок з постійним множником, його можна винести за знак похідної:

Якщо поки що виникають питання, звідки береться, вони, як правило, прояснюються після ознайомлення з таблицею похідних та найпростішими правилами диференціювання. До них ми і переходимо зараз.

Таблиця похідних простих функцій

1. Похідна константи (числа). Будь-якого числа (1, 2, 5, 200 ...), яке є у виразі функції. Завжди дорівнює нулю. Це дуже важливо пам'ятати, тому що потрібно дуже часто
2. Похідна незалежною змінною. Найчастіше "ікса". Завжди дорівнює одиниці. Це також важливо запам'ятати надовго
3. Похідна ступеня. У ступінь під час вирішення завдань необхідно перетворювати неквадратні коріння.
4. Похідна змінної у ступені -1
5. Похідна квадратного кореня
6. Похідна синуса
7. Похідна косинуса
8. Похідна тангенса
9. Похідна котангенсу
10. Похідна арксинуса
11. Похідна арккосинусу
12. Похідна арктангенса
13. Похідна арккотангенса
14. Похідна натурального логарифму
15. Похідна логарифмічна функція
16. Похідна експоненти
17. Похідна показової функції

Правила диференціювання

1. Похідна суми чи різниці
2. Похідна твори
2a. Похідна вирази, помноженого на постійний множник
3. Похідна приватного
4. Похідна складної функції

Правило 1.Якщо функції

диференційовані в деякій точці, то в тій же точці диференційовані і функції

причому

тобто. похідна алгебраїчної суми функцій дорівнює алгебраїчній суміпохідних цих функцій.

Слідство. Якщо дві функції, що диференціюються, відрізняються на постійний доданок, то їх похідні рівні, тобто.

Правило 2Якщо функції

диференційовані в деякій точці, то в тій же точці диференційовано та їх добуток

причому

тобто. похідна твори двох функцій дорівнює сумі творів кожної з цих функцій похідну інший.

Наслідок 1. Постійний множник можна виносити за знак похідної:

Наслідок 2. Похідна твори декількох функцій, що диференціюються, дорівнює сумі творів похідної кожного з співмножників на всі інші.

Наприклад, для трьох множників:

Правило 3Якщо функції

диференційовані в деякій точці і , то в цій точці диференційовано та їх приватнеu/v , причому

тобто. похідна приватного двох функцій дорівнює дробу, чисельник якого є різниця творів знаменника на похідну чисельника і чисельника на похідну знаменника, а знаменник є квадрат колишнього чисельника.

Де що шукати на інших сторінках

При знаходженні похідної твору і частки у реальних завданнях завжди потрібно застосовувати відразу кілька правил диференціювання, тому більше прикладівна ці похідні – у статті"Виробничі твори та приватні функції".

Зауваження.Слід не плутати константу (тобто число) як доданок у сумі і як постійний множник! У випадку доданку її похідна дорівнює нулю, а у випадку постійного множникавона виноситься за знак похідних. Це типова помилка, яка зустрічається на початковому етапівивчення похідних, але в міру вирішення вже кількох одно-двоскладових прикладів середній студентцю помилку вже не робить.

А якщо при диференціюванні твору чи приватного у вас з'явився доданок u"v, в якому u- число, наприклад, 2 або 5, тобто константа, то похідна цього числа дорівнюватиме нулю і, отже, все доданок буде дорівнює нулю (такий випадок розібраний у прикладі 10).

Інша часта помилка- механічне рішення похідної складної функції як похідної простий функції. Тому похідної складної функціїприсвячено окрему статтю. Але спочатку вчитимемося знаходити похідні простих функцій.

По ходу не обійтися без перетворень виразів. Для цього може знадобитися відкрити у нових вікнах посібники Дії зі ступенями та коріннямі Дії з дробами .

Якщо Ви шукаєте рішення похідних дробів зі ступенями та корінням, тобто, коли функція має вигляд начебто , то слідуйте на заняття "Похідна суми дробів зі ступенями та корінням".

Якщо ж перед Вами завдання начебто , то Вам на заняття "Виробні простих тригонометричних функцій".

Покрокові приклади - як знайти похідну

приклад 3.Знайти похідну функції

Рішення. Визначаємо частини виразу функції: весь вираз представляє твір, яке співмножники - суми, у другий у тому числі одне з доданків містить постійний множник. Застосовуємо правило диференціювання твору: похідна твори двох функцій дорівнює сумі творів кожної з цих функцій на похідну інший:

Далі застосовуємо правило диференціювання суми: похідна суми алгебраїчної функцій дорівнює сумі алгебри похідних цих функцій. У нашому випадку в кожній сумі другий доданок зі знаком мінус. У кожній сумі бачимо і незалежну змінну, похідна якої дорівнює одиниці, і константу (число), похідна якої дорівнює нулю. Отже, "ікс" у нас перетворюється на одиницю, а мінус 5 - на нуль. У другому виразі "ікс" помножено на 2, так що двійку множимо на ту ж одиницю як похідну "ікса". Отримуємо наступні значенняпохідних:

Підставляємо знайдені похідні у суму творів і отримуємо необхідну умовою завдання похідну всієї функції:

приклад 4.Знайти похідну функції

Рішення. Від нас потрібно знайти похідну приватного. Застосовуємо формулу диференціювання частки: похідна частки двох функцій дорівнює дробу, чисельник якого є різниця творів знаменника на похідну чисельника і чисельника на похідну знаменника, а знаменник є квадрат колишнього чисельника. Отримуємо:

Похідну співмножників у чисельнику ми вже знайшли в прикладі 2. Не забудемо також, що твір, що є другим співмножником у чисельнику в поточному прикладі береться зі знаком мінус:

Якщо Ви шукаєте вирішення таких завдань, в яких треба знайти похідну функції, де суцільне нагромадження коренів та ступенів, як, наприклад, , то ласкаво просимо на заняття "Виробна суми дробів зі ступенями і корінням" .

Якщо ж Вам потрібно дізнатися більше про похідні синуси, косінуси, тангенси та інші тригонометричних функцій, тобто, коли функція має вигляд начебто , то Вам на урок "Виробні простих тригонометричних функцій" .

Приклад 5.Знайти похідну функції

Рішення. У цій функції бачимо твір, один із співмножників яких - квадратний корінь із незалежної змінної, з похідною якого ми ознайомились у таблиці похідних. За правилом диференціювання твору та табличного значенняпохідної квадратного кореня отримуємо:

Приклад 6.Знайти похідну функції

Рішення. У цій функції бачимо приватне, ділене якого - квадратний корінь із незалежної змінної. За правилом диференціювання приватного, яке ми повторили і застосували в прикладі 4, та табличного значення похідної квадратного кореня отримуємо:

Щоб позбутися дробу в чисельнику, множимо чисельник і знаменник на .



Останні матеріали розділу:

Список відомих масонів Закордонні знамениті масони
Список відомих масонів Закордонні знамениті масони

Присвячується пам'яті митрополита Санкт-Петербурзького та Ладозького Іоанна (Сничева), який благословив мою працю з вивчення підривної антиросійської...

Що таке технікум - визначення, особливості вступу, види та відгуки Чим відрізняється інститут від університету
Що таке технікум - визначення, особливості вступу, види та відгуки Чим відрізняється інститут від університету

25 Московських коледжів увійшли до рейтингу "Топ-100" найкращих освітніх організацій Росії. Дослідження проводилося міжнародною організацією...

Чому чоловіки не стримують своїх обіцянок Невміння говорити «ні»
Чому чоловіки не стримують своїх обіцянок Невміння говорити «ні»

Вже довгий час серед чоловіків ходить закон: якщо назвати його таким можна, цього не може знати ніхто, чому ж вони не стримують свої обіцянки. По...